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ABSTRACT

Toward enabling next-generation robots capable of socially intelli-
gent interactionwith humans, we present a computationalmodel

of interactions in a social environment of multiple agents and mul-
tiple groups. The Multiagent Group Perception and Interaction
(MGpi) network is a deep neural network that predicts the appro-
priate social action to execute in a group conversation (e.g., speak,
listen, respond, leave), taking into account neighbors’ observable
features (e.g., location of people, gaze orientation, distraction, etc.).
A central component of MGpi is the Kinesic-Proxemic-Message
(KPM) gate, that performs social signal gating to extract impor-
tant information from a group conversation. In particular, KPM
gate filters incoming social cues from nearby agents by observing
their body gestures (kinesics) and spatial behavior (proxemics). The
MGpi network and its KPM gate are learned via imitation learning,
using demonstrations from our designed social interaction sim-

ulator. Further, we demonstrate the efficacy of the KPM gate as a
social attention mechanism, achieving state-of-the-art performance
on the task of group identification without using explicit group
annotations, layout assumptions, or manually chosen parameters.
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1 INTRODUCTION

In order to develop next-generation robots that can interact socially
with humans, there is first a need for expressive computational
models that can encode social intelligence [2, 19, 29, 59]. Broadly,
an agent’s social intelligence is its ability to understand and respond
appropriately to others, i.e., its: (1) social perception and (2) social
interaction management skill. Social perception is the ability to
analyze other agents’ social signals including non-verbal behavioral
information such as facial or postural expressions [41, 47], physical
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Figure 1: Top: Multiagent multigroup social intelligence at

a party. Bottom: Coffee Break [15] and Cocktail Party [62]

dataset images.

distance (proxemics) [21] and body gestures (kinesics) [4]. Social
interaction management is the ability to take appropriate action in
response to information retrieved via social perception.

Toward the ultimate goal of robotic social intelligence, we pro-
pose a computational model of social interactionmanagement based
on social perception of behavioral signals in the context of multi-
agent multigroup conversation. Consider a crowded social party
like the ones depicted in Figure 1 to understand some important
components of social intelligence.

(1) Group Formation and Social Signal Gating.Whenmany
people are gathered together, it is natural for people to form
smaller groups and engage in conversation. In order to partic-
ipate effectively in a group conversation, each person needs
to be able to pay attention to the people in the group, while
suppressing information (both verbal and non-verbal) from
other nearby groups. This type of social attention mecha-
nism, which we term social signal gating, is a critical aspect
of social perception and is closely tied to group identification
(discussed later).

(2) Dynamic Group Size and Influence. At a social party,
people dynamically move from group to group to start new
conversations and leave old ones. The ability to adapt to
dynamic group size and a dynamic degree of influence from
nearby people is an important aspect of social intelligence.
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(3) Short-Term Memory. Communication within a group is
successful when there is an appropriate balance of conversa-
tional actions. At every moment, each groupmember decides
their future conversational actions based on the past course
of interaction (e.g., speak, respond or leave). For example,
if one person has been talking very long, group members
might become disinterested and disengage from the group.
In other words, a social agent’s short-term memory of past
non-verbal and conversational interactions with neighbors
is influential in determining its future social interactions.

Kinesic-
Proxemic 
Message 

Gate

Interaction
Policy

● Non-Verbal Cues
● Conversational Cues

Social
-STM:

● Conversational CuesSelf-
STM:

Pooling
Social Signal Gating

● Non-Verbal Cues
● Conversational Cues

Social
-STM:

● Non-Verbal Cues
● Conversational Cues

Social
-STM:

Figure 2: Overview of MGpi Network

The example above highlights critical features of a multiagent
multigroup interaction model. Keeping in mind these features, we
propose MGpi, a Multiagent Group Perception and Interaction
Network. As shown in Figure 2, MGpi is a deep neural network
consisting of the following modules:

(1) Social Signal Gating Module expresses appropriate social
perception by processing incoming and past social signals
from neighboring agents (both non-verbal and conversa-
tional). It decides their degree of influence using a social
attention function, the Kinesic-Proxemic-Message (KPM)
gate. To enable reasoning with a dynamic number of influ-
encing neighbors, it uses a pooling operation to aggregate
encoded social signals.

(2) Short-term Memory (STM) Encoders encode the agent’s
short-term memory of past interactions with each neighbor
(Social-STM) and its own actions (Self-STM).

(3) Interaction Policy Module processes outputs from afore-
mentioned components to decide the agent’s next conversa-
tional action.

