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ABSTRACT
Competitive equilibrium from equal incomes (CEEI) is awell-known

rule for fair allocation of resources among agents with different

preferences. It has many advantages, among them is the fact that

a CEEI allocation is both Pareto efficient and envy-free. However,

when the resources are indivisible, a CEEI allocation might not

exist even when there are two agents and a single item.

In contrast to this discouraging non-existence result, Babaioff,

Nisan and Talgam-Cohen (2017) recently suggested a new and more

encouraging approach to allocation of indivisible items: instead

of insisting that the incomes be equal, they suggest to look at the

entire space of possible incomes, and check whether there exists a

competitive equilibrium for almost all income-vectors (CEFAI) —

all income-space except a subset of measure zero. They show that

a CEFAI exists when there are at most 3 items, or when there are 4

items and two agents. They also show that when there are 5 items

and two agents there might not exist a CEFAI. They leave open the

cases of 4 items with three or four agents.

This paper presents a new way to implement a CEFAI, as a

subgame-perfect equilibrium of a sequential game. This new im-

plementation allows us both to offer much simpler solutions to the

known cases (at most 3 items, and 4 items with two agents), and to

prove that a CEFAI exists even in the much more difficult case of

4 items and three agents. Moreover, we prove that a CEFAI might

not exist with 4 items and four agents. Thus, this paper completes

the characterization of CEFAI for monotone preferences.

Full version is available at https://arxiv.org/abs/1705.04212.
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1 INTRODUCTION
Competitive equilibrium (hence CE) is a famous rule for allocating

resources among agents with different preferences. In the simple

Fisher market model [11], there are several goods to allocate and

several agents, each of whom holds a certain amount of fiat money

(“income”, also known as “budget”). Based on the agents’ prefer-

ences, a price-vector is determined, assigning a price to each good.

Then, the items are partitioned among the agents such that each

agent believes his/her bundle is better than all bundles that can be

purchased with his/her income.

The CE rule has the two complementary virtues of efficiency and

fairness. First, the CE allocation is always weakly Pareto-efficient —
there is no other allocation which makes all agents happier. Second,

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
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if all incomes are equal, the CE allocation (which is then called com-
petitive equilibrium from equal incomes or CEEI) is also envy-free
— no agent believes that another agent has a better bundle. If the

incomes are different, the CE allocation satisfies a generalized fair-

ness property corresponding to agents with different entitlements,

where the incomes are interpreted as the entitlements.

When the goods to allocate are divisible, CE exists under very

general conditions. See [1, 6] for homogeneous goods and [24? ]
for a heterogeneous good (“cake”). When the goods to allocate are

indivisible, CE still has strong efficiency and fairness properties (see

Section 7), however, it might fail to exist even in very simple cases.

For example, when there is one item and two agents with equal

incomes, CE does not exist, since there is no price under which

the demand exactly equals the supply: if the price is less than or

equal to the agents’ income, the demand is 2; if it is greater, the

demand is 0 (Note that in this model money has no intrinsic value,

so an agent always strictly prefers to buy an affordable item than

to remain with no items).

The example above could make us think that we cannot enjoy the

benefits of CE when there are indivisible goods. But a recent paper

by Babaioff et al. [5] gives a new hope. They notice that, in the case

of two agents, CE fails to exist only when the incomes are exactly
equal. If one income is even slightly larger than the other, CE exists.

So when there are two agents and one item, a CE exists in almost

all the income-space (except a subset of measure zero). We say that

in this case there exists a CEFAI — a Competitive-Equilibrium For

almost All Incomes. This raises the following natural question:

In what cases does a CEFAI exist?

Babaioff et al. [5] proved that a CEFAI exists when there are at

most 3 items, and when there are 4 items and 2 agents. Moreover,

they proved that this is not true when there are 5 or more items:

they presented a market with 2 agents and 5 items, in which the

subset of the income-space where a CE does not exist has a strictly

positive measure. Two cases are left open by [5]: the case of 4 items

and 3 agents, and the case of 4 items and 4 agents.

1.1 Contributions
The first contribution of this paper is to resolve the two missing

cases. It proves that a CEFAI exists when there are 4 items and 3

agents; in contrast, when there are 4 items and 4 agents, the subset

in which a CE does not exist might have a positive measure. The

following table summarizes the results; stars denote new results.

Items: 1, 2, 3 4 5+

2 agents:

Yes

Yes

No3 agents: Yes*
4+ agents: No*

The effort to solve the missing cases yielded a tool that may be

interesting in its own right and can be considered a second contri-

bution. In the cases in which a CEFAI exists (the cases marked by
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“Yes” or “Yes*” in the above table), we present a sequential game

that implements the CE in subgame-perfect equilibrium. Thus, if

the agents know each other’s preferences, the divider can induce

them to implement the CE even without knowing their preferences.

The assumption that agents know each other’s preferences is quite

reasonable in some settings. For example, when dividing cabinet

ministries among political parties, which is a common use-case of

division with unequal entitlements [10], parties often have a good

idea about the preferences of other parties.

The formal definitions are presented in Section 2. The sequential

game that we use to implement CEFAI is presented in Section 3. The

settings of three, four and five items are analyzed in Sections 4, 5

and 6 respectively.We viewCEmainly as a rule for fair allocation. In

Section 7 we prove that, indeed, a CE allocation has many fairness

properties that are natural generalizations of envy-freeness for

agents with different entitlements. Related work is surveyed in

Section 8 and future work ideas are presented in Section 9.

2 PRELIMINARIES
There is a set N of agents, with n = |N |. In this note n ≤ 4. The

agents are denoted i ∈ {1, . . . ,n} or Alice, Bob, Carl and Dana.

