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ABSTRACT
This note answers two central question in the intersection of decision-

making and causal inference – when human input is needed and, if

so, how it should be incorporated into an AI system. We introduce

the counterfactual agent who proactively considers human input in

its decision-making process. We prove that a counterfactual agent

dominates the standard autonomous agent who does not consider

any human input (i.e., the experimental agent) in terms of perfor-

mance. These results suggest a trade-off between autonomy and

optimality – while the full autonomy is often preferred, using hu-

man input could potentially improve the efficiency of the system.

We further characterize under what conditions experimental and

counterfactual agents can reach the same level of performance,

which elicits the settings where full autonomy can be achieved.
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1 INTRODUCTION
One of the primary goals of reinforcement learning (RL) is to build

an autonomous system where the agent operates independently in

the environment performing complex tasks. Today, autonomous

systems have been deployed in a wide range of settings, including

autonomous driving [16], game-playing [13], and energy conserva-

tion [12]. In reality, many complex systems involve humans inter-

acting and intervening in the environment. For most standard RL

approaches (including Markov decision processes (MDPs) [11] and

partially observable MDPs (POMDPs) [14, 15]), however, the hu-

man component is assumed to be oblivious [18]. Semi-autonomous

systems (SAS) explicitly model the human’s behavior, allowing the

agent to consider its own as well as humans’ capabilities proac-

tively [18]. Using the language of structural causal models (SCMs)

[2, 7, 10], Bareinboim et al. [1] designed a semi-autonomous system
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in the Multi-Armed bandit (MAB) settings, which proactively takes

into account humans’ decisions using counterfactual inference (and

expanded in [5, 6, 8, 17]). In practice, however, the MAB is a rather

simplistic model of the environment that is not applicable in the

general sequential decision-making tasks where actions affect not

only the immediate rewards but also future states of the agent.

In this work, we model the sequential decision-making envi-

ronments using the language of SCMs. We define the counterfac-
tual agent using the human input in its decision process (i.e., the

semi-autonomous systems). We compare the performance of the

counterfactual agent and the standard autonomous systems, which

do not consider any human input, called the experimental agent.
One perhaps surprising result of our theory is that the counter-

factual agent could dominate its experimental counterpart, even
when the human operator performs poorly, potentially worse than

random guessing. These results allude to a trade-off between au-

tonomy and optimality: while full autonomy is often preferable,

a semi-autonomous approach that leverages human’s capability

could potentially achieve higher performance.

2 PLANNINGWITH HUMAN INPUT
We start the discussion with an example involving the sequential

planning of patients’ treatment, but, obviously, this example can be

extended to any decision-making setting. In this case, a physician

treats each patient who visits the hospital regularly to maintain her

long-term health condition. The physician measures the patient’s

corticosteroid level at the t-th visit, S(t) = s(t). She then decides a

treatment X (t) = x ′(t), and then measures an overall health score

Y (t) = y(t). In reality, the patient’s health scoreY (t) is also affected

by a pair of confoundersU (t) = {M(t),E(t)}, whereM(t) =m(t)

stands for patient’s psychological status and E(t) = e(t) stands for

her socioeconomic status.M(t),E(t) cannot be accessed by anyone
except the physician due to privacy concerns, thus considered as

unobserved in our setting. The patient’s long-term health condition

is measured by the γ -discounted cumulative reward. The physician

decides a treatmentX (t) = x ′(t) following a policy function x ′(t) =

πh(s
(t),m(t),e(t)). We model this sequential environment using a

structural causal modelM [10, Ch. 7] described in Fig. 1 (for t = 1, 2),
which we refer to as the MDPUC model.

To maximize the patient’s long-term health, the hospital’s ad-

ministration aims to automate the decision procedure and deploy

an experimental agent Aexp . The agent Aexp decides an action

x(t) on the basis of its visited states s((︀1,t⌋︀) and actions x((︀1,t−1⌋︀),

regardless of the physician’s decisions x ′((︀1,t⌋︀).1 We solve for this

1

We use v((︀i, j⌋︀) to denote a sequence ∐︀v(i), v(i+1), . . . , v(j)̃︀ (empty if j < i ).
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Figure 1: Causal diagram for MDPUC where U (t) affects
only {X (t),Y (t),S(t+1)}.

system using both the standard MDP and POMDP planning algo-

rithms and label the resulting policies as exp and exp2, respectively.
We also include two baseline policies for comparison: (1) the physi-

cian’s current policy (called human), and (2) a policy picking the

treatment at random (called random). Fig. 2 shows the cumulative

reward of these policies. The physician (human) performs worse

than random guessing (random). Perhaps surprisingly, the perfor-

mance of exp and exp2 coincide with the random policy, indicating

that the autonomous approachAexp is unable to learn a reasonable

policy, which is expected to be better than chance.

