








tk+1
ε = CT ṫkε (6)

until ‖tk+1
ε −tkε ‖ < η, where η is a specified threshold to determine

that we have reached a fix point. As in the eigentrust algorithm, the
trust vector tε converges after a certain amount of iterations. In this
way, the trust that ε has on i is built aggregating the direct trust
distributions between community members and peer i weighted by
the trust (initially ignorance) that ε has on each community mem-
ber. The product between matrix CT and tkε is defined, recalling
previous definitions, as follows:

tk+1
ε,j =

⊕
0<i≤n

Ti,j ⊗ Tkε,i (7)

Finally, if a direct trust distribution is already built between ε
and j, Ti,j , then after each step of the algorithm, tk+1

ε,j is overwrit-
ten with Ti,j , since we prefer to preserve direct trust distributions,
which are built from the history of assessments.

3.2.3 Information Decay
An important notion in our proposal is the decay of information.

We say the integrity of information decreases with time. In other
words, the information provided by a trust probability distribution
should lose its value over time and decay towards a default value.
We refer to this default value as the decay limit distribution D. For
instance, D may be the ignorance distribution, which would mean
that trust information learned from past experiences tends to igno-
rance over time.

Information in a probability distribution T decays from t to t′

(where t′ > t) as follows:

Tt;t′ = Λ(D,Tt) (8)

where Λ is the decay function satisfying the property: lim
t′→∞

Tt;t′ =

D. One possible definition for Λ could be:

Tt;t′ = ν∆t,t′ · Tt + (1− ν∆t,t′ )D (9)

where ν is the decay rate, and:

∆t,t′ =

0 , if t′ − t < ω

1 +
t′ − t
tmax

, otherwise

The definition of ∆t,t′ above serves the purpose of establishing
a minimum grace period, determined by the parameter ω, during
which the information does not decay, and that once reached the
information starts decaying. The parameter tmax, which may be
defined in terms of multiples of ω, controls the pace of decay. The
main idea behind this is that after the grace period, the decay hap-
pens very slowly; in other words, ∆t,t′ decreases very slowly.

To implement such a decay mechanism in our model, we need
to:

1. Record all evaluations eαµ ∈ H made at time t with a times-
tamp t, noted eα

t

µ .

2. Record all direct trust distributions Ti,j with a timestamp t,
noted Tti,j , where t is the timestamp of the last evaluation
that modified the trust distribution (recall that direct trust dis-
tributions may be modified when a new assessment occurs).
The first time Ti,j is modified, t is the timestamp of the eval-
uation involved in the modification. Then, every time a new

evaluation with timestamp t′ > t is considered to update
Tti,j , Tti,j is first decayed from t to t′ before the distribution
is modified.

3. Record all indirect trust distributions Ti,j with a timestamp
t, noted Tti,j . Every time Ti,j is calculated, all probability
distributions involved in this calculation will first be decayed
to the time of calculation t, which will be the resulting times-
tamp of Ti,j .

3.3 Step 2: What to believe when a peer gives
an opinion?

Given a peer assessment eαµ , the question now is how to compute
the probability distribution of ε’s evaluation. In other words, what
is the probability that ε’s evaluation of α is x given that µ evaluated
αwith eαµ . As illustrated earlier, this is expressed as the conditional
probability:

P(Xα=x | eαµ)

To calculate this conditional probability, the intuition is that ε
would tend to agree with µ’s evaluation if his trust on µ is high (that
is, the expected evaluation difference between their assessments is
close to 0). Otherwise, ε’s evaluation would probably be different.
We perform then a sort of analogical reasoning: if in the past µ
gave assessments with a certain evaluation difference with respect
to ε, then this will probably happen again now.

We thus calculate the above conditional probability simply as:

p(Xα=x | eαµ) =



∑
y≤diff (x,eαµ)

Tε,µ(y) if x = 0∑
y≥diff (x,eαµ)

Tε,µ(y) if x = b

Tε,µ(diff (x, eαµ)) otherwise

(10)

Observe that in two cases the probabilities are computed as the
summation of the probability mass of Tε,µ for points below or over
the difference between the new opinion and the point x under con-
sideration. This is done to cope with the fact that we cannot under
rate or over rate more as we are at the extremes already and con-
sider that for instance past cases where we under rated more should
be taken into account when we are determining the probability that
the leader gives a 0 in the assessment. Similarly for b. For exam-
ple, assume µ’s assessment is 2 when the maximum mark is 3, we
are calculating the probability of ε’s assessment, and ε usually over
rates µ by 2 marks. The probability of ε’s assessment being 2 will
essentially be T(0) (since the difference 2− 2 = 0). However, the
probability of ε’s assessment being 3, cannot simply be T(1) (since
the difference 3 − 2 = 1), because it is the maximum value of the
evaluation space and so it also needs to consider all the over rat-
ing possibilities described by T(2) and T(3) as well. As such, the
probability of ε’s assessment being 3 aggregates T(1), T(2), and
T(3).