Each agent has a pre-determined positive income. The incomes

are denoted ti (for i ∈ {1, . . . ,n}), or a,b, c,d .
There is a setM of items withm = |M|. In this notem ≤ 5, and

the items are named z,y,x ,w,v .
A bundle is a set of items. For brevity, we represent a bundle as

a string of its items. I.g, xy represents the bundle {x ,y}.
Each agent i has a total preference-relation ≻i on bundles of

items. Only two assumptions are made on the preference relations:

• Strict — no agent is indifferent between any two bundles.

• Monotone — an agent prefers a bundle over all its subsets.

A price-vector p is a vector of positive numbers, one number per

item. The price of a bundle is the sum of the prices of its items.

An allocation X is a partition of them items among the n agents,

such thatM = X1 ∪ · · · ∪Xn and the Xi are pairwise-disjoint. Note
that in this model all items should be allocated. This is in contrast

to the approximate-CEEI mechanism of Budish [14], which may

discard some items. Discarding items might be very inefficient in

our setting since the initial number of items is small.

A competitive equilibrium (CE) is a pair (p,X ), where p is a price-

vector and X is an allocation and the following conditions hold.

Condition 1. For every agent with a non-empty bundle, the

price of the agent’s bundle exactly equals the agent’s income:
1

∀i ∈ N : Xi , ∅ =⇒ p (Xi ) = ti

Condition 2. Each agent’s bundle is better than all other bundles
he can afford. Equivalently, for every agent i and bundle Y , Xi , at
least one of the following holds:

The agent does not want Y : Y ≺i Xi , or:

The agent cannot afford Y : p (Y ) > p (Xi ).

The income space is the set of all possible income-vectors: T :=

(R+)n . Given a point t ∈ T, we say that CE exists in t if, for every
1
Apparently, it is more general to assume that the price of an agent’s bundle is at most
the agent’s income; however, Babaioff et al. [5] observe that for every CE allocation

there exists a price-vector by which all agents with non-empty bundles exhaust their

incomes. Therefore, the assumption that the price equals the income loses no generality.

combination of the agents’ preferences, there exist a price-vector

and an allocation that satisfy the CE conditions given the income-

vector t . We say that there exists a CE for almost all incomes (CEFAI)
if the subset of T in which no CE exists has a measure of zero in T.

In particular, if there is a finite set of equalities on the incomes

such that a CE exists whenever none of these equalities is satisfied

(i.e, the incomes are generic), then a CEFAI exists.

We emphasize that, when a CEFAI exists, the CE is allowed to

depend on the income-vector. I.e, for every income-vector t ∈ T
(except maybe a subset of measure zero), there may be a different

allocation and a different price-vector that satisfy the CE conditions.

3 PICKING-SEQUENCES AND PIXEPS
Our algorithms for finding a CE are based on picking-sequences.

Definition 3.1. A picking-sequence is a sequence of m agent-

names. It is interpreted as a sequential game in which, at each

step, the current agent in the sequence may pick a single item.

For example, withm = 3 items, a possible picking-sequence is

ABA, which denotes a game in which Alice picks an item, then Bob

picks an item, then Alice receives the last remaining item.

We analyze these games assuming complete information, i.e, each
agent knows the preferences of all other agents.

We use the following backward induction analysis. The m-th

picker just picks the single remaining item. Them − 1-th picker

picks one of the two remaining items that results in a better bundle

for him. For every possible pair of remaining items we know what

them − 1-th picker is going to pick; based on this knowledge, the

m − 2-th picker picks one of the three remaining items that results

in a better final bundle for her. We proceed in the same way down

to step 1. Every sequence of picks that results from this process is

called a subgame-perfect equilibrium (SPE).
2

For example, consider again the game ABA. In step 3 Alice takes

the last remaining item. In step 2 Bob chooses the single item he

prefers. Suppose w.l.o.g. that for Bob: x ≻ y ≻ z, then Bob will

never take z. This means that Alice’s bundle will be either xz or yz.
So in step 1, Alice decides which of these two bundles she prefers

and chooses accordingly. For example, if for Alice: yz ≻ xz, then in

the 1st step Alice picks y. Then, Bob picks x and Alice gets z, and
the final allocation is: yz,x . Note that there can be more than one

SPE. In this case, Alice can also pick z in the 1st step; she will get y
in the 3rd step anyway.

Definition 3.2. (a) A picking-sequence-with-prices (pixep for short)
is a picking-sequence in which a price is attached to each position.

The interpretation is that, whenever an agent picks an item, the

corresponding price is attached to that item.

(b) Let I be a pixep and Q a subgame-perfect equilibrium in the

sequential game defined by I . The pair (I ,Q ) is called an execution
of the pixep I . We denote the allocation induced by this execution

by X (I ,Q ), and the induced price-vector by p (I ,Q ).

For example, with three items, a possible pixep is:

A
4

B
2

A
1

(*)

2
It is known that every SPE is also a Nash equilibrium, and moreover, a Nash equilib-

rium is played in each sub-game (including unreachable ones). See Aumann [2] for

the connection between backward induction and common knowledge of rationality.
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which means that the first item picked by Alice is priced 4, the item

picked by Bob is priced 2, and the last item received by Alice is

priced 1. A pixep can be seen as a shorthand for an allocation rule;

(*) is a shorthand for the rule: “Give Alice her most preferred pair

from the two pairs that contain Bob’s worst item; price Alice’s two

items as 1 and 4; give Bob the remaining item and price it as 2”.

3.1 Pixeps implementing a CE
The most important feature we require from a pixep is that it should

implement a competitive equilibrium.

Definition 3.3. Let I be a pixep and t an income-vector. I imple-
ments CE given income-vector t if, whenever the income-vector of

the agents is t , for every combination of their preferences, there

exists a SPE Q of the sequential game defined by I , such that the

allocation X (I ,Q ) with the price-vector p (I ,Q ) are a CE.

When does a pixep implement CE? Consider the two conditions

in the definition of CE.