3 COUNTERFACTUAL AGENTS
Recall that the experimental agent Aexp always ignores the physi-

cian’s decisionx ′(t), whichmay contain valuable information about

the hidden state. We could improve its decision-making procedure

by proactively considering the physician’s preference, namely,

Definition 3.1 (Counterfactual Agent). A counterfactual agent

Act f is defined as a policy Πct f = π
((︀1,t⌋︀)

where π(t) is a function

deciding the action X (t) ← π(s((︀1,t⌋︀),x ′((︀1,t⌋︀),x((︀1,t−1⌋︀)).

At state s(t), the counterfactual agent takes the human’s decision

x ′(t) as its intended action, infer the outcome y(t), s(t+1) had it
taken a different action x(t) (counterfactually), and finally make a

decision. We could obtain the optimal policy of the counterfactual

agent using the standard POMDP planning methods [3, 4, 9] by

using the human’s decision x ′(t) as a partial observation of the

hidden state. However, solving for POMDPs is computationally

hard in practice. By exploiting the structure of MDPUCs using

counterfactual logic, an efficient solution can be obtained. Let the

counterfactual variable Yx be the solution of Y in the submodel

where the functions associated with variables X are replaced with

constants X = x [10, Ch. 7.1]. We show that the Markov property

[11] holds for a counterfactual agent in MDPUC environments.

Theorem 3.2 (Counterfactual Markov Property). For an
MDPUC model, the following equalities hold for t ≥ 1,

P(s(t+1)
x((︀1,t⌋︀)

, x ′(t+1)
x((︀1,t⌋︀)

⋃︀ s((︀1,t⌋︀)
x((︀1,t−1⌋︀)

, x ′((︀1,t⌋︀)
x((︀1,t−1⌋︀)

)

= P(s(t+1)
x(t)

, x ′(t+1)
x(t)

⋃︀ s(t), x ′(t)),

E)︀y(t)
x((︀1,t⌋︀)

⋃︀ s((︀1,t⌋︀)
x((︀1,t−1⌋︀)

, x ′((︀1,t⌋︀)
x((︀1,t−1⌋︀)

⌈︀ = E)︀y(t)
x(t)

⋃︀ s(t), x
′
(t)
⌈︀,

where s((︀1,t⌋︀)
x((︀1,t−1⌋︀)

= {s
(t)
x((︀1,t−1⌋︀)

}t≥1, x
′((︀1,t⌋︀)
x((︀1,t−1⌋︀)

= {x
′(t)
x((︀1,t−1⌋︀)

}t≥1.

Thm. 3.2 says that in MDPUCs, the observed state s(t) and the

human decision x ′(t) (at time t ) perfectly summarize the history

Figure 2: Simulations comparing performance of experi-
mental (Aexp ) and counterfactual (Act f ) agents in offline
planning. X -axis represents the total episodes.

of a counterfactual agent Act f . We are then allowed to treat the

human decision x ′(t) as if it were part of the observed state, and

solve for Act f using the standard MDP algorithms [11].

We compute the optimal policy of Act f in the MDPUC model

and label it as ctf, which is shown in Fig. 2. The results reveal that

the counterfactual agent Act f , leveraging the human’s capabilities,

consistently outperforms the experimental agent Aexp , notably,
even when the human performs worse than random guessing.

3.1 Autonomy vs. Optimality
The results discussed so far suggest a trade-off between optimality

and autonomy when designing RL systems – while full autonomy is

preferable, the agent could potentially achieve better performance

by leveraging the human’s capabilities, even if the information af-

fecting the human decision has an adverse effect on its performance.

Let the optimal discounted expected cumulative rewards for Aexp
be denoted by V ∗exp and for Act f by V ∗ct f . One can formally show

the relationship between the cumulative rewards, V ∗exp and V ∗ct f .

Theorem 3.3. For an MDPUC,V ∗exp ≤ V
∗

ct f . If the human decision

is affected only by observed variables (U (t) ⇑→ X (t)), V ∗exp = V
∗

ct f .

This proposition confirms the intuition that a counterfactual

agentAct f dominates any experimental agentAexp , which follows

from having access to additional information. The result further

confirms that whenever the human operator does not have access

to (or is influenced by) any piece of information hidden to the

agent, one could replace the human with an autonomous agent

without sacrificing the performance, i.e., full autonomy can, at least

in principle, be achieved.

4 CONCLUSION
We introduced counterfactual agents and showed both theoretically

and empirically that they dominate standard autonomous agents

(experimental) in terms of quality of the solution obtained. Given

that in real-world settings human decision-makers are almost invari-

ably influenced by unobserved confounders, our findings suggest

that human input should generally be considered, which perhaps

surprisingly, it’s true even when humans are worse than chance.

Our characterization delineates a formal boundary for the perfor-

mance achieved by semiautonomous and fully-autonomous systems

in a wide variety of natural and artificial decision-making scenarios.
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