3.4 Step 3: What to believe when many give
opinions?

In the previous section we computed P(Xα | eαµ). That is, the
probability distribution of ε’s evaluation on α given the evaluation
of a peer µ on α. But what does ε do when there is more than one
peer assessing α?

Given the set of opinionsOα = {eαµ1
, eαµ2

, . . . , eαµn} of a group
of peers over the object α, we define the probability of ε’s assess-
ment being x as follows:

1119



p(Xα=x | Oα) =
n∨
i=1

(I(Tε,µi) · p(X
α=x | eαµi))

n∑
i=1

I(Tε,µi) > δ

1/n otherwise

(11)

where ∨ is an operator that combines probabilities assuming the
sources are independent:2 a∨b = a+b−a∗b, and I(Tε,µ) measures
the information content of the probability distribution Tε,µ as the
earth mover’s distance to the ignorance distribution (the uniform
distribution F). In other words, the probability of ε’s assessment
being x given the set of opinions Oα is a disjunction of the proba-
bilities of ε’s assessment being x given each evaluation eαµi ∈ O

α

and diminished by the information content of the evaluation distri-
butions I(Tε,µi). We diminish the probability derived from a par-
ticular opinion when that opinion is actually not very informative
and thus very close to ignorance. In the case that most opinions are
close to ignorance,

∑n
i=1 I(Tε,µi) ≤ δ, the result of such combi-

nation might be too close to zero (for a small δ) and thus we prefer
to assume ignorance, 1/n, for the probability value.

Finally, for several purposes (give a mark to a student, rank ob-
jects to purchase, . . . ) it is practical to ‘summarise’ distributions
P(Xα | Oα) into a number. From the several methods that can be
used (centre of gravity, mean, median, . . . ) in the experiments we
use the mode value of the distribution.

3.5 Step 4: What should be evaluated next?
The previous three steps allow to compute assessments of objects

that have not been assessed by ε, based on peers opinions. The
level of uncertainty of the assessments so generated by our method
can be calculated as the uncertainty of the probability distribution
P(Xα | Oα). A classical method to measure this uncertainty is the
the distribution’s entropy:

H(P(Xα | Oα)) =
∑
x∈Xα

p(Xα=x | Oα) · ln p(Xα=x | Oα)

(12)
We will explore in the experiments a heuristic that aims at reduc-

ing the number of assessments made by the leader. In other words,
what object should be assessed next by ε in order to maximally de-
crease the overall uncertainty? For example, what assignments and
in which order should a tutor evaluate so that the uncertainty of the
computed assessments, i.e. the uncertainty on the students’ marks,
becomes acceptable. The heuristic is simple: we suggest that ε
evaluates objects by decreasing value of the entropy of their assess-
ment distribution, that is the next object α that the leader should
assess is:

α = argmax
α

H(P(Xα | Oα)

4. ALGORITHM
In this section we provide the pseudo-code of PAAS, which is a

straightforward implementation from the equations defined in Sec-
tion 3.

Algorithm 1 defines the method to apply when a new assessment
is performed. In lines 1-14 direct trust distributions are updated in
matrix C and vector tε, as discussed in subsection 3.2.1. In lines
15-22, indirect trust distributions are updated using the adapted
2This assumption is not very restrictive for the scenarios we are
considering: peer assessments in online education or e-commerce
as opinions are expressed by people that do not know each other.

eigentrust method, as discussed in subsection 3.2.2. Algorithm 2 is
the method that updates direct trust distributions given a new opin-
ion. Line 1 decays the distribution from time stamp t to t′. Line 2
updates the value in the distribution for the point representing the
distance in the observation. Line 3 normalizes this distribution by
computing the distribution with minimum relative entropy with re-
spect to the distribution before the observation and that respects the
updated value. Algorithm 3 deduces the overall assessment values
(i.e. P(Xα | Oα) after a number of assessments have been made.