Condition 1 requires that the price of each agent’s bundle equals

the agent’s income. For example, pixep (*) implements CE only

when the income of Alice is 5 and the income of Bob is 2. Therefore

we impose the following requirement:

(R1) The sum of all prices appearing below agent i is ti .
Condition 2 requires that, for each agent and each bundle not

picked by that agent, the agent either doesn’t want or cannot afford

the bundle. To make checking this condition easier, we impose the

following decreasing prices requirements:

(R2) The sequence of prices should be decreasing, and strictly-
decreasing whenever the picking-sequence switches between agents.
For example, in the pixep:

A
p1

B
p2

B
p3

A
p4

(**)

we require that p1 > p2 ≥ p3 > p4. This ensures that no agent can

afford to switch the item he picked in his turn with a better item

picked by another agent in a previous turn.

(R3) The last price must be strictly larger than the income of any
agent who does not appear in the sequence. For example, in the pixep

(**) we require that p4 be larger than the income of Carl. This

ensures that Carl, who is allocated an empty bundle, cannot afford

any non-empty bundle.

Henceforth we consider only pixeps satisfying (R1) (R2) and (R3).

3.2 Domination of bundles
Given an execution (I ,Q ), we define a domination relation on bun-

dles based on the positions of items in the sequence. Given two

different bundles X , Y , we say that X is dominated by Y if there

exists an injection f : X → Y such that, for each item x ∈ X , f (x )
appears (weakly) earlier than x in the sequence I . For example, in a

sequence of four items, the pair of items in positions #1 and #4:

• Is dominated by the pair of items #1 and #2, as well as by the

triplet of items #1 #3 #4;

• Dominates the pair of items #3 and #4, as well as the singleton

containing item #1;

• Is unrelated to the triplet of items #2 #3 and #4 (none of them

dominates the other).

Given an execution (I ,Q ) and an agent i , the dominating bundles
/ dominated bundles / unrelated bundles of i are the bundles that
dominate / are dominated by / are unrelated to Xi , respectively. We

will verify Condition 2 for these three types of bundles separately.

Lemma 3.4. Suppose a pixep I satisfies (R1,R2,R3). Then in any
execution (I ,Q ), no agent can afford a dominating bundle.

Proof. If Xi is empty, then (R3) implies that any non-empty

bundle costs more than the income of agent i .
Otherwise, in any bundle dominating Xi , each item appears

either at the same location or earlier than a corresponding item in

Xi . Moreover, by definition a dominating bundle is different than

Xi so it has at least one item selected by a different agent than

i . Therefore, (R2) implies that it is more expensive than Xi . (R1)
implies that the agent’s income exactly equals p (Xi ), so he cannot

afford a more expensive bundle. □

Lemma 3.5. Suppose in a pixep I all the turns of agent i are in a
single contiguous sequence. Then in any execution (I ,Q ), agent i does
not want any dominated bundle.

Proof. Suppose the turns of i are a contiguous sequence of

length k . Then, the best strategy of i is to pick the best k-tuple from
among the items remaining on the table, and it is better than any

dominated bundle. □

Example 3.6. In both pixeps (*) and (**), Lemma 3.5 holds for

Bob. In (*), he picks the best remaining item and obviously does not

want the other item; in (**), he picks the best remaining pair and

does not want any other remaining pair or singleton. □
Lemmas 3.4 and 3.5 imply that, to verify that a pixep implements

CE, we only have to check the unrelated bundles of each agent,

and the dominated bundles of agents with non-contiguous turns.

Moreover, (R3) implies that we do not have to check any bundle for

an agent who does not appear in the pixep.

4 WARM-UP: THREE ITEMS
As a warm-up, we show in this section how to design pixeps imple-

menting CE for the case of three items and any number of agents.

Babaioff et al. [5] already proved that in this case there exists a

CEFAI, but the algorithm presented here (Algorithm 1) is shorter.
3

We can assume that all incomes are different, since this assump-

tion removes from the income-space a set of measure zero. We also

assume w.l.o.g. that a > b > c > all other incomes.

We now examine some picking-sequences to see if they can be

made into a pixep that implements CE. Consider first the sequence

AAA, giving Alice all three items. (R3) implies that the last price

must be b + ϵ for some ϵ > 0. (R2) implies that the second price

must be at least b + ϵ , so we set it to b + ϵ . (R1) implies that the sum

of all prices must equal a, so we set the first price to a − 2b − 2ϵ .
(R2) implies that a− 2b − 2ϵ ≥ b +ϵ , which implies that a ≥ 3b + 3ϵ .

For brevity, from now on we will omit the ϵ from the notation.

I.e, instead of b + ϵ we will write b+, instead of a − 2b − 2ϵ we will

write a − 2b−−, etc. So the above discussion can be summarized as:

If a > 3b then
A
a − 2b−−

A
b+

A
b+

3
Note that they also prove existence of CE in some subsets of measure zero, like

a = b + c . We ignored such subsets to keep the focus on CE for almost-all incomes
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The interpretation of this notation is: “If a > 3b, then there exists

some ϵ > 0 such that the sequence AAA with prices a− 2b − 2ϵ,b +
ϵ,b + ϵ implements CE”. Clearly there are no unrelated bundles, so

by Lemmas 3.4,3.5 this pixep indeed implements CE when a > 3b.
As a second example, consider the sequence AAB. (R1) implies

that the last price is b, which is by assumption larger than c , so (R3)
is satisfied too. (R2) implies that the second price should be more

than b so we set it to b+; (R1) implies that the first price should be

a − b−, and (R2) then implies that a − b ≥ b++. Summarizing:

If a > 2b then
A
a − b−

A
b+

B
b

Again there are no unrelated bundles, and by Lemma 3.5 no agent

wants a dominated bundle, so this pixep implements CE if a > 2b.

