
A Journey Among Pairs of Vertices:
Computing Robots’ Paths for Performing Joint Measurements

Robotics Track

Alessandro Riva
∗

Politecnico di Milano

Milan, Italy

alessandro.riva@polimi.it

Jacopo Banfi

Politecnico di Milano

Milan, Italy

jacopo.banfi@polimi.it

Carlo Fanton

Politecnico di Milano

Milan, Italy

carlo.fanton@mail.polimi.it

Nicola Basilico

Università degli Studi di Milano

Milan, Italy

nicola.basilico@unimi.it

Francesco Amigoni

Politecnico di Milano

Milan, Italy

francesco.amigoni@polimi.it

ABSTRACT
The problem of performing joint measurements recurs in many

robotic applications, like constructing communication maps from

signal strength samples gathered on the field. In spite of this, a the-

ory supporting efficient algorithms has not been yet developed and

ad hoc methods are usually employed. In this paper, we consider

an environment represented by a metric graph and prove that the

problem of jointly performing measurements from given vertices is

NP-hard when either the total traveled distance or the task com-

pletion time have to be minimized. Given the difficulty of finding

optimal paths in an efficient way, we propose a greedy randomized

approach able to cope with both the optimization objectives. In

settings for which joint measurements must be taken for all pairs of

vertices, we prove that a deterministic greedy algorithm achieves

an O (m logn) approximation factor for the traveled distance objec-

tive, wherem is the number of robots and n the number of vertices,

and an O (m2
logn) approximation factor for the completion time.

Experiments in simulation show that our algorithms perform well

in practice, also when compared to an ad hoc method taken from

the literature.

KEYWORDS
multirobot systems; joint measurements

ACM Reference Format:
Alessandro Riva, Jacopo Banfi, Carlo Fanton, Nicola Basilico, and Francesco

Amigoni. 2018. A Journey Among Pairs of Vertices: Computing Robots’

Paths for Performing Joint Measurements. In Proc. of the 17th International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2018),
Stockholm, Sweden, July 10–15, 2018, IFAAMAS, 9 pages.

1 INTRODUCTION
Multirobot systems (MRSs) represent a major sub-field of mobile

robotics whose challenges have received a growing attention from

researchers and practitioners in the last few years [23]. Sensing-

constrained planning is central to MRSs. It can be described as the

∗
Corresponding author

Proc. of the 17th International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2018), M. Dastani, G. Sukthankar, E. André, S. Koenig (eds.), July 10–15, 2018,
Stockholm, Sweden. © 2018 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org). All rights reserved.

problem of planning the optimal execution of a task where some

constraints, like limited range, affect or are imposed to the robot’s

sensing capabilities. For example, consider coverage, where robots

are often required to sense all the free area of the environment [10],

or patrolling, where robots might need to check for the presence of

threats at some locations with a given frequency [9]. Exploration,

surveillance, and target search are also domains that, very often,

exhibit the need for robots to take coordinated decisions accounting

for sensing requirements [17]. In these settings, robots typically

take sequences of measurements from locations that are determined

in order to optimize some objective function related to the traveled

distance or to the time taken to complete the task.

In this work, we consider a scenario where a team of robots

has to perform a given pre-specified set of joint measurements in a

graph-represented environment. While a measurement is usually

defined as a data-acquisition operation performed by a single robot

at some location, in this work, we consider a joint measurement as

a pairwise operation performed by two robots that occupy two dif-

ferent locations at the same time. We address the off-line resolution

of one fundamental problem emerging from this scenario: finding

joint paths to perform all the required measurements at minimum

cost.

Optimally planning pairwise joint measurements poses addi-

tional difficulties with respect to the case in which measurements

are performed by single robots. Indeed, optimal solutions might

exhibit intricate synchronization patterns, which can be difficult

to capture in a systematic algorithmic framework. We tackle this

problem by leveraging some peculiar features of the robotic setting.

This allows us to derive complexity and approximation results as

well to provide an empirical evaluation of our algorithms tailored

to MRSs.

Our planning problem (Section 3) unfolds on a discretization

of the environment that we represent with a graph. The vertices

correspond to locations of interest that can be occupied by a sin-

gle robot, while the weighted edges represent the shortest paths

between such locations. On this graph, a subset of edges defines

the measurements to be performed. A plan encodes a joint walk for

the robots to perform all the required measurements. We evaluate

plans according to two objective functions: the total cumulative

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

229

distance and the mission completion time. In this paper, we provide

the following contributions:

- we prove that finding the optimal plan is NP-hard with both

objective functions (Section 4);

- we propose a randomized greedy algorithm able to cope with

both the optimization objectives (Section 5);

- we consider settings, with n vertices andm robots, where

measurements must be taken for all pairs of vertices and

we prove that a deterministic greedy algorithm achieves an

O (m logn) approximation factor for the traveled distance

objective and an O (m2
logn) approximation factor for the

completion time (Section 5);

- we perform extensive experiments that show that our algo-

rithms perform well in practice, also when compared against

an ad hoc method taken from the literature (Section 6).

2 RELATEDWORK
At a low level of abstraction, limited-range sensing poses con-

straints to several robot applications. Multirobot exploration is one

notable example. In such a domain, limited visibility ranges have

an impact on how robots can optimally conduct exploration [15].