The MGpi network enables us to model social agents that make
action choices in a decentralized manner. The parameters of MGpi
are learned end-to-end via imitation learning, using a set of demon-
strated group interaction sequences. In this work, demonstrations
are generated by a social interaction simulator, but MGpi can also
be learned from annotated real-world social interactions. Since
modeling the full extent of social intelligence is very complex (e.g.,
power, dialogue, trust), in this work, we use abstracted expressions
of social iteraction (e.g., discrete conversational actions). We be-
lieve this simplification is a necessary step towards designing more
complex models of real-world social interactions.

As mentioned earlier, social perception is closely tied to group
identification. Thus, we further hypothesize that, if our proposed

social signal gating module is modeled correctly, we will be able to
map the learned social attention directly to group membership. We
demonstrate the ability of the KPM gate to identify groups in a di-
rect, unsupervised manner, achieving state-of-the-art performance
against group detection methods that use hand-defined parameters,
features and complex spatial assumptions on how people arrange
themselves in social situations (F-formations [34]).
In summary, our contributions are as follows:

(1) We presentMGpi, a computational model of multiagent
multigroup social interactions (Section 3).

(2) In a dearth of prior work on multiagent multigroup social in-
teraction simulators and in the absence of real-world datasets
with multigroup behavioral annotations (e.g., listen, respond,
strongly address), we design our own social interaction

simulator, seeking inspiration from several works which
study the multi-modal nature of small-group conversational
dynamics [27, 28, 30, 33, 40]. We use this simulated data to
train and evaluate our network (Section 5).

(3) We demonstrate how the ability of group identification

emerges as a result of learning a social interaction policy,
achieving competitive performance against state-of-the-art
methods with the explicit aim of detecting groups. Unlike
prior work, we do so without the use of explicit group an-
notations, layout assumptions or hand-defined parameters
(Sections 4, 6).
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2 RELATEDWORK

The analysis of intelligent agent grouping, behavior and communi-
cation is of broad interest to many disciplines including Human-
Robot Interaction [6, 7, 10, 23, 46, 47, 61], Multiagent Systems and
Machine Learning [5, 9, 24, 25, 36, 38, 43, 44, 48, 54, 55, 60], Neurobi-
ology [8, 13, 18, 26, 31, 52], Computer Vision [3, 16, 17, 50, 51, 57, 62]
and Psychology [2, 4, 20, 21, 41, 42]. Since this work is focused on de-
veloping computational models of multiagent communication and
identifying social groups, we elaborate on selected related work.

Human-Robot Interaction: The effects of gaze and proxemics
in human-robot interaction and social signal perception has been
widely explored [23]. Recognizing these non-verbal cues’ social
importance, we incorporate the perception of such cues as a central
component in our model. Dialogue systems work [49, 53] concen-
trates on appropriately responding to conversational cues, while
our work additionally deals with the non-verbal aspects of human
communication. Detection and automatic analysis of a human’s
engagement in social human-robot scenarios has been comprehen-
sively studied [10, 46, 47, 61] using various non-verbal cues such
as body attitudes, facial video signals, and personality traits. Re-
lated to this, our work presents a method to automatically infer an
interacting agent’s attention from non-verbal and conversational
cues. Sociable robots have been defined and studied in the context
of their degree of interaction with humans and their functionality
[6, 19]. Toward enabling socially intelligent robots, we present a
model of multiagent multigroup interaction. The importance of sim-
ulation theory and imitative interaction in the social understanding
of neighbors by robots has been studied [7]. We use this insight in
order to learn a computational model for socially intelligent robots
through imitation of simulated interactions.

Multiagent Systems and Machine Learning: Emergent col-
lective behaviors have been studied inmultiagent organized swarms
[5]. By contrast, we model individual behavior in a socially intelli-
gent multigroup setting. Adversarial deceptive interactions have
been studied between individuals [60] and groups of intelligent
robots [48]. Instead, we assume a cooperative scenario, where in-
teractions imitate multigroup human-to-human social reactions.
Modeling multiagent communication is an active area of research
in machine learning [9, 54]. Recent work makes use of deep rein-
forcement learning or imitation learning to discover policies for
agent-to-agent communication, e.g., [24, 25, 36, 38, 43, 44, 55]. The
motivation for these works is often collaboratively solving a partic-
ular task which might involve partial observability. Communication
protocols best fit to accomplish that task are learned. By contrast,
we learn to imitate social communication protocols of humans in a
multigroup scenario. Some works assume the communication of
internal states between agents, while others learn to communicate
a particular ‘message’ in order to solve the task. Neighbor messages
might be aggregated using a pre-defined pooling operation. By con-
trast, we explicitly encode particular social signals between agents
and learn signal gating to appropriately weight incoming signals,
showing superior performance to prior pooling strategies.