Remark 4.1. When a > 3b, the two above pixeps, based on AAA
and AAB, both implement CE. This raises the question which CE is

“better”. Intuitively, if Alice’s income is much larger than Bob’s, it

seems “fairer” to give all items to Alice, while if the difference is not

so high, it seems plausible to leave the last item for Bob. However,

these intuitions are not supported by the definition of CE. From the

point-of-view of CE, which is the one taken in the present paper,

both pixeps are equally good. Moreover, the allocations yielded by

both pixeps satisfy the fairness properties described in Section 7.

We leave the question of selecting a single CE to future work.

As a third example, consider the sequence ABC . (R1) implies

that the prices must be a,b, c , and by assumption a > b > c >
all other incomes, so (R2,R3) are satisfied. Lemma 3.5 holds for all

three agents, so to verify CE we only need to consider unrelated

bundles. Only Alice has an unrelated bundle, and it is the bundle of

items #2 and #3. To ensure that Alice cannot afford that bundle, it

is sufficient to require that a < b + c:

If a < b + c then
A
a

B
b

C
c

Finally, consider the sequence ABA. To satisfy the conditions we

set the prices to a − c−,b, c+. (R2) then implies that a − c− > b, so:

If a > b + c then
A
a − c−

B
b

A
c +

Here no agent has unrelated bundles. Lemma 3.5 holds for Bob, so to

verify that the above pixep implements CE, we only need to verify

that Alice does not want a dominated bundle. The only dominated

bundle that Alice might want is the pair of the two items picked

last. Suppose w.l.o.g. that Bob’s ranking of singletons is: x ≻ y ≻ z.
Then Bob never picks z so Alice gets either xz or yz. If for Alice
xz ≻ yz then she certainly picks x first, so she prefers her bundle

over the dominated bundle yz. If for Alice yz ≻ xz then she has

two options: pick y first and get z last, or pick z first and get y last.

Both options lead to the same final allocation. In the first option

she prefers her bundle to the dominated bundle xz, while in the

second option she might prefer the dominated bundle xy. However,
to prove that the pixep implements CE, it is sufficient to prove that

there exists a SPE in which the allocation satisfies the CE conditions,

so we can assume that Alice picks the first option.

Looking at the last two pixeps, ABC and ABA, reveals that the
conditions under which they implement CE cover all the income

space except the hyperplane a = b + c , which has a measure of zero

in T. This proves that a CEFAI exists when there are 3 items. The

proof and its SPE implementation are summarized in Algorithm 1.

Algorithm 1 Implementing Competitive Equilibrium withm = 3 items.

The algorithm works in almost all the income space, i.e, for all income-

vectors (a, b, c, . . . ) in which a > b > c > . . . and a + b , c .

If a > b + c then
A
a − c−

B
b

A
c+

If a < b + c then
A
a

B
b

C
c

Algorithm 2 Implementing Competitive Equilibrium withm = 4 items

and n = 2 agents. Works for all income-vectors (a, b ) with a > b, a , 2b .

(1) If a > 2b then
A
a − b−−

A
b+

B
b

A
0
+

(2) If a < 2b then play the sequential game below:

Alice may choose:
A
a−−

B
b−

A
0
++

B
0
+

Else, Bob may choose:
B
b

A
b−−

A
(a − b)/2+

A
(a − b)/2+

Else:
A
a/2

A
a/2

B
b/2

B
b/2

5 FOUR ITEMS
5.1 Two agents
In this section there arem = 4 items. Initially we assume there are

only two agents — Alice and Bob — with incomes a > b. Babaioff
et al. [5] already proved that in this case CE exists in almost all

income space, but the algorithm presented here (Algorithm 2) is

shorter. The case a > 2b is handled by AABA:

If a > 2b then
A
a − b−−

A
b+

B
b

A
0
+

All three requirements on the price-sequence are clearly satisfied.

No agent has any unrelated bundles. It only remains to check that

Alice does not want any dominated bundle. This can be verified

similarly to the caseABA in the previous section: there exists a SPE

in which Bob’s worst item is picked (by Alice) at the last step. Alice

receives the best of the three triplets that contain this item, so it is

better for her than any dominated triplet.

The case a < 2b is more complicated. It requires letting agents

choose between different pixeps. This leads to the following three-

step sequential game.

Step #1: Alice may choose the following pixep based on ABAB:

A
a−−

B
b−

A
0
++

B
0
+

Step #2: If Alice does not choose ABAB, then Bob may choose

the following pixep based on BAAA:

B
b

A
b−−

A
(a − b)/2+

A
(a − b)/2+

Step #3: If Bob does not choose BAAA, then we play the following
pixep based on AABB:

A
a/2

A
a/2

B
b/2

B
b/2
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Intuitively, in Step 1 Alice chooses between her 2nd-best pair

and her worst triplet, and in Step 2 Bob chooses between his best

singleton and worst pair. The agents’ choices guarantee that, in the

chosen pixep, they don’t want an unrelated bundle they can afford.

Formally, we analyze the game using backward induction. We

rename the items such that Bob’s best item is w , and for Alice:

wx ≻ wy ≻ wz.
In Step 3, Alice gets her best pair and Bob gets its complement.

By Lemma 3.5 no agent wants a dominated bundle. Moreover, Alice

cannot afford any of her unrelated bundles (triplets), since a/2+b >
a. Bob can afford his two unrelated bundles (singletons). But, if he

wants a singleton, he could choose BAAA in the previous step and

get his best singleton. So in step 3 it is safe to assume that Bob does

not want an unrelated bundle.

