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ABSTRACT
Distributed Constraint Optimization Problems (DCOPs) have been
used to model a number of multi-agent coordination problems. In
DCOPs, agents are assumed to have complete information about
the utility of their possible actions. However, in many real-world
applications, such utilities are stochastic due to the presence of ex-
ogenous events that are beyond the direct control of the agents.
This paper addresses this issue by extending the standard DCOP
model to Expected Regret DCOP (ER-DCOP) for DCOP applica-
tions with uncertainty in constraint utilities. Different from other
approaches, ER-DCOPs aim at minimizing the overall expected re-
gret of the problem. The paper proposes the ER-DPOP algorithm
for solving ER-DCOPs, which is complete and requires a linear
number of messages with respect to the number of agents in the
problem. We further present two implementations of ER-DPOP—
GPU- and ASP-based implementations—that orthogonally exploit
the problem structure and present their evaluations on random net-
works and power network problems.
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1. INTRODUCTION
Distributed Constraint Optimization Problems (DCOPs) are prob-
lems where agents need to cooperatively determine their variables’
value assignment to maximize the sum of resulting constraint utili-
ties [22, 25, 19, 31]. Researchers have used them to model various
multi-agent coordination and resource allocation problems [18, 7,
28, 30, 32].

A DCOP is typically specified by a finite set of decision vari-
ables (throughout the paper, whenever we mention variables, we
mean decision variables) and a finite set of constraints among these
variables. Each constraint indicates a utility for each value assign-
ment of the variables involved in it. One limitation of DCOPs is
that the constraint utilities are assumed to be known and determin-
istic. Thus, the DCOP model is not suitable for modeling prob-
lems where constraint utilities are stochastic (e.g., the utility of a
constraint might depend on exogenous factors that are beyond the
direct control of the agents, such as weather conditions, properties
of the surrounding environment, etc.).

To address the above limitation, several DCOP extensions that
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handle stochasticity in the constraint utilities have been developed.
These extensions require that the constraint utilities (i) are sampled
from a predefined function that is either known [1] or concave [23];
or (ii) depend on additional random variables (not controlled by
agents) whose probability distributions are known [16, 14]. Unfor-
tunately, such requirements are not met in several real-world appli-
cations (e.g., accurate weather models are often unavailable).

Uncertain Reward DCOP (UR-DCOP) [29] is another extension
of the DCOP model that uses an additional random variable for
each constraint, in order to handle stochastic utilities. Different
from other approaches, it can model problems where the probabil-
ity distribution (referred to as belief ) of random variables is not
known, but sampled from a known probability distribution space
(referred to as the belief space). UR-DCOP (i) assumes that the
belief of a random variable is independent from the values of the
decision variables; and (ii) uses the minimax regret strategy, which
minimizes the worst-case loss (the regret) over the known belief
space. This strategy may be overly pessimistic in many situations.

In this paper, we develop an alternative approach for DCOPs
with stochastic constraint utilities that relaxes some of the as-
sumptions made by previously developed models. Specifically,
we (1) propose the Expected Regret DCOP (ER-DCOP) model,
which removes the independence assumption in UR-DCOPs and
optimizes the minimum expected regret in response to the con-
straint utilities’ uncertainty; (2) develop the ER-DPOP algorithm
to solve ER-DCOPs, proposing two implementations: one that ex-
ploits GPUs to speed up the process of solving ER-DCOPs, and an-
other one that uses ASP and exploits inference rules to prune the so-
lution search space; (3) evaluate the performance of the ER-DPOP
implementations on random graphs and power network problems;
and (4) experimentally show that ER-DCOP solutions outperform
corresponding UR-DCOP solutions in terms of the actual regret.

The rest of the paper is organized as follows. We start with a mo-
tivating example and review some background in Sections 2 and 3,
respectively. The ER-DCOP model is introduced in Section 4, the
ER-DPOP algorithm to solve this model is proposed in Section 5,
followed by some theoretical analysis in Section 6. Next, we intro-
duce the GPU-based and the ASP-based ER-DPOP implementa-
tions in Section 7. Section 8 provides the experimental results, and
we conclude the paper with some discussions and related works.