At a more abstract level, sensing constraints can take the general

form of requirements imposed to locations in the environment. In

order to cope with such requirements, robots need to combine the

“where to go?” decision with the “what to sense?” one. Think, for

example, of a team of robots that is required to collect temperature

samples from particular spots in the environment.

When requirements are posed to single robots, vehicle rout-

ing [20] or scheduling and sequencing [5] formulations are typi-

cally considered. However, in this paper, we abandon the traditional

formulation according to which a sensing requirement corresponds

to a single location in the environment. Our joint measurements

are associated to pairs of locations and require the simultaneous

presence of two robots in the two locations in order to be performed.

We exploit a specific problem formulation that allows us to devise

a practical resolution approach for MRSs and to derive complexity

and approximation results. What motivates us is also the fact that

this joint sensing constrained planning problem has received much

less attention in the literature than the single-robot counterpart,

even though it can be found in many applications.

One first example, from which our work took initial inspiration,

is the construction of communication maps [2, 12]. A communica-

tion map provides estimates of the radio signal strength between

pairs of locations in the environment. In such a setting, a measure-

ment is performed by two robots at two different locations that

exchange some polling data to acquire a signal strength sample.

An efficient planning of the measurements sequence can decrease

map-construction costs.

Localization and positioning systems represent another applica-

tion domain where joint measurements performed by robots are

involved. Robot-to-robot mutual pose estimation allows robots to

determine their global locations from mutual distance samples [24].

Efficiently sequencing pairwise (mutual) distance measurements

while executing some mission can help the robots to localize them-

selves in a distributed fashion [21].

Analogous problems can be encountered in the Wireless Sensor

Networks (WSNs) field, especially when nodes are mobile units [13].

Examples can be found in multilateration-based settings [6] where

optimal sequencing of pairwise measurements can speedup the

localization of an external entity, a feature particularly critical when

such an entity does not exhibit a cooperative behavior [3, 14].

3 PROBLEM FORMULATION
Let G = (V ,E) be a complete graph defined on n vertices, and

let c : E → Z+ be an edge cost function satisfying the triangle

inequality. A team A ofm robotic agents is deployed on G. They
have homogeneous locomotion capabilities and can move between

the vertices of G by traveling along its edges at uniform speed,

implying that costs can represent either distances or traveling times

between vertices.

The agents have to perform a set of coordinated pairwise sensing

actions, called measurements, from a setM ⊆ E of selected pairs of

vertices. A single measurement is considered completed as soon as

two agents occupy the pair of vertices at the same time (one agent

in each vertex). All the agents start from a common depotd ∈ V and

must come back to it once all measurements have been performed.

Note that, since G is a complete metric graph, we can assume

without loss of generality that each vertex in V , with the exception

of the depot, will always be part of at least one measurement inM .

We represent the execution of a joint measurement task with an

ordered sequence S = [s1, . . . , s |M |], where each element sk is called

assignment and associates a pair of agents to a pair of target vertices
from which the measurement is performed (each sk is associated to

a unique pair of vertices inM). During the exection of S , each agent

i ∈ A remains still on its current position, until a new vertex is

scheduled to i by means of an assignment. Given S , let us define iSk
as the vertex position of the agent i ∈ A after the ordered execution

of all the assignments up to (and including) the k-th one. These

agent positions, initially set tod , capture the evolution of the system
while running through S . In accordance with that, and with a slight

overload of notation, we can define the cost of an assignment sk ∈ S
as:

c (sk) =
∑
i ∈A

c (iSk−1, i
S
k).

We define a first objective function capturing the distance cu-
mulatively traveled by the team of agents and we denote it as

SUMDIST(·):

SUMDIST(S) =
∑
sk ∈S

c (sk) +
∑
i ∈A

c (iS
|M | ,d). (1)

We now introduce the notion of time for an ordered sequence of

assignments. We denote tSi (k) the time accumulated by an agent i
executing the assignments up to (and including) the k-th one. Such

a value can be defined recursively. In particular, if the assignment sk
does not schedule any vertex to the agent i , then tSi (k) = tSi (k − 1).
Otherwise, if j is the agent involved with i in sk :

tSi (k) = max

x ∈{i, j }

{
tSx (k − 1) + c (x

S
k−1,x

S
k)
}
.

We can now define a second objective function as the mission
completion time, namely the latest time at which a robot ends its

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

230

d

2
3

u v

2

a2

a2

d

2
3

u v

2

a2 a1

Figure 1: An instance inwhich the SUMDIST(·) objective (left)
and the MAXTIME(·) objective (right) cannot be optimized
simultaneously.

duty arriving at the depot. We call it MAXTIME(·):

MAXTIME(S) = max

i ∈A

{
tSi (|M |) + c (i

S
|M | ,d)

}
. (2)

Our cumulative distance and completion time objectives rep-

resent, in our problem setting, natural and widely adopted cost

metrics for MRSs applications.

3.1 Incompatibility of the Two Objectives
We now show that the two objective functions we just introduced

are conflicting. We do this with the help of an example, also pro-

viding an intuitive explanation on how our encoding for solutions

S maps to a multirobot graph walk.

Proposition 3.1. The SUMDIST(·) and MAXTIME(·) objectives
cannot be always simultaneously optimized, even whenm = 2.