In Step 2, Bob has to choose betweenw (his best singleton), and

the complement to Alice’s best pair. There are three cases: (a) If

Alice’s best pair is xy or xz or yz, then the complement contains

w so Bob certainly prefers AABB. (b) Otherwise, Alice’s best pair
is wx and its complement is yz; if for Bob yz ≻ w , then again he

prefersAABB. (c) Only if Alice’s best pair iswx and for Bobw ≻ yz,
does Bob choose BAAA. In the latter case, Bob’s bundle isw . There

exists a SPE in which Alice chooses her three items in the order:

x ,y, z. Then, Bob cannot afford xy or xz since they cost more than

b. The only unrelated bundle he can afford is yz. However, in case

(c) Bob prefersw to yz, so Bob does not want any unrelated bundle.

Alice can afford only two unrelated bundles —wy andwz. However,
if she wants any of these pairs, she could choose in the previous

step ABAB and pick w first; this would guarantee her at least wy.
So there exists a SPE in which, in step 2, Alice does not want any

unrelated bundle that she can afford.

In Step 1, in cases (a-b) above, Alice never chooses ABAB, since
she can get her best pair by waiting for Step 3. In case (c), Alice

chooses ABAB iff she prefers the pair she is going to get over the

triplet xyz. This pair must containw , so we assume that if ABAB
is played, Alice picks w first. In her second turn, Alice picks x (if

it is available) or y (if x is not available). Now, Bob has only one

unrelated bundlew , which he cannot afford since a > b. Alice has
one unrelated bundle xyz, which by assumption she does not want.

It remains to check the dominated bundles in the case ABAB,
since they are not covered by Lemma 3.5. Alice receives a pair that

she prefers over xyz, so it is certainly better than any dominated

pair. From Bob’s point of view, the relevant sequence is BAB, which
is analogous to the sequence ABA analyzed in the previous section.

Therefore, Bob too does not want any dominated pair. The

proof and its SPE implementation are summarized in Algorithm 2.

5.2 Three agents
In this section there are four items and three agents — Alice Bob

and Carl — with incomes a > b > c . This case was left open in [5].

Our new technique using pixeps allows us to prove that in this case

there exists a CEFAI. The proof is summarized in Algorithm 3.

First, it is easy to check that all price-sequences are decreasing,

no agent wants a dominated bundle, and Carl has no unrelated

bundles. So it only remains to check that Alice and Bob do not want

any unrelated bundle that they can afford.

Algorithm 3 Implementing Competitive Equilibrium withm = 4 items

and n = 3 agents with a > b > c .

(1) If a > 2b + c then
A
a − b − c−−

A
b+

B
b

A
c+

(2) If 2b + c > a > 2b then
A
a − b−

A
b+

B
b

C
c

(3) If 2b > a > b+c & a+c > 2b then
A
b+

B
b

A
a − b−

C
c

(4) If 2b > a > b +c and 2b > a+c (implies b > 2c,a > 3c) then:

Alice may choose:
A
a − c−−

B
b − c−

A
c++

B
c+

Else, Bob may choose:
B
b

A
a − 2p−−

A
p+

A
p+

where p := max (c, (a − b)/2)

Else:
A
a/2

A
a/2

B
b/2

B
b/2

(5) If b + c > a > 2c and 2c > b then play:

Alice may choose:
A
a

B
b−

C
c

B
0
+

Else:
B
b

A
a − c−

A
c+

C
c

(6) If b + c > a > 2c and b > 2c then play:

Bob may choose:
A
a − c−−

B
b − c−

A
c++

B
c+

Else, Alice may choose:
A
a

B
b/2

B
b/2

C
c

Else:
B
b

A
a − c−

A
c+

C
c

(7) If 2c > a then play the sequential game below:

Alice may choose:
A
a

B
b−

C
c

B
0
+

Else:
B
b

A
c+

C
c

A
a − c−

Ranges 1 and 2 and 3 are straightforward: no agent can afford

any unrelated bundle.

Range 4 is analyzed similarly to range 2 in Algorithm 2. The

picking-sequences are the same — only the prices are different.

Recall that in the Fisher market model, money is used only to

purchase items in the market, and has no value outside the market.

Therefore, an agent who gets an item, does not care whether the

item was cheap or expensive. The agents care only about the final

bundle that they receive. Hence their strategic behavior is the same.
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In Range 5, in both steps, Bob cannot afford any unrelated

bundle. To analyze Alice’s behavior, rename the items such that

Bob’s best item is w and Alice’s best pair without w is xy. Then
Alice chooses ABCB iff she prefersw to xy.

If she chooses ABCB, she getsw , does not want xy (or any other

pair withoutw), and cannot afford a triplet.

If she chooses BAAC , she gets xy, does not wantw , and cannot

afford any unrelated pair.

To analyze Range 6, rename the items such that Bob’s best item

isw , Alice’s best pair withoutw is xy (hence for Alice xy > z), and
for Bob xz > yz.

In the last step BAAC , Bob getsw and Alice gets xy. Therefore we
will get to the last step if both (1) Alice prefers xy to the singleton

she can get in ABBC , and (2) Bob prefersw to the pair he can get in

ABAB. Alice can afford only one unrelated bundle — the singleton

w — but by (1) she prefers xy even to her best singleton, hence also

to w . Bob can afford only one unrelated bundle — the cheaper of

xz,yz. There exists a SPE where Alice picks x before y; then, Bob
can afford only yz. But by (2) he prefersw to the pair he can get in

ABAB, which implies that this pair must be one of xy,xz,yz, and
not the worst of them. So by choosing ABAB Bob could get at least

yz. But he did not choose so, therefore he prefersw .

In the middle step ABBC , Bob cannot afford even his cheapest

unrelated bundle (singleton). Alice has to choose between her best

singleton and xy. If her best singleton is x ,y, z she surely prefers

xy, so we play ABBC only if Alice’s best singleton is w and she

prefers it to xy. Hence, Alice does not want any unrelated pair.

Additionally she cannot afford a triplet.