2. MOTIVATING EXAMPLE
In this section, we introduce a motivating example that is used to
illustrate the proposed model and algorithm.

EXAMPLE 1. Consider a Mars Rover problem consisting of two
robotic workers x1 and x2 that will collect soil samples on Mars
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Algorithm |X | |Di| |B| p1
8 13 18 23 4 6 8 10 12 5 30 50 70 90 0.4 0.5 0.6 0.7 0.8

ASP-ER 3.1 9.4 44.1 120.8 4.5 8.9 22.2 80.4 121.2 7.8 26.5 32.9 39.2 44.9 5.6 7.6 8.1 8.6 13.7
GPU-ER 0.1 0.2 − − 0.1 0.1 1.2 4.8 15.4 0.2 0.5 0.8 1.1 2.4 0.1 0.1 0.2 0.7 1.7
Frodo-ER 0.3 61.1 − − 1.8 33.6 143.2 − − 42.2 86.5 113.7 117.1 131.5 1.1 4.8 45.1 118.5 196.1

(a)

Algorithm p2
0.4 0.5 0.6 0.7 0.8

ASP-ER 85.8 16.9 7.7 5.8 5.5
GPU-ER 0.2 0.2 0.3 0.2 0.3
Frodo-ER 42.6 42.3 39.6 41.3 41.2

(b)

|B| Better Worse Equal V̄UR−DCOP R̄ER−DCOP

5 45 % 20 % 35 % 17.21 12.31
10 36 % 28 % 36 % 20.08 18.22
15 47 % 20 % 33 % 20.47 14.33

(c)

|B| ICG ASP-ER
5 4.4 2.9
10 50.2 3.0
15 222.9 3.2

(d)

Table 2: Experimental Results of Random Graphs
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(a) 13 Bus Topology

 10
2

 10
3

 10
4

 10
5

 10
6

 3  5  7  9  11  13  15

S
im

u
la

te
d
 R

u
n
ti
m

e
 (

m
s
)

Domain Size

|A| = 37, |X| = 218, |F| = 147

ASP-ER
Frodo-ER

(b) 37 Bus Topology
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Figure 4: Experimental Results of Power Network Problems

algorithms use the same pseudo-tree for fair comparisons. We mea-
sure the runtime of the algorithms using the simulated runtime met-
ric [27]. All experiments are performed on a Quadcore 2.2GHz ma-
chine with 8GB of memory. The GPU device adopted is a GeForce
GTX TITAN with 14 multiprocessors, and a clock rate of 837
MHZ. If an algorithm fails to solve a problem, it is due to mem-
ory limitations. We conduct our experiments on random graphs [6]
(for comparing ASP-ER and GPU-ER against Frodo-ER) and on
comprehensive optimization problems in power networks [11] (for
comparing ASP-ER against Frodo-ER).

Random Graphs: We create an n-node network, whose con-
straint density p1 produces bn (n − 1) p1c edges in total [6]. In
these experiments, we vary the number of variables |X |; the do-
main size |Di|; the constraint density p1; the constraint tightness
p2, defined as the percentage of forbidden value combinations in a
constraint; and the belief space size |B|. For each experiment, we
vary only one parameter and fix the others to their “default” values:
|A| = |X | = 13, |Di| = 6, p1 = p2 = 0.6, |B| = 5. We set
the timeout to 30 minutes. Tables 2(a) and 2(b) show the average
runtimes (in seconds) for the solved instances (out of 30 instances).
An algorithm fails to solve a configuration if it cannot solve at least
15 instances of that configuration.

We observe that ASP-ER is slower than Frodo-ER when the
problem is less complex than the one with the default configuration.
However, ASP-ER is able to solve more problems and is faster than
Frodo-ER when the problem becomes more complex (i.e., increas-
ing |X |, |Di|, p1, p2, or |B|). The reason is that, unlike Frodo-ER
agents, ASP-ER agents are able to prune a significant portion of the
search space thanks to hard constraints. In detail, the search space
does not include infeasible value combinations of the respective
variables, and the size of the search space pruned increases with
the complexity of the instances. The benefit of pruning is clearly
seen at increasing p2, i.e., while the runtimes of Frodo-ER are sim-
ilar, those of ASP-ER decrease significantly as there are more hard
constraints.