Neurobiology and Signal Gating: The concept of social signal
gating introduced in our model is inspired by the neurobiological
process of sensory gating [18, 26]. Sensory gating is the ability to
filter out unnecessary or irrelevant external stimuli. The cocktail

party effect [8] is one example of auditory sensory gating where
a person is able so focus auditory attention to a specific target
while ignoring other irrelevant audio input. Similar sensory gating
is observed in other senses as well, to prevent overwhelming the
primary cortical areas [13, 31, 52]. Recognizing the importance
of modelling sensory gating in socially intelligent computational
systems, we use our KPM gate to mimic this phenomenon when
considering the importance of nearby agents’ social signals.

Social Group Interactions: For the purpose of evaluating our
model, there are no large-scale public datasets of states and conver-
sational actions of people interacting in multiple groups. Existing
datasets [15, 45, 62] only provide sequences of physical positions,
gaze directions and group assignments. More importantly, no con-
versational action annotations (e.g., listening, speaking, etc) are
provided. Closely related to our ideas, a social simulator PsychSim
[39] adopts a theory-of-mind approach to modelling interactions
in scenarios with agent attributes such as power and hardship. By
contrast, we consider scenarios of face-to-face interactions in social
situations, and require agents to have conversational roles such as
responding to being addressed. Further, we aim to automatically
learn the levels of reasoning required to behave appropriately in
a social situation. In the absence of prior work on simulators or
real-world datasets with conversational action annotations, we de-
sign our own social interaction simulator (Section 5). Inspired by
several works which study the multi-modal nature of small-group
conversational dynamics [27, 28, 30, 33, 40], we design simulated
interaction rules in order to generate data to train our network.

Social Group Identification: There is much work on identi-
fying the members of a group in a social situation [32, 50, 51, 58],
and more recently [56]. This prior work typically assumes agents’
arrangement in spatial layouts called F-formations [34], often at-
tempting to find o-space centers [34] using heuristic strategies and
hand-crafted parameters. By contrast, under no such layout as-
sumptions, we learn parameters for a straightforward, automatic
group identification mechanism (Section 6).

3 SOCIAL INTERACTION MANAGEMENT:

THEMGPI NETWORK

Our goal is to design a computational model for multiagent multi-
group interactions that incorporates signal gating, adaptation to
dynamic group sizes and short-term memory encoding. Towards
this goal, we propose theMGpi architecture (Figures 2, 3). In our
design of MGpi, we consider several insights from social science
literature: the importance of ‘situational awareness’ and ‘presence’
[2], and the impact of non-verbal social cues ‘kinesics’ [4] and
‘proxemics’ [21].

Notation. We denote them-th agent byAm and its Jt neighbors
at time t by {Ani } Jti=1. At time t ,Am and its neighborAni have gaze
directions дmt , д

ni
t ∈ R

2, and positions lmt , l
ni
t ∈ R

2. R(ϕ) is the
rotation matrix associated with angle ϕ = arctan (дmt ). Relative
gaze direction and relative rotated position of Ani w.r.t. Am are
respectively given by:

д(ni←m)
t = R(ϕ)дnit and l (ni←m)

t = R(ϕ)(lnit − l
m
t ).

In our model, we use a past history of features. The history length
(horizon) is denoted as H . The histories of relative gaze directions
and relative rotated positions ofAni w.r.t.Am are respectively given
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by:

G(ni←m)
t ,hist =

[
д(ni←m)
t−H+1 . . . д(ni←m)

t

]
∈ R2×H ,

L(ni←m)
t ,hist =

[
l (ni←m)
t−H+1 . . . l (ni←m)

t

]
∈ R2×H .

The conversational action space of an agent is denoted byU. The
conversational actions of Am and Ani at time t are represented
by |U|-dimensional one-hot vectors dmt and dnit respectively. The
histories of conversational actions of Am and Ani are given by:

Dm
t ,hist = [d

m
t−H+1, ...,d

m
t ] ∈ {1, 0}

|U |×H

Dni
t ,hist = [d

ni
t−H+1, ...,d

ni
t ] ∈ {1, 0}

|U |×H

The state of agent Am at time t is given by:

Smt =

[{
G(ni←m)
t ,hist

} Jt
i=1
,
{
L(ni←m)
t ,hist

} Jt
i=1
,
{
Dni
t ,hist

} Jt
i=1
,Dm

t ,hist

]
Modules. We now present details of our MGpi network’s com-

ponents. As shown in Figure 2, the MGpi network consists of three
modules: (a) Social Signal Gating Module: This module aggregates
observations from surrounding agents in