In the first step ABAB, Alice cannot afford even her cheapest

unrelated bundle (triplet) since b + c > a. Bob can afford only one

unrelated bundle — a singleton. Denote the pair that Bob is going

to get byX . Bob choosesABAB iff he prefersX to the bundle he can

get by not choosing. This bundle depends on Alice’s preferences: (a)

If Alice prefers xy tow , then she will choose BAAC , so Bob chooses
ABAB iff he prefers X to his best singleton w . (b) If Alice prefers

w to xy, then she will choose ABBC , so Bob chooses ABAB iff he

prefers X to the best pair that does not containw . This means that

X contains w , so it is better than w . In both cases Bob does not

want any unrelated singleton.

In Range 7, in both steps, Bob cannot afford any unrelated

bundle. To analyze Alice’s behavior, rename the items such that

Bob’s best item isw , and Carl’s worst item besidesw is z.
In the last step, Bob picksw and Carl picks x or y, so Alice can

get the best of xz,yz. She can afford only one unrelated singleton

(w), but if she wants it she can choose ABCB in the first step.

In the first step necessarily Alice prefersw tobest (xz,yz), sow is

her best singleton and she picks it. Since b + c > a, Alice can afford

only two unrelated pairs — the ones containing the last item. There

exists a SPE in which this last item is z. So Alice can afford only

xz,yz. But if Alice wanted one of these, she could have waited to the
last step. Finally, it is easy to check that the seven

ranges handled by Algorithm 3 cover all the income space except

a finite number of hyperplanes (corresponding to the equalities

a = b,b = c,a = 2b + c,a = 2b,a = b + c,a + c = 2b,a = 2c, 2c = b).
Therefore, there exists a CEFAI. □

5.3 Four agents
In this section there are four items and four agents. This case was

left open in [5]. We show that there may exist a subset of the

income-space with a positive volume in which no CE exists.

Consider the income subspace defined by:

2b > 2c > b + d > a > c + d > d + d > b > c > d

There are four items denoted by:w,x ,y, z. The agents’ preferences
contain the following relations:

• Alice: xy > w > xz > yz > x > y > z
• Bob:w > z > x > y
• Carl: x > y > w > z

Suppose by contradiction that a CE exists. There are several cases:

Case #1: Dana gets an item. So each agent gets one item. So

Alice getsw (her best item), Bob gets z (his best remaining item),

Carl gets x and Dana gets y. But, a > c + d so Alice can afford xy,
which she prefers overw — contradiction.

Case #2: Dana gets no item and Alice gets one item. So either

Bob or Carl gets two items. But, d > b/2 > c/2 so Dana can afford

one of the two items of Bob/Carl — contradiction.

Case #3: Dana gets no item and Alice getsw plus one or more

other items. As in Case #2, Bob cannot get two items since then

Dana will be able to afford one of them. So Bob gets at most one

item which is notw . Bob must not be able to affordw , so the price

ofw must be more than b. So the price of Alice’s remaining item/s

must be less than a −b < d . So Dana can afford one of Alice’s items

— contradiction.

Case #4:Dana gets no item and Alice does not getw . So someone

else getsw . So Alice must get a bundle better thanw . This bundle

must contain xy. Carl receives at most one item and it is worse

than x and y. But, c > a/2 so Carl can afford one of Alice’s items —

contradiction.

Hence, no allocation can satisfy the CE conditions. □

6 FIVE ITEMS
In this section there are five items and two agents. [5] already

showed that there may exist a subset of the income-space with posi-

tive measure in which no CE exists. They used cardinal preferences

for ease of presentation. For completeness, we give here an example

based on ordinal preferences.

Consider the income subspace defined by: a > b > 3a/4.
There are five items: v,w,x ,y, z. The agents’ preferences con-

tain the following relations (where a comma between two bundles

implies that the preference between them is irrelevant to the proof):

• Alice: quartets > vwx ,vwy,vwz > vw > xyz >
vxy,vxz,vyz,wxy,wxz,wyz > pairs-except-vw > singletons

• Bob: quartets > triplets-except-xyz > vx ,vy,vz,wx ,wy,wz >
xyz > vw > v > w > xy,xz,yz > x ,y, z

Suppose by contradiction that a CE allocation exists. There are

several cases depending on the number of items given to Alice:

Alice gets 1 item: she obviously envies Bob — contradiction.

Alice gets 2 items: these must bevw , otherwise Alice envies Bob.

So Bob gets xyz. But, because b > b/3+a/2, Bob can afford the pair

made of his cheapest item and Alice’s cheapest item, which is one of

vx ,vy,vz,wx ,wy,wz. Bob prefers all these to xyz — contradiction.
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Alice gets 3 items: they can’t be worse than xyz, since Alice can
afford either vw or xyz (one of these costs at most (a + b)/2 < a).
They can’t be better than xyz, since then Bob gets yz/xz/xy, but he
can afford either xyz orv orw (one of these costs at most (a+b)/3 <
b). So Alice gets xyz. But then she envies Bob — contradiction.

Alice gets 4 items: because b > 3a/4, Bob can afford a triplet.

But Bob prefers all triplets to all singletons — contradiction. □

7 FAIRNESS PROPERTIES OF CE
It is known that a CE is always Pareto-efficient, and when incomes

are equal it is also envy-free [8]. We now present a generalized

fairness guarantee that holds even when incomes are different.

Throughout this section, we focus on a specific agent, Alice, with

income a, bundle A and preference-relation ≻. We define:

• For every bundle X and integer d , Partition(X ,d ) is the set
of all partitions of X to d sub-bundles (some possibly empty).

• For every vector Y = (Y1,Y2, . . .) and integer l , Union(Y , l )
is the set of all unions of l bundles fromY ,Yj1∪Yj2∪· · ·∪Yjl .
• For every bundle X and integers l ,d , the l-out-of-d-maximin-
bundle of X is denoted

[ l
d

]
X and defined as:

4

[
l

d

]
X := max

Y ∈Partition(X ,d )
min

Z ∈Union(Y ,l )
Z

where max,min are based on Alice’s preference-relation ≻.

