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ABSTRACT
Household level rooftop solar technology adoption is rising in many
regions, driven by a multitude of factors, including falling prices
and incentives such as tax breaks. It has also been shown in recent
research that peer effects have an important role in the spread of
solar adoption. This leads to a natural problem of how to design
incentives to maximize adoption in such a model. While this is an
instance of an “influence maximization” problem, prior results from
the influence maximization literature cannot be used directly. In
this work, we extend prior results from the literature on the use of
submodularity to obtain a greedy approximation. We use this new
result to do optimal “seed set” selection for a highly detailed, data-
driven, agent-based model of household rooftop solar adoption.
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1 INTRODUCTION
A recent model of the spread of rooftop solar technology has shown
the existence of strong peer effects in the process. We refer to
this model as the ZVLL model [6]. Here we study how to design
incentives to maximize adoption in such a model—we refer to this
as the Max Solar Adoption (MaxSA) problem. This is an instance
of the well studied “influence maximization” problems (e.g., [2, 3]),
where the objective is to select a subset of initial adopters (who
are given incentives), so that the expected size of the final set of
adopters (as a result of peer effects) is maximized. In most diffusion
models, the problem of selecting a seed set to maximize influence is
NP-hard, and there has been a lot of work on finding near-optimal
seed sets. Kempe et al. [3] showed that the influence objective
is a submodular function of the seed set. Informally, this means
the influence has a “diminishing marginal returns” property, and a
result of [5] implies that a simple greedy algorithm gives an (1−1/e)-
approximate solution. A powerful result of [4] shows that if the
local activation function fv (·) is submodular, then the influence
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function is submodular. However, there are several new aspects of
MaxSA, so that it cannot be solved directly from earlier results on
influence maximization. In particular, the result of [4] only holds
for the so called “progressive” thresholds, and does not apply to the
ZVLL model. Our contributions are summarized below.
(1) We design a (1 − 1/e)-approximation for the MaxSA problem.
Our main contribution is an extension of the result of Mossel and
Roch [4], and we show that even for non-progressive threshold
models, submodularity of the local activation function implies sub-
modularity of the influence function. The coupling argument of [4]
does not work for our model, and we have to design a new coupling,
which only has one stage (unlike three stages in [4]). As a result, a
greedy algorithm gives a (1 − 1/e)-approximation.
(2) We propose a generalization of MaxSA, where the goal is to
find a seed set that is “spread out”. We formalize this as the Max
Independent Solar Adoption (MaxInSA) problem, in which the
pairwise distance between any two seed nodes is at least D, which
is a parameter. This problem is also NP-hard, and we show that the
greedy algorithm for influence maximization can be modified to
give 1/8-approximation for the MaxInSA problem.
(3) We adapt the ZVLL model to study MaxSA for a region in rural
Virginia. We show how the adoption can be increased by choosing
initial adopters using our algorithm. We find significant increase in
adoption over other baselines.

2 METHODS
We consider a spatial diffusion model, which is motivated by models
for solar adoption. Let V denote a set of households in a region,
referred to as nodes in the rest of the paper. Each node has a spatial
location, and we will consider the distance d(u,v) between two
nodes as the Euclidean distance. Let At denote the subset of all
nodes which have adopted solar at time t . Then, A0 denotes a seed
set of initial adopters.

Let Bv (S, r ) = {u ∈ V ∩ S : d(u,v) ≤ r } denote the set of nodes
in S which are in a ball of radius r centered at v . Let n(S,v, r ) be
the number of infected neighbors of node v in the ball Bv (S, r );
this is a function of time, since the infected set changes over time.
Let Iv (S) denote the influence felt by a node v in set S from its
infected neighbors, which we model as a linear equation of the
form Iv (S) = c0 +

∑
i=1 cin(S,v, ri ), where each ci is a learned

constant weight applied to radius ri , and c0 accounts for non-peer-
based effects, such as economic constraints. Let fv (S) = L

1+e−Iv (S )

be a logistic model of the above influence function, which evaluates
to the probability of infection for node v , where L is a constant.
The ZVLL model shows that a spatial diffusion model in which
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each node v adopts with probability fv (At ) at time t fits observed
adoption dynamics of rooftop solar. The influence maximization
problem can be formalized as follows. Let σT (S0) = E[|AT |] denote
the expected total number of nodes which adopt solar after T steps
of the diffusion process. Letwv denote the cost for node v to adopt
solar. Let dist(u,v) denote the distance between two nodes u,v .