We also observe that GPU-ER is consistently faster than Frodo-
ER and ASP-ER. Its use of SIMT-based parallelism is very effec-
tive at computing the independent utility vectors (or UTIL3 en-
tries), which results in large speedup. However, as for Frodo-ER, it
cannot scale to problems as large as those solved by ASP-ER (the
settings with |X | ∈ {18, 23}). This is due to the basic GPU-ER
strategy adopted, which does not prune the search space based on
hard constraints, resulting in analogous memory requirements as
those of Frodo-ER.

We notice that, in Table 2(a), Frodo-ER reaches a timeout for
|Di|> 8 while both ASP-ER and GPU-ER can solve such experi-
ments. This is due to that the size of the UTIL tables increases sub-
stantially when the domain size increases (Property 2), and ASP-
ER and GPU-ER can scale to |Di|=12 (due to the effect of pruning
in ASP-ER, and to the exploited thread-parallelism in GPU-ER),
while Frodo-ER operates sequentially on such tables.

Power Network Problems: In this domain [11], each agent repre-
sents a node with consumption, generation, and transmission pref-
erences, and a global cost function. Constraints include the power
balance and no power loss principles, the generation and consump-
tion limits, and the capacity of the power line between nodes. How-
ever, in reality, there is loss in power transmissions, and a stochastic
constraint utility function is suited for representing this loss. The
loss depends on how much power is transferred and on external
factors (e.g., ambient temperature and the quality of power lines).
If there are no losses, the objective is to minimize the global cost
function. In the presence of losses, the objective is to minimize the
regret of the achieved global cost function over different possible
losses.

We use three network topologies, defined using the IEEE Dis-
tribution Test Feeder 2014 standards, and vary the domain size of
the generation, load, and transmission variables of each agent from
3 to 15. We use three levels of losses (|Sj | = 3) corresponding
to the loss of 10%, 30%, and 60% of the power transferred, and
|B| = 3. Figure 4 shows the runtime of ASP-ER and Frodo-ER
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in milliseconds. The results in Figure 4 are consistent with those
shown earlier.

Despite ER-DPOP having space-exponential message sizes, we
believe that it is scalable in solving real application domains
(e.g., in the power network domain with a 124 Bus topology, we
can solve problems with |X | = 748 and |F| = 497). We also
observe that ASP-ER has better scalability in the power network
problems than in random graphs because the power network prob-
lems exhibit more structure than random graphs, and their under-
lying constraint graphs have small induced width and, thus, small
separator sets.
Comparison Between UR-DCOP and ER-DCOP Models: In
addition, we compare the solution quality of ER-DCOP and UR-
DCOP models in terms of actual regret. After generating UR-
DCOP instances, we augment a probability for each joint belief
according to a normal distribution, as: PB∼N ( |B|

2
, |B|

5
). For each

instance, the two solutions—one is with respect to the UR-DCOP
model, and the other is with respect to the ER-DCOP model—are
computed. The actual regrets of those solutions are achieved by
(i) picking a joint belief in the belief space based on the distribution
PB, and (ii) calculating the actual regret of each of those solutions
relative to the picked joint belief.

In this experiment, we generate 1000 instances for each con-
figuration with |A| = |X | = 8, |Di| = 3, p1 = 0.5, p2 = 0,
and |B| ∈ {5, 10, 15}. Table 2(c) compares the quality of ER-
DCOP and UR-DCOP solutions over 1000 instances where “bet-
ter”, “worse”, and “equal” columns indicate the number of times,
in percentage, that the regret of the ER-DCOP solution is less than,
greater than, and equal to the regret of the UR-DCOP solution of
the same instance, respectively. It also reports the average regret of
UR-DCOP (V̄UR−DCOP ) and ER-DCOP (R̄ER−DCOP ) solutions
over those 1000 instances. Table 2(d) shows the average runtimes
(in seconds) for ICG Max-Sum (abbreviated to ICG) and ASP-ER
to solve those instances.4 The ER-DCOP model yield solutions
with smaller average regret than the UR-DCOP model when the
probabilities of joint beliefs have a normal distribution. We also
notice that ER-DCOP solutions can be worse than UR-DCOP so-
lutions. This happens whenever a joint belief associated to a low
probability, yet producing a high regret, actually happens. Further-
more, ASP-ER is consistently faster than ICG, due to the presence
of cycles in the constraint graphs, which affect the convergence
time of ICG (which is based on Max-Sum).