In other words,

[ l
d

]
X is the best bundle that Alice can guarantee

to herself by dividing X to d parts, letting an adversary pick d − l
parts, and taking the remaining l parts. This is a generalization of

the maximin share of Alice, defined by Budish [14] as “the most

preferred bundle she could guarantee herself as divider in divide-

and-choose against adversarial opponents”. In our notation, Alice’s

maximin share is denoted

[
1

n

]
M, whereM is the set of all items.

We are now ready to state the generalized fairness guarantee.

Proposition 7.1. Let (X1, . . . ,Xn ) be a CE allocation. Let K be a
subset of the agents,K ⊆ N . For every two integers l ,d with 1 ≤ l ≤ d :

a ≥
l

d

∑
i ∈K

ti =⇒ A ⪰

[
l

d

]⋃
i ∈K

Xi

Proof. Let P be the price of the union in the right-hand side,

P := p (
⋃
i ∈K Xi ). By CE Condition 1, for every i , ti ≥ p (Xi ).

Therefore,

∑
i ∈K ti ≥ P . By the proposition assumption, a ≥ l

d · P .
Consider a partition Y ∈ Partition(

⋃
i ∈K Xi ,d ). Order the d parts

in Y by increasing price, i.e, p (Y1) ≤ · · · ≤ p (Yd ). Then, p (Y1) +

· · ·+p (Yl ) ≤
l
d ·P . DefineZ := Y1∪· · ·∪Yl . Then, p (Z ) ≤

l
d ·P ≤ a,

so Alice can afford Z . By the CE Condition 2, Alice’s bundle must be

at least as good as Z : A ⪰ Z . Since Z ∈ Union(Y , l ), by definition

Z ⪰
[ l
d

] ⋃
i ∈K Xi . By transitivity, A ⪰

[ l
d

] ⋃
i ∈K Xi . □

To appreciate the generality of Proposition 7.1, we show that

several known facts are special cases of it.

(1) When all incomes are equal, a CE allocation is envy-free.

Proof : take K = {i} (i.e, a single agent) and l = d = 1. The left-hand

side is true since a = ti . In the right-hand side,

[
1

1

]
Xi = Xi so it

becomes A ⪰ Xi , which means that Alice does not envy agent i .

4
Babaioff et al. [5] introduced the l -out-of-d -maximin-bundle. We introduced the

notation “l -above-d” to make Proposition 7.1 symmetric and easy to visualize.

(2) When all incomes are equal, a CE allocation guarantees each

agent his maximin share. Proof : take K = N , l = 1 and d = n. The
left-hand side is true since a = 1

n of the sum of all incomes; In the

right-hand side, the union equals the setM of all items, and

[
1

n

]
M

is exactly Alice’s maximin share.

(3) When the incomes are “almost” equal, i.e, the income of

each agent is at least 1/(n + 1) of the income sum, a CE allocation

guarantees each agent the “approximate maximin share” of Budish

[14], which is defined as

[
1

n+1

]
M. The proof is similar to (2).

(4) The following fact was proved directly by [5]. When the sum

of all incomes is 1, a CE allocation guarantees Alice her l-out-of-
d-maximin share, for every integers l ,d such that l/d ≤ a. Proof :
take K = N . Then the right-hand side becomes

[ l
d

]
M, which is

the l-out-of-d-maximin-share.

(5) The following fact was proved directly by Reijnierse and

Potters [22], where it was called α -envy-freeness. Suppose all goods
are divisible, and the preferences of Alice are represented by a

linear value-function vA (so the value of each bundle is a linear

function of the quantities of the goods in the bundle). Then, in a

CE allocation, for every i ∈ N , vA (A) ≥
a
ti vA (Xi ). Proof: Take

K = {i}. Since the goods are divisible, for every integer d , Alice can
partitionXi tod parts whose value is exactlyvA (Xi )/d . So for every

integer l , vA (
[ l
d

]
Xi ) ≥

l
dvA (Xi ). So Proposition 7.1 implies that,

for every l ,d such that
l
d ≤

a
ti and for all i ∈ N ,vA (A) ≥

l
dvA (Xi ).

We can take l ,d such that
l
d is arbitrarily close to

a
ti . Therefore,

vA (A) ≥
a
ti vA (Xi ).

While previous results only consider the cases in which |K | = 1

or |K | = n, Proposition 7.1 is more general. For example, it implies

that if Alice’s income is at least 1/2 of the sum of incomes of Bob

and Carl, then a CE allocation gives her a bundle worth at least as

much as the 1-out-of-2 maximin-share of the union of Bob’s and

Carl’s bundles. Thus, the algorithms for finding a CE allocation,

presented in the previous sections, can be seen as algorithms for

fair allocation: each of these algorithms guarantees, to each agent,

a multitude of fairness properties that naturally generalize the

properties of both envy-freeness and maximin-share-guarantee.

8 RELATEDWORK
1. CE with indivisible items. Recently there has been a lot of

interest in the computational complexity of finding a CE in markets

with indivisibilities.

Deng et al. [16] studied a market to which each agent comes

with an initial endowment (rather than an initial income) and all

valuations are additive. They proved that deciding whether CE

exists is NP-hard even if there are 3 agents. They presented an

approximation algorithm which relaxes the CE conditions in two

ways: (1) The bundle allocated to each agent is valued at least (1−ϵ )
of the optimum given the prices, and (2) the demand is at least (1−ϵ )
times the supply. Both these relaxations are unrelated to our setting,

in which the preferences are ordinal and all items must be allocated.