Algorithm 1 newAssessment(eα
t

i )

Require: H = {} . This is the history of assessments
Require: F . This is a trust probability distribution describing ignorance
Require: t′ε . This is a vector where ε’s direct trust distributions are stored
1: for all eαj ∈ H do . Ordered by their timestamps
2: diffi,j = eαi − eαj
3: diffj ,i = eαj − eαi
4: if i = ε then
5: updateDirectDistribution(tε[j], t, diffi,j )
6: t′ε = t′ε ∪ tε[j]
7: else if j = ε then
8: updateDirectDistribution(tε[j], t, diffj ,i )
9: t′ε = t′ε ∪ tε[j]

10: else
11: updateDirectDistribution(Ci,j , t, diffi,j )
12: updateDirectDistribution(Cj,i, t, diffj ,i )
13: end if
14: end for
15: t0ε = F
16: repeat
17: tk+1

ε = CT ṫkε . Equations 6 and 7
18: error = ‖tk+1

ε − tkε ‖
19: tk+1

ε = tkε
20: tk+1

ε ← t′ε . Overwrite distributions for those peers with direct
trust

21: until error < η

22: H = H∪ {eαti }

Algorithm 2 updateDirectDistribution(Tt
′
, t, x)

Require: Λ . This is the decay function
Require: D . This is the default distribution
1: Tt′;t

i,j = Λ(D,Tti,j) . Equations 8 and 9
2: T(X=x) = T(X=x) + γ · (1− T(X=x))

3:
T(X) = arg min

P′(X)

∑
x′
p(X=x′) log

p(X=x′)

p′(X=x′)

such that {p(X=x) = p′(X=x)}

5. EVALUATION
We present experiments performed over real data coming from

two English language classrooms (30 14-years old students). Two
different tasks were given to the classroom: an English composition
task and a song vocabulary task. A total of 71 assignments were
submitted by the students and marked by the teacher (our leader).

Students assessed their fellow students during a 1 hour period.
A total of 168 student assessments were completed by the students
(each student assessed on average 2.4 assignments). Marks vary
from 1 (very bad) to 4 (very good). Students evaluated different
criteria from the assignments: focus, coherence, grammar in the
composition task and in-time submission, requirements, lyrics in
the song vocabulary task.
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Algorithm 3 calculateAssessments()

Require: I . This is the set of objects to be assessed
Require: H . This is the history of assessments
1: result = {}
2: for all α ∈ I do
3: if eαε ∈ H then
4: result = result ∪ eαε
5: else
6: Oα = {eαµ |eαµ ∈ H}
7: eα_ = {x|P(Xα = x | Oα) is maximum}. Equations 11 and

10
8: result = result ∪ eα_
9: end if

10: end for
11: return result

Thus, E = {1, 2, 3, 4}, and the x-axis of our trust distributions
is {−4,−3,−2,−1, 0, 1, 2, 3, 4} (which are the possible evalua-
tion distance values between peers in this setting). We calculate
the error of the generated assessments, noted as eα_ , as the average
difference between them and the tutor assessments, that is:

error =

∑
α∈I

‖eα_ − eαε ‖

|I|

In addition to the error, we are also interested in plotting the
number of deduced assessments. We note that when there is no
peer or tutor assessment for a particular assignment, an automated
mark for that assignments can not be generated.

In the first experiment where we compare our model with the
well known Collaborative Filtering (CF) algorithm [9]. As dis-
cussed in Section 2, CF is a social information filtering algorithm
that recommends content to users based on their previous prefer-
ences. CF biases the final computation towards a particular mem-
ber: the person being recommended, as our algorithm does.

In this experiment, we randomly select a subset of 6 teacher as-
sessments to use as the leader’s opinion in both PAAS and CF (this
subset represents 8.4% of the total number of assessments, the rest
of teacher assessments are used to calculate the error). Then, sev-
eral iterations are performed, one for each student assessment. On
each iteration:

• One student assessment is selected randomly from the set of
student assessments and added to PAAS and CF

• Automated assessments are generated by PAAS and CF and
the error is calculated. To calculate the error, our groundtruth
is the set of all tutor assessments.

Results are averaged over 50 executions. When an assessment for
a particular assignment could not be deduced, a default mark (ig-
norance) 2 is given, since this value is situated more or less in the
middle of the evaluation space. Default marks are used in both
PAAS and CF error calculations.