9. DISCUSSION
ER-DCOPs is closely related to UR-DCOPs [29] as both extend
DCOPs to deal with stochastic utilities. It is therefore worth to
discuss their main differences. The main difference lies in that ER-
DCOP removes the independence assumption between the belief
of a random variable and the values of decision variables. We ob-
serve that ER-DCOPs can be used to model UR-DCOP instances
by considering, in every joint belief, the conditional probabilities of
a random variable given different value assignments of the respec-
tive variables are identical (i.e., bj(rj |xfj ) = bj(rj |x′fj ) where
xfj and x′fj are two arbitrary different value assignments of vari-
ables in scp(fj)). In this sense, ER-DCOPs are more expressive
than UR-DCOPs. The second main difference between UR-DCOP
and ER-DCOP is the notion of a solution in each framework. While
UR-DCOPs minimize the worst-case loss, ER-DCOPs aim to min-
imize the expected regret. Although we believe that each approach
4Although ICG Max-Sum does not solve UR-DCOPs optimally [29], we
use it as it is the only known UR-DCOP solver. The UR-DCOP results in
Table 2(c) are computed using an optimal centralized solver.

has its own merit, we note that ER-DCOPs might yield better re-
sults in term of actual regrets as shown in our experiments.

In general, abstract distributed optimization problems can be for-
mulated as n-player coordination games. Thus, Bayesian Games
(BGs) and Potential Games (PGs) may be used to model same sce-
narios as ER-DCOP. However, for BGs, the common prior belief is
independent from the joint actions of the respective players (e.g.,
Harsanyi’s [13] and Aumann’s [2] models). Thus, as beliefs of
random variables can be dependent to the decision variables in ER-
DCOP, representing ER-DCOPs using BGs is not a straightforward
matter. Moreover, for PGs, key differences between DCOPs and
PGs are as follows: (i) DCOPs assume that the agents are cooper-
ative while agents may be competitive in PGs; (ii) DCOPs aim at
finding a (global) optimal solution for the potential function, while
PGs aim at finding an equilibrium outcome, which correspond to
a local optima of the potential function; and (iii) DCOPs require a
distributed solution approach while PGs do not have such a strict re-
quirement (though solution approaches like best response can also
be thought of as distributed approaches).

Finally, we observe that researchers have also used Graphical
Models (GMs) to model conditional independence/dependencies
between variables in combinatorial optimization problems
(e.g., [21]). GMs and ER-DCOPs are different as: (i) ER-DCOP’s
random variables exhibit different probabilities for each joint
belief, while in typical GMs, this cannot be straightforwardly
applied, and (ii) GMs are typically used to capture the conditional
dependence between random variables, while ER-DCOPs repre-
sent conditional dependence between decision variables that are
controlled by agents and random variables that are beyond the
direct control of agents.

10. CONCLUSIONS
In this paper, we proposed ER-DCOPs to model DCOPs with
uncertainty in constraint utilities. Differently from another ap-
proaches, it allows to represent the beliefs about exogenous fac-
tors, which possibly depend on the decision variables, and it fo-
cuses on minimizing the expected regret. To solve ER-DCOPs, we
proposed a distributed algorithm, called ER-DPOP, which is com-
plete and requires a linear number of messages in the number of
agents in the problem. In addition, we presented two implementa-
tions for ER-DPOP: One which harnesses the parallelism offered
by GPUs to speed up the process of solving ER-DCOPs, and an-
other which uses ASP and exploits logic programming-based infer-
ence rules to prune the solution search space. Such approaches take
advantage from two orthogonal means of exploiting the ER-DCOP
structure. Our experimental evaluation shows that ER-DCOP solu-
tions outperform corresponding UR-DCOP solutions in terms of
the actual regret, and that both ER-DPOP implementations out-
perform a straightforward repeated application of state-of-the-art
DCOP solver (i.e., DPOP) in terms of better scalability and run-
time.
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