Proof. Consider the simple graph with V = {d,u,v} depicted
in Figure 1. Two agents a1 and a2 initially placed at the depot

d have to perform two joint measurements defined by the set

M = {(d,u), (d,v)}. By inspection, we can see that a solution S∗D
minimizing the SUMDIST(·) objective is

S∗D = [⟨a1 → d,a2 → u⟩, ⟨a1 → d,a2 → v⟩],

with SUMDIST(S∗D) = 7 (note that the return to the depot is not ex-

plicitly represented in ordered sequences S). Here, agent a1 remains

fixed at d while a2 moves to both u and v (eventually returning at

d). In this case, MAXTIME(S∗D) = 7. Focusing on the MAXTIME(·)
objective, instead, we see (again by inspection) that an optimal

solution S∗T is

S∗T = [⟨a1 → d,a2 → u⟩, ⟨a1 → v,a2 → d⟩],

with MAXTIME(S∗T) = 6 and SUMDIST(S∗T) = 8. To optimize the

latter objective, no agent remains fixed at the depot, at the expenses

of an increase in the total traveled distance. □

4 NP-HARDNESS
We now prove the following theorem.

Theorem 4.1. The two optimization problems related to the min-
imization of the SUMDIST(·) and the MAXTIME(·) objectives are
NP-hard, even whenm = 2 and each v ∈ V appears at most once in
M .

Proof. To prove the theorem, it is sufficient to show that the

corresponding decision problems, in which we ask for the existence

B Bd

v1 v2

G1 G2

Figure 2: A reduction from aMETRIC TSP instance with five
vertices.

of a solution S with SUMDIST(S) ≤ D and MAXTIME(S) ≤ T , re-
spectively, are NP-complete. In the following, we call such decision

problems SUMDIST-D and MAXTIME-D.

The NP membership of SUMDIST-D and MAXTIME-D directly

follows from the solution encoding outlined in the previous section,

together with the fact that the SUMDIST(·) and MAXTIME(·) ob-
jectives for a given S can be computed in polynomial time. To prove

the NP-hardness of both problems, we provide a reduction from

the well-known metric Traveling Salesman Problem (TSP) [11],

formally defined below.

METRIC TSP
INSTANCE: Complete graph G = (V ,E), distance function d : E →
Z+ satisfying the triangle inequality, positive integer B.

QUESTION: Does G contain a Hamiltonian cycle
1
with total dis-

tance B or less?

Let us consider first SUMDIST-D. From a generic instance of

METRIC TSP, we construct a particular instance of SUMDIST-D

withm = 2 and a graph G = (V ,E) obtained as the metric closure
2

of the graph depicted in Figure 2. In the figure, the original METRIC

TSP graph is replicated twice in two subgraphs G1 and G2 which

are connected to a depot d through the same vertex copy (chosen

arbitrarily) by means of an edge with cost B. In the following, we

denote by v1,v2 the two vertices obtained by replicating twice

a generic vertex v ∈ V . The set of measurements is defined as

M = {(v1,v2) ∀v ∈ V }, that is, the set of measurements is composed

of all the pairs of vertices copies. The reduction is then completed

by setting D = 6B.
Let us focus on the agents’ movements in G (which is a com-

plete graph) as happening in the underlying (non-complete) graph

depicted in Figure 2 (this is equivalent, since G is obtained as its

metric closure).

If the METRIC TSP instance has answer yes, there also exists a

solution S of SUMDIST-D with SUMDIST(S) ≤ 6B in which agent

a1 and a2 initially reach G1 and G2, respectively (spending B + B),
then visit the vertices copies in the order defined by the METRIC

TSP solution (spending at most B +B), and finally travel back to the
depot (spending B + B). Hence, the total cost is not greater than 6B.

1
A Hamiltonian cycle is a closed loop in a graph that visits each node exactly once.

2
The metric closure of a weighted graph is a complete graph with the same vertices

and in which edges are weighted by the shortest path distances between corresponding

vertices in the original graph.

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

231

On the contrary, consider a SUMDIST-D instance admitting yes
answer. Necessarily, the two agents must perform measurements

while each one always remains confined in one of the two portions

of graphs derived from the METRIC TSP instance (excluded the

edge needed to travel from/to the depot). Indeed, the existence in

S of two subsequent assignments of the form ⟨a1 → v1,a2 → v2⟩
and ⟨a1 → u2,a2 → u1⟩ would immediately imply a total cost of at

least 8B (with each agent spending 2B to travel from/to the depot

the first time and again 2B for the second time). Consider now any

solution S in which the measurement associated with the pair of

vertices attached to the depot (by means of the edge with cost B) is

not the first one performed. Since G (and hence G) is metric, S can

always be turned into a solution in which such a measurement is

the first one performed without increasing the total solution cost.

Therefore, from such a solution, we can immediately derive the

existence of a METRIC TSP solution with total distance at most B
by examining the order in which the measurements are made. This

concludes the proof for SUMDIST-D. The proof for MAXTIME-D

follows exactly the same reasoning as above (the only difference is

that we need to set T = 3B) and is omitted. □

5 ALGORITHMS
From the results of the previous section it is clear that, unless

P=NP, the existence of polynomial-time optimal algorithms for

any of the two objectives is unlikely. However, for the special case

m = 2, there exist two simple polynomial-time transformations

from our optimization problems to particular TSP instances, for

which advanced solvers exist [1]. (This parallelism was firstly noted

in [12] for the SUMDIST(·) objective.)
We first present the transformation procedures for the two-agent

case, and then we devise a greedy randomized algorithm for general

instances of the problems defined in Section 3.