Figure 1 shows the results of PAAS and CF on three cases. As
the assignments are different with different evaluation criteria we
choose a criterion per group, necessarily different, so that we can
have a larger number of assignments in the experiments. Three
such pairings of criteria are shown in the figure. It is clear in the
three cases the remarkable improvement of PAAS over CF consid-
ering the number of final marks generated (see the right column of
graphics in the figure). PAAS has an added capability with respect
to CF in using indirect trust measures to generate assessments. In
CF the opinion of someone without any similarity in her profile

with the leader (in our case, without any common assignment be-
ing assessed) cannot be used to suggest a recommendation (an as-
sessement). Thus, PAAS is capable of generating many more as-
sessments, specially once the graph of indirect trust relationships
becomes more and more connected. This highlights PAAS’s first
point of strength: PAAS increases the number of assessments that
can be calculated. On the left, we show the improvement of PAAS
over CF in terms of the error with respect to the ground truth that we
know (the actual teacher assessments). The error is calculated over
the entire set of assignments, including assignments that receive
the default mark. This highlights PAAS’s second point of strength
in outperforming CF: PAAS decreases the error of the assessments
calculated. We note that when the number of peer assessments
increases PAAS and CF’s error get closer because the effect of in-
direct trust diminishes. However, we are much better than CF for a
small effort per peer (for instance, think of 5 or 6 assessments per
peer instead of hundreds).

We perform a second experiment where we assess the impact of
using the heuristic that informs the teacher of which assignment
to select next to assess, see section 3.5 for details. In this case,
we designed an experiment where we simulate a classroom of 200
students with 200 submitted assignments, where each assignment
is evaluated by 5 students (1000 peer assessments performed). To
show a critical case, we simulate that half of the assignments are
evaluated accurately by half of the students (that is, those students
provided the same mark as the tutor) and the other half of the as-
signments are evaluated poorly (that is, randomly) by the other half
of the students. In the simulation, we have two instances of the
PAAS model: PAAS Random and PAAS Ranking. First, all the stu-
dent assessments are added to both instances of the PAAS model.
Then, several iterations are performed, one for each tutor assess-
ment. On each iteration:

• We randomly select a tutor assessment for an assignment that
has not been assessed yet, and we add this tutor assessment
to PAAS Random.

• We select a tutor assessment for an assignment not yet as-
sessed following the suggestion of the entropy heuristic, and
we add this tutor assessment to PAAS Ranking.

• Automated assessments are generated by PAAS Random and
PAAS Ranking and the error is calculated.

Figure 2 (a) shows the error which of course decreases with ev-
ery new tutor assessment. We also see how ranking the assess-
ments with the entropy heuristic decreases the error faster. Figure
2 (b) shows the same experiments but with the real data. In this
case, there is no clear advantage in ranking assessments over sim-
ply assessing randomly. This is an indicator that the students from
these two groups where closely aligned with the tutor’s opinion.
In other words, all the assignments where performed with more or
less the same quality (in contrast with the scenario presented in
(a) with simulated data). Figure 2 (c) shows the same experiment
presented in (b) but in this case the assessments of half of the as-
signments were overwritten providing a random mark. Such noise
introduced, even in this rough manner, produces that the ranking
strategy becomes slightly more effective. We also highlight the
fact that the error of the PAAS model does not change drastically
when noise is introduced, since PAAS is able to distinguish which
assessments are trustworthy and which are not very quickly. We
conclude from this second experiment that although in some cases,
e.g. when the students are good ‘recommenders’, the heuristic may
not be needed, in general it can improve the results when such rec-
ommendation quality is missing.
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(a) focus and in-time submission criteria

(b) coherence and requirements criteria

(c) grammar and lyrics criteria

Figure 1: Experiments with Real Data: PAAS vs CF. We show
the results for opinions on two criteria, one for each assignment.
For instance in (a) we combine opinions on focus in the compo-
sition task and submission on time in the song vocabulary task.

6. CONCLUSIONS AND FUTURE WORK
In this paper we have presented the Personalised Automated AS-

sessments model (PAAS), a trust-based assessment service that helps
compute automated assessments from the perspective of a specific
community member: a community leader. This computation es-
sentially aggregates peer assessments, giving more weight to those
peers that are trusted by the leader. How much the leader trusts
a peer is based on the similarity between her (past) assessments
and the peer’s (past) assessments over the same objects. The ap-
plication of this model is specially useful in the context of online
communities, where community members interact providing feed-

(a) Synthetic data

(b) Real data

(c) Randomised Real data

Figure 2: Experiments considering the entropy heuristic

back or when the number of objects to be assessed is so large that
it would be very costly to assess them on an individual basis.

We have experimentally shown that the algorithm works well in
a real setting, and outperforms the well-known CF algorithm in two
different ways: (1) by remarkably increasing the number of assess-
ments that can be calculated, and (2) by remarkably decreasing the
error of the assessments calculated.

Plans for future work include: 1) evaluating the model with more
extensive real datasets that are currently being collected; 2) testing
the model in real settings by a company specialised in online learn-
ing solutions; and 3) applying the model to a domain other than on-
line learning, where the direct and indirect trust relations can help
community members decide who to trust in a given context. An-
other question to study is how the results would change when other
similarity measures for the differences between peers are used.
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