Problem 1. [Max Solar Adoption (MaxSA) problem] Given a

certain budgetB and timeT , choose a seed set S0 such that
∑
v ∈S0 wv ≤

B and σT (S0) is maximized.

MaxSA is NP-complete, even if we restrict the function toT = 1,
i.e., the expected number of adopters in one time step.
Well separated seed set. For widespread solar adoption, potential
grid instability is one of the concerns of power utilities. One way
to address this is to ensure that rooftop solar generators are not
clustered spatially. However, this cannot be captured using such a
diffusion model. Instead, we take a step towards this problem by
finding a seed set that is “well separated”, i.e., the pairwise distance
between any two nodes is larger than some parameter D.

Problem 2. [Max Independent Solar Adoption (MaxInSA)

problem] Given a budget B, time T , and a bound d , choose a seed set
S0 such that (1)

∑
v ∈S0 wv ≤ B, (2) minu,v ∈S0 dist(u,v) ≥ D, and

(3) σT (S0) is maximized.

MaxInSA generalizes MaxSA, and is therefore also NP-hard.

2.1 Submodularity of influence for
non-progressive functions

The diffusion process defined above is referred to as “non-progressive”
in [4], since the random threshold θv (t) is chosen randomly at each
time. For a progressive threshold model (in which θv is only se-
lected once), Mossel and Roch [4] show that if the functions fv (·)
are submodular, then the influence function σ (S) is submodular.
Their proof involves a careful coupling, which does not extend to
the non-progressive setting. We design a different proof to extend
the result of [4] to non-progressive functions.

Theorem 2.1. If the functions fv (·) are all monotone and submod-

ular, then σ (S) is submodular.

3 EXPERIMENTS & RESULTS
We ran experiments for the 24401 zip code in Virginia, USA. We
build a model of the population of the region by drawing from a
“synthetic population” of Virginia [1].

3.1 Local function
The submodularity result requires that the local function be sub-
modular as well. A logistic function, fv = 1

1+eb+cx , is submodular
for x ≥ 0 if b = 0. However, in the logistic regression used in the
ZVLL model, there is a non-zero intercept of ∼ −10.19. In order to
apply our method, we modify the logistic function as follows to
make it submodular.

fv (x) =

{
ϵ

1+e10.91−x , if x ≥ 14
ϵ · 0.0683x , otherwise

We do a binary search over ϵ until the adopter curve for the
composite function above matches that of the ZVLL model. We

found that, for ϵ = 0.0012, we obtained a very good match with the
ZVLL model’s results. We have used the ZVLL model on Virginia
data for zip code 24401 to evaluate our methods. We compare four
different seeding approaches:
Random: Seed nodes are chosen uniformly randomly among all
the nodes in the network. The number of nodes chosen is given by
the budget. We used values of the budget from 1 through 10.
ZVLLmodel: In this case also, the seed nodes are chosen randomly,
but the diffusion model is the original ZVLL model, without the
modifications to the logistic function described above.
Naïve greedy: In this approach, we run the diffusion model, with
the modified function at each node, 30 times for each possible seed
node independently. We rank the seed nodes in descending order
of the mean number of adopters. Then we choose our seed set to
be the top B nodes, where B is the budget.
Adaptive greedy: In this approach, we start by setting the seed
set to ϕ. Then we run 30 simulations with each node as the single
seed node. We rank the nodes by descending order of total number
of adopters and add the top one to the seed set. In the next round,
the seed set has this node in it. We run 30 simulations with each
node paired with the already chosen seed node and then rank these
n − 1 pairs in descending order. The node that pairs best with the
previous node is added to the seed set, and so on.

Figure 1 shows a comparison of the four approaches. We see that
the adaptive greedy approach outperforms the other approaches at
all budget levels.
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Figure 1: A comparison of four seedings strategies. See text above.

4 CONCLUSIONS
We demonstrate that a data-driven, high resolution simulation plat-
form can be combined with a diffusion model and an optimizer such
as our greedy optimizer to address questions of optimality, which is
a new frontier in the use of big simulations. This holds the promise
of moving the conversation from hypothetical and counter-factual
simulations to notions of optimal behavior and optimal action in
large scale settings.
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