5.1 An Optimal Algorithm for the Casem = 2

Consider a complete graph GM , in which vertices correspond to

elements of M . It is immediate to see that, for our purposes, the

position of a salesman on GM univocally identifies the position of

a pair of agents on G, and each edge traversal on GM represents

a joint movement of two agents on G. In order to devise a cost

function on GM able to reflect the cost of moving two agents on

G, it is sufficient to distinguish among our two objectives. In case

of SUMDIST(·) minimization, given two vertices e = (u,v) and
ẽ = (ũ, ṽ) of the GM graph, the cost between e and ẽ is defined as

min{c (u, ũ) + c (v, ṽ), c (u, ṽ) + c (v, ũ)}.

In case of MAXTIME(·), the cost is defined similarly but substitut-

ing the sum with the max operator. Each of these cost functions

equals the corresponding cost of moving two agents in the orig-

inal problem. Finally, since each vertex in GM corresponds to a

measurement that has to be performed, a TSP solution on GM –

after a proper cost function selection – can be easily turned into

an optimal solution for the corresponding optimization problem.

Furthermore, it can be easily shown that the TSP instances obtained

with the above method are metric as well. This means that solving

Algorithm 1: Greedy Randomized

1 function greedyRandomized (M, τ)
2 while a termination condition is not satisfied do
3 S ← ∅
4 Q ← M
5 while Q is not empty do
6 rank the assignments according to a cost function

7 pick an assignment s according to scheme (3)

8 remove from Q the pair of vertices scheduled by s
9 append s to S

10 update incumbent with S if needed

11 return incumbent

the TSP instance with an α-approximation algorithm
3
allows to

obtain the same approximation factor on our original problems in

polynomial time.

The transformation outlined above is possible since the pres-

ence of exactly two agents univocally identifies the “optimal” dis-

tance functions of the corresponding TSPs. Indeed, both the state

space and the measurements space are defined over pair of vertices.

Clearly, with three or more agents, the same reasoning does not ap-

ply, and devising efficient algorithms with performance guarantees

becomes significantly more complex.

5.2 A Greedy Randomized Algorithm
Randomization is a well known technique aimed at improving the

performance of a plain greedy algorithm [4]. At every step, all

the possible assignments are ranked according to a (greedy) cost

function and a weight is associated at each rank. The probability of

selecting an assignment is obtained by normalizing the weights.

We consider a polynomial scheme, which associates a weight

ω (s) to an assignment s as follow:

ω (s) = r (s)−τ , (3)

where r (s) is the rank order of s and the parameter τ is tuned to

control how much the random selection is biased towards a greedy

choice. As τ is set to higher values, weights and selection probability
get more concentrated towards the most cost-efficient assignments.

The whole procedure is then run many times and the solution

returned is the best solution found over all the runs. Algorithm 1

summarizes the greedy randomized algorithm, regardless of the spe-

cific cost function. Assuming that an assignment can be evaluated

in a constant number of steps, each greedy randomized solution can

be found inO (m2 |M |2 logm |M |) steps, implying that, if the number

of runs is polynomial in the input size, the whole algorithm has a

polynomial running time.

In the following, we will make use of two different (greedy) cost

functions, suitable for the two objectives given in Section 3. Specifi-

cally, the two costs of an assignment s are defined as marginal gains,

namely the increments produced in the objectives SUMDIST(·) and
MAXTIME(·) if s is appended to the current partial solution. We

refer to the algorithm using the former cost as Algorithm 1D and

to the algorithm using the latter cost as Algorithm 1T .

3
Currently, the best approximation algorithm for the metric TSP is Christofides’ 3/2-
approximation algorithm [8].

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

232

Note that, thanks to the random selection based on (3), every

possible assignment has a non-zero probability of being chosen

at each step. This implies that, for any finite instance and any

finite value of τ , both the algorithms are asymptotically optimal

for the respective objectives. In the special case of τ → ∞ the

algorithms become purely greedy and the solution found will be not

guaranteed optimal. In this case, if the tie breaking is deterministic,

e.g., lexicographic, the solution produced is deterministic as well,

and the algorithm does not need to be run more than once.

An interesting question is how much a greedy solution can

be worse than an optimal one. We partially answer this question

by investigating the case in which M = E for both the problem

objectives. In particular we show that, for τ → ∞ (that is, by using

a pure greedy algorithm), non-trivial approximation guarantees

can be obtained.

5.3 Approximation Factors
We first provide some results that will be useful in proving the

approximation factor for Algorithm 1D . We start by putting in

relation the maximum cost of a greedy assignment and the cost of

an optimal solution.

Lemma 5.1. Let SD be a solution found by Algorithm 1D and let
OPTD be the cost of an optimal solution minimizing the SUMDIST(·)
objective function. Then,

max

s ∈SD
c (s) ≤ 2OPTD .

Proof. Consider a single depot multiple traveling salesmen prob-
lem (m-TSP) on G , withm salesmen and a depot d . In this problem,

the goal is to find a set ofm tours, each starting from d and visit-

ing at least once every vertex in G, such that the sum of the tour

costs is minimized. Let Cm-TSP be the cost of the m-TSP optimal

solution. Since in our problem each vertex must be visited at least

once, it follows that Cm-TSP ≤ OPTD . Then, let CMST be the cost

of a minimum spanning tree
4
on G. We have CMST ≤ Cm-TSP, be-

cause from any m-TSP solution a spanning tree can be obtained

by removing the last tour edges (the ones returning to the depot).

Finally, the cost between any pair of vertices inG cannot be greater

than CMST, because of the triangle inequality. Reconstructing the

chain of inequalities we have that the sum of two costs can never

exceed twice OPTD . □

At this point, the reader may have already noticed that a solution

encoded as a sequence of assignments may contain some elements,

whose contribution in the objective function is zero. These “zero-

cost assignments” occur whenever a pair of vertices is measured

without changing the positions of the agents on the graph. In or-

der to prove the approximation factor, we need to pay particular

attention to the number of zero-cost assignments occurring in an

optimal solution. Specifically, we prove the following.

Lemma 5.2. Consider a problem in which all pairs of h vertices
have to be measured with m agents. Then, there always exists an
optimal solution minimizing SUMDIST(·) and containing at least
h (h−1)
2m non-zero-cost assignments.

4
A minimum spanning tree is a least cost tree covering all the vertices in a graph.

Proof. Consider an optimal solution S∗D and let us assume that,

without loss of generality, all the zero-cost assignments are sched-

uled as soon as possible. Suppose that an assignment s moves at

least one agent. Since at most two agents can be moved between

two successive assignments, at leastm − 2 agent positions (i.e., ver-
tices) are maintained unchanged. All the pairs involving thosem−2
vertices must be already scheduled before s , according to the above
assumption. Each zero-cost assignment following s , thus, must in-

volve at least one of the new agent positions. As a consequence, the

maximum number of consecutive zero-cost assignments is 2m − 3,
which, considering the total number of pairs to measure h(h − 1)/2,
is slightly above our statement.

In order to achieve the result, let us further constraint S∗D as fol-

lows. If an assignment moves exactly two agents i and j , we assume

that both the new agent positions have been already measured with

any of the otherm − 2 agent positions (those remained unchanged).

Indeed, if this condition does not hold, any two-agent move can be

split in two subsequent assignments, moving one agent each (the

cost of moving two agents is equal to the cost of moving one agent

at a time). The latter assignment can be the same as the original

one, while the former can schedule one of the pairs to be measured

among i or j and any other agents position. Notice that this “new”

assignment would be necessarily scheduled later on in the sequence,

but can be anticipated here without any increment in the cost of

the solution. In fact, these two-split assignments can be interleaved

by some zero-cost assignments, as we assume they are scheduled as

soon as possible. The result is an optimal solution whose maximum

number of consecutive zero-cost assignments is bounded bym − 2
and we proved the lemma. □

We are now ready to formulate our main result. In particular, we

state that, under specific conditions, Algorithm 1D approximates

an optimal solution (for the distance cumulatively traveled) within

a factor that depends on the number of robotsm and the number

of vertices n.

Theorem 5.3. Let SD be a solution found by Algorithm 1D with
M = E and τ → ∞, and let OPTD be the cost of an optimal solution
minimizing the SUMDIST(·) objective function. Then,

SUMDIST(SD)

OPTD
≤ 2 + 16m logn.

Proof. We start by rearranging the computation of a solution

cost. To do that, let us define λl as the number of assignments

s ∈ SD such that c (s) ≥ l , plus the number of depot returns whose

cost is at least l . Then, the cost of the solution can be alternatively

computed as

SUMDIST(SD) =
∑
l ≥1

λl . (4)

Exploiting this new formulation, we can focus on bounding λl . Let
us leave aside the return to the depot for a while – we will be back

on it later – and let us start concentrating on the paths generated

by Algorithm 1D .

Consider a partition Π(r) of the set of vertices V , defined for

any positive value r and obtained as follows. Set initially Π(r) = {},
then (1) denote T = V \ {P ∈ Π(r)} and pick (at random) a vertex o
from T , (2) create a new subset P = {v ∈ T | c (o,v) < r } and let o

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

233

< r

≥ r

P1

P2

P3

u

Figure 3: A vertices partition Π(r) = {P1, P2, P3}. Due to the
specific picking order, vertex u lies in P2 instead of P3.

be the center of P , (3) insert P in Π(r) and repeat from (1) until T is

empty. An example of partition is shown in Figure 3.

For each pair of vertices u,v belonging to the same subset P , it
follows that c (u,v) < 2r , because of the triangle inequality. Conse-
quently, if a greedy assignment of cost 4r or more is scheduled for a

pair of agents, at least one of the two agents must leave its current

subset. Furthermore, all the pairs of vertices, among the two agents’

current subsets, must be mapped, as their costs are strictly lower

than 4r . It follows that the number of assignments of cost 4r or

more is at most the number of transitions between different subset

pairs (note that a subset can be paired with itself). Let us denote

hr = |Π(r) |, then, for any integer hr :

λ4r ≤

(
hr
2

)
+ hr − 1 ≤ hr (hr − 1). (5)

Consider now an optimal solution measuring only the pairs of

center vertices in Π(r). Without loss of generality, we assume that

depot d is the center of a subset (this can be easily enforced at

the beginning of the partitioning process). The cost of an optimal

solution, measuring only some pairs in E has cost not greater than

OPTD . Furthermore, thanks to Lemma 5.2, we can assume that in

such an optimal solution the number of non-zero-cost assignments

is bounded by a function of the number of agentsm and the number

of centers hr . Also, each center is at least at distance r from any

other center, meaning that any non-zero-cost assignment moves

the agents of at least r . Thus, the following bound on the optimal

cost holds:

OPTD ≥ r
hr (hr − 1)

2m
. (6)

From (5) and (6) we obtain:

λr ≤
8m

r
OPTD . (7)

Before we go any further, we take into account the return to

depot d in the λr computation. In particular, the bound in (5) has to

be incremented bym as, in principle, any agent could spend more

than 4r to come back to d . However, the lowerbound in (6) can be

lifted too and, more precisely, it can be incremented by r/2. Indeed,
if hr is strictly greater than 1, at least one agent must spend an

additional r ≥ r/2 to come back to d . Conversely, if hr is exactly
equal to 1, the right-hand side term in inequality (6) becomes zero

and by adding r/2 ≤ OPTD (with a view to the use of Lemma 5.1)

the whole inequality still holds. Given these new two bounds, the

result of inequality (7) follows straightforwardly.

Now we are ready to devise the approximation factor. In order to

simplify the notation, let us define x = OPTD /
(n
2

)
+ 1. Leveraging

Lemma 5.1, we decompose the sum in equation (4) as follow:

SUMDIST(SD) =
∑
l ≥1

λl

=

x−1∑
l=1

λl +

2OPTD∑
l=x

λl .

The former term can be simplified noting that λl ≤ 2

(n
2

)
holds for

any value of l , while, in the latter term, we can make use of (7). To

achieve the final result we only need some additional math:

SUMDIST(SD) ≤ OPTD


2 + 8m

2OPTD∑
l=x

1

l


≤ OPTD

[
2 + 8m log

2OPTD
x − 1

]

≤ OPTD [2 + 16m logn] .

where in the last inequality we substituted the definition of x . □

Our greedy algorithm has thus a logarithmic approximation

factor in the number of vertices, similarly to many other greedy al-

gorithms for different applications (e.g., TSP [18] and set cover [19])

and depends linearly on the number of agents. This linear depen-

dency becomes crucial when the number of agents is significantly

large. However, in case of many robotics applications,m ≪ n is a

reasonable assumption, strengthening the contribution of the theo-

retical result. Of course, being the approximation factor based on a

worst-case analysis, the experimental performance can be better,

as we will see in Section 6.

It can be also shown that a solution found by Algorithm 1D has

a non-trivial approximation factor even when evaluated w.r.t. the

MAXTIME(·) objective function. Indeed, starting from Theorem 5.3,

the following bound can be easily derived.

Theorem 5.4. Let SD be a solution found by Algorithm 1D with
M = E and τ → ∞, and let OPTT be the cost of an optimal solution
minimizing the MAXTIME(·) objective function. Then,

MAXTIME(SD)

OPTT
≤ 2m + 16m2

logn.

Proof. We can notice that, for any solution S (found regardless

the objective function), we have the following bounds:

1

m
SUMDIST(S) ≤ MAXTIME(S) ≤ SUMDIST(S).

Hence, starting from the result of Theorem 5.3, we lowerbound the

numerator and upperbound the denominator in the left-hand side

of the approximation-factor inequality. After some straightforward

math, we obtain an overall upperbound of the approximation factor

for the MAXTIME(·) objective function, as stated by the theorem.

□

6 EXPERIMENTS
In order to assess the performance of the proposed algorithms in

practical settings, we consider the real environments depicted in

Figure 4. We manually spawned vertices on positions of interest

(e.g., rooms in the office) over the bitmaps and derived edge costs as

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

234

(a) Open (b) Office

Figure 4: The bitmaps of the environments used in the ex-
periments. The red vertex represents the depot.

shortest paths among pairs of vertices. In order to specify different

sets of required measurements M , we consider different measure-

ment ranges defined as numbers of pixels on the corresponding

800 × 600 bitmap. Given a range, we populateM with all the pairs

of vertices (u,v) whose line-of-sight distance is not larger than

the range (disregarding obstacles). In our experiments, we use the

following three range values: 250 px, 500 px and 1000 px, obtaining

setsM with different cardinalities (small, medium, and large).

In the first set of the experiments, we investigate the impact of

the parameter τ (see (3)) in the solutions found by Algorithms 1D
and 1T for their respective objective functions. To do that, we

fix the number of agents and the range to intermediate values,

that is, 5 agents and 500 px. Figure 5 shows the distributions of

the solution costs, obtained in both the environments, for τ ∈
{3, 5, 7, 9} and over 200 runs. Each curve represents the probability

of finding a solution cost less than or equal to a certain value, at

each run of the corresponding algorithm. For example, in the open

environment, the probability that the algorithm for τ = 5 finds a

solution S , such that SUMDIST(S) ≤ 2600, is about 0.45 at each run.

Although the set of tested values is limited, it is fairly easy to infer

the general trend of the curves w.r.t. the τ parameter: increasing τ
the distribution tends to fit the step distribution of a pure greedy

algorithm. This is quite predictable, thinking about the parameter

meaning. Using the pure greedy performance as reference, the

results highlight that the curves of τ = 3 and τ = 7 are dominated

in all the four scenarios. In particular, τ = 5 achieves overall good

performance, while τ = 9 behaves generally bad.

In the second set of experiments, we vary the number of agents

and we compare the results obtained by a deterministic pure greedy

algorithm (τ = ∞) to those obtained by a greedy randomized algo-

rithm, for τ = 5 and 50 runs for each setting. The optimal solution

cost is computed for m = 2 agents only, exploiting the transfor-

mation of Section 5.1. For the case of m = 3 agents, we report

the solution cost found by a state-of-the-art algorithm [12], here

extended to cope with weighted graphs, and named HKT. At each

step of the original HKT algorithm, all the next candidate positions

of the agents are evaluated according to a greedy criterion. Such

a criterion can consider (a) the traveled distance (the completion

time), (b) the number of new joint measurements performed at the

new agents positions, or a combination of the two. In some prelim-

inary experiments, HKT algorithm obtained the best results when

minimizing (a) for the SUMDIST(·) objective and when minimizing

the ratio between (a) and (b) for the MAXTIME(·) objective (as

often done in information-gathering applications, e.g., [7, 16, 22]).

The algorithm proceeds by taking greedy decisions until all the

measurements are completed. Notice that HKT cannot be extended

straightforwardly to cope with a generic number of agents in poly-

nomial time. Indeed, the number of next candidate positions at each

step grows exponentially in the number of agents.

In Table 1, the costs of the solutions found by all the algorithms

are shown for the open environment. Algorithm 1D with τ = 5

consistently outperforms the pure greedy version in all the problem

instances. This, of course, comes at the expense of a greater com-

putational burden. The results obtained by the greedy randomized

algorithm are comparable even with those obtained by the opti-

mal algorithm form = 2. Also, note that the gap could be further

reduced by increasing the number of runs. In case ofm = 3, the

solution costs obtained by τ = ∞ are very similar those obtained

by the HKT algorithm, which, however, is outperformed by τ = 5

in all the considered instances.

It is interesting to notice that, for the SUMDIST(·) objective and
for range 250 px, the solution cost does not always decrease, as

the number of agents increases. This is due to the greedy nature of

Algorithm 1D , which does not take into account the final returns to

the depot. The same behavior seems to appear for range 500 px and

large number of agents, suggesting the presence of a local minimum.

As a consequence, the minimization of the total traveled distance

by means of greedy algorithms requires additional attention in the

selection of the number of agents.

In the last set of experiments, we investigate the practical de-

pendency between the optimization of our objectives. While Propo-

sition 3.1 ensures that, in general, both the problems cannot be

optimized at the same time, Theorem 5.4 tells us that their joint per-

formance is somehow related. Figure 6 shows the solutions found

by the two pure greedy algorithms, evaluated according to the same

objective. Specifically, we run Algorithms 1D and 1T (with τ = ∞)
and measure the quality of the solutions they produce according to

both SUMDIST(·) and MAXTIME(·) objectives in the open and of-

fice environments. Even if the algorithms perform generally better

in their respective objectives, the difference is relatively small. In

particular, in case of the MAXTIME(·) objective the gap remains

limited even when increasing the number of agents. This suggests

that, in general, it may be possible to obtain good solutions w.r.t.

both the objectives.

7 CONCLUSIONS
Computing a set of robot paths allowing to efficiently perform pair-

wise joint measurements is a recurrent problem in the multirobot

systems literature. In this paper, we have addressed a systematic

study of a graph-theoretical version of this problem, providing com-

plexity results and efficient algorithms (with worst-case bounds on

solution quality) suitable for practical settings.

An immediate avenue for future work is related to a deeper the-

oretical investigation of the combinatorial structure of the problem

and, in particular, of the approximation guarantees that can be

obtained. For instance, it would be interesting to extend the worst-

case bounds of our greedy algorithm to settings where not all the

possible pairs of vertices must be jointly visited and to further

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

235

(a) Open environment (b) Office environment

Figure 5: Empirical distributions of the solution costs found by Algorithms 1D and 1T .

Agents (m)

2

3

4

5

6

7

8

9

10

2

3

Algorithm 1D

Range: 250 px Range: 500 px Range: 1000 px

τ = ∞ τ = 5 τ = ∞ τ = 5 τ = ∞ τ = 5

1710 1458 3970 3902 5074 5020

1658 1362 3284 3264 4418 4138

1520 1296 3108 2714 3444 3274

1488 1278 2626 2356 2892 2840

1398 1344 2274 2036 2636 2516

1400 1360 2168 1932 2430 2328

1666 1452 2124 1928 2326 2188

1600 1542 2078 1950 2300 2166

1686 1596 2014 1902 2346 2148

Optimum for SUMDIST(·)

1346 3498 4546

HKT for SUMDIST(·)

1552 3524 4358

Algorithm 1T

Range: 250 px Range: 500 px Range: 1000 px

τ = ∞ τ = 5 τ = ∞ τ = 5 τ = ∞ τ = 5

1368 1350 3745 3656 4793 4760

814 729 1922 1865 2491 2416

589 544 1298 1224 1662 1598

472 394 983 924 1228 1159

380 339 791 712 914 871

379 318 656 593 857 739

317 287 568 524 729 653

311 285 475 465 634 565

286 278 467 424 584 525

Optimum for MAXTIME(·)

1263 3433 4506

HKT for MAXTIME(·)

1022 1897 2484

Table 1: Costs of solutions found by the algorithms in the open environment. Bold indicates the best results.

(a) Open environment (b) Office environment

Figure 6: Solutions found by the pure greedy algorithms, evaluated according to both the objectives.

improve such bounds by devising constant-factor approximation

algorithms.

From a practical standpoint, it could be worth focusing on a

particular robotic application requiring to perform joint measure-

ments and studying the relationship between online approaches

and the proposed offline resolution scheme. For example, in a con-

text of communication map building where the environment is fully

known in advance, it would be interesting to compare the quality

of the maps obtained with the online approach of [2] to the quality

of those obtained with the help of the algorithms presented in this

paper.

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

236

REFERENCES
[1] D. Applegate, R. Bixby, V. Chvatal, and W. Cook. 2011. The traveling salesman

problem: a computational study. Princeton University Press.

[2] J. Banfi, A. Quattrini Li, N. Basilico, I. Rekleitis, and F. Amigoni. 2017. Multirobot

online construction of communication maps. In Proc. ICRA. 2577–2583.
[3] N. Basilico, N. Gatti, M. Monga, and S. Sicari. 2014. Security games for node

localization through verifiable multilateration. IEEE T Depend Secure 11, 1 (2014),
72–85.

[4] J. Bresina. 1996. Heuristic-biased stochastic sampling. In Proc. AAAI. 271–278.
[5] P. Brucker and P. Brucker. 2007. Scheduling algorithms. Vol. 3. Springer.
[6] S. Capkun and J. Hubaux. 2006. Secure positioning in wireless networks. IEEE J

Sel Area Comm 24, 2 (2006), 221–232.

[7] B. Charrow, S. Liu, V. Kumar, and N. Michael. 2015. Information-theoretic map-

ping using cauchy-schwarz quadratic mutual information. In Proc. ICRA. 4791–
4798.

[8] N. Christofides. 1976. Worst-case analysis of a new heuristic for the travelling
salesman problem. Technical Report 388. Carnegie Mellon University.

[9] Y. Elmaliach, N. Agmon, and G. Kaminka. 2009. Multi-robot area patrol under

frequency constraints. Ann Math Artif Intel 57, 3-4 (2009), 293–320.
[10] E. Galceran and M. Carreras. 2013. A survey on coverage path planning for

robotics. Robot Auton Syst 61, 12 (2013), 1258–1276.
[11] M. Garey and D. Johnson. 1979. Computers and intractability: A guide to the

theory of NP-completeness. W. H. Freeman.

[12] M. Hsieh, V. Kumar, and C. Taylor. 2004. Constructing radio signal strength maps

with multiple robots. In Proc. ICRA. 4184–4189.

[13] L. Hu and D. Evans. 2004. Localization for mobile sensor networks. In Proc.
MobiCom. 45–57.

[14] C. Kim, D. Song, Y. Xu, J. Yi, and X. Wu. 2014. Cooperative search of multiple

unknown transient radio sources using multiple paired mobile robots. IEEE Trans
Robot 30, 5 (2014), 1161–1173.

[15] A. Quattrini Li, F. Amigoni, and N. Basilico. 2012. Searching for optimal off-line

exploration paths in grid environments for a robot with limited visibility. In Proc.
AAAI. 2060–2066.

[16] A. Riva and F. Amigoni. 2017. A GRASP Metaheuristic for the Coverage of Grid

Environments with Limited-Footprint Tools. In Proc. AAMAS. 484–491.
[17] C. Robin and S. Lacroix. 2016. Multi-robot target detection and tracking: taxon-

omy and survey. Auton Robot 40, 4 (2016), 729–760.
[18] D. Rosenkrantz, R. Stearns, and P. Lewis II. 1977. An analysis of several heuristics

for the traveling salesman problem. SIAM J Comput 6, 3 (1977), 563–581.
[19] P. Slavík. 1996. A tight analysis of the greedy algorithm for set cover. In Proc.

STOC. 435–441.
[20] P. Toth and D. Vigo. 2014. Vehicle routing: problems, methods, and applications.

SIAM.

[21] N. Trawny and S. Roumeliotis. 2010. On the global optimum of planar, range-

based robot-to-robot relative pose estimation. In Proc. ICRA. 3200–3206.
[22] A. Visser and B. Slamet. 2008. Balancing the information gain against the move-

ment cost for multi-robot frontier exploration. In Proc. EUROS. 43–52.
[23] Z. Yan, N. Jouandeau, and A. Cherif. 2013. A survey and analysis of multi-robot

coordination. Int J Adv Robot Syst 10, 12 (2013), 399.
[24] X. Zhou and S. Roumeliotis. 2008. Robot-to-robot relative pose estimation from

range measurements. IEEE Trans Robot 24, 6 (2008), 1379–1393.

Session 7: Robotics: Planning AAMAS 2018, July 10-15, 2018, Stockholm, Sweden

237

	Abstract
	1 Introduction
	2 Related Work
	3 Problem Formulation
	3.1 Incompatibility of the Two Objectives

	4 NP-Hardness
	5 Algorithms
	5.1 An Optimal Algorithm for the Case m=2
	5.2 A Greedy Randomized Algorithm
	5.3 Approximation Factors

	6 Experiments
	7 Conclusions
	References