Bouveret and Lemaître [8] studied CE-from-equal-incomes (CEEI)

as a rule for fair allocation of items. They related it to four other

fairness criteria assuming all agents have additive valuation func-

tions. They asked what is the computational complexity of deciding

whether CEEI exists. This question was answered soon afterwards
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by Aziz [3], who proved that the problem is weakly NP-hard when

there are two agents andm items, and strongly NP-hard when there

are n agents and 3n items. Brânzei et al. [12] further proved that

even verifying whether a given allocation is CEEI is co-NP-hard.

Brânzei et al. [12] studied CEEI also for single-minded agents. In

this case, verifying whether a given allocation is CEEI is polynomial

but checking if CEEI exists is co-NP-complete. Single-minded agents

were further studied by Brânzei et al. [13]. In contrast to our setting,

they assume that each item can come in multiple units, all of which

must have the same price. They show an example in which (1)

a CE where all agents exhaust their income does not exist, (2) a

CE where some agents spend less than their income does exist.

They call this solution CAEI — Competitive Allocation from Equal

Incomes. Interestingly, in contrast to CEEI, it is possible to find a

CAEI (if one exists) in polynomial time.

Heinen et al. [18] extended [8] from additive to k-additive utility
functions, inwhich each agent reports a value for bundles containing
at most k items, and the values of larger bundles are determined by

adding and subtracting the values of the basic bundles.

Budish [14] studied the most general setting in which agents

can have arbitrary preference relations over bundles. He invented

a beautiful and practical approximate CEEI mechanism, which re-

laxes the CEEI conditions in two ways: (1) The agents’ incomes

are not exactly equal, and (2) a small number of items may remain

unallocated. He proved that an approximate-CEEI always exists

(although Othman et al. [21] recently proved that the computation

of approximate-CEEI is PPAD-complete). The first relaxation (1) is

closely related to our setting where incomes must not be exactly

equal. However, the second relaxation (2) make his solution less

useful when the initial number of items is small.

2. Picking-sequences. Picking-sequences are common practi-

cal mechanisms for allocating indivisible items. They are favored

due to their simplicity, privacy and low communication complexity.

Brams and Kaplan [10] and Brams [9] study picking-sequences

for allocating cabinet ministries among parties. There is a coalition

of parties; each party has a different number of seats in the parlia-

ment; larger parties should be allocated more ministries, or more

prestigious ministries. This is an interesting use-case of fair division

with different entitlements. A possible solution to this problem is to

determine a picking-sequence, based on the different entitlements,

and let each party pick a ministry in turn. Such a solution is used

in Northern Ireland, Denmark and the European parliament [20].

Brams and Kaplan assume that each agent has a strict ordering

on the items, and has responsive preferences on bundles of items.

Responsive preferences are more general than additive preferences,

but less general than the monotone preferences studied in this

paper [5]. With responsive preferences, at each point in the picking-

sequence, there is a single remaining item which is the “best item”

for the agent. An agent can be “truthful” and pick the best item,

or be “strategic” and pick another item based on his knowledge of

the other agents’ valuations. They discuss the Pareto-efficiency of

the SPE of such picking-sequences. Recently, Aziz et al. [4] further

discuss the strategic properties of picking-sequences when agents

have additive valuations. However, they do not discuss whether

the Nash equilibrium is also a competitive-equilibrium, or whether

it satisfies any notion of fairness.

Another line of work related to picking-sequences is how to

select a picking-sequence that maximizes some global objective.

Bouveret and Lang [7] study this question under the assumption

that all valuation functions are additive, and moreover, there is a

single common scoring-function that relates the rank of an item in

an agent’s ranking to its monetary value. The allocator does not

know the rankings of the agents, but he knows that all rankings are

random draws from a given probability distribution. The allocator’s

goal is to maximize the expected value of some social welfare func-

tion. They show picking-sequences that maximize the expected

utilitarian welfare (sum of utilities) or the expected egalitarian wel-

fare (minimum utility) in various settings. Kalinowski et al. [19]

show that, when there are two agents with a Borda scoring function,

and each ranking is equally probable, the "round robin" sequence

(ABABAB...) attains the maximal expected sum-of-utilities.

Picking-sequences fundamentally differ from serial dictatorship
(whether deterministic or random): serial dictatorship is dominant-

strategy truthful since each agent has only one chance to choose; it

is usually used in matching markets where each agent is entitled to

one item. In contrast, picking-sequences let each agent pick more

than one time, and usually they have no dominant strategies.

3. Unequal entitlements. Fair division with unequal entitle-

ments has been studied with respect to a divisible resource (“cake”);

see Cseh and Fleiner [15], Segal-Halevi [23] for recent surveys. Re-

cently, Farhadi et al. [17] studied fair allocation of indivisible goods

to agents with unequal entitlements. This problem is closely related

to competitive equilibrium with unequal incomes. Their results are

mostly negative: even when all agents have additive valuations, a

“fair” allocation (according to their definition of fairness) might not

exist and cannot be approximated to within a factor of n. In light

of these negative results, it is interesting that we can get positive

results for almost all incomes.

9 FUTUREWORK
This paper assumes that agents can have any monotone prefer-

ences. An interesting topic for future work is to study more specific

preference domains. In particular, in what cases does CEFAI exist

when all agents have additive or responsive preferences?

Note that the preferences in Sub. 5.3 are additive (hence also

responsive). For example, Alice’s valuations for w,x ,y, z can be

11, 7, 5, 3 and the other agents’ valuations can be arbitrary num-

bers consistent with their orderings. So we know that with 4 addi-

tive/responsive agents, CEFAI might not exist.

However, in Sec. 6 the preferences are not responsive (hence also

not additive). Therefore, for 2 or 3 additive/responsive agents, the

existence of CEFAI is still an open question. [5] provide a partial

solution for the case of 2 agents with additive preferences and any

number of items, but a general solution is still not known.

Another interesting question is whether the pixep technique is

sufficiently general to find a CE when it exists, i.e, can any CE be

supported by a pixep satisfying (R1,R2,R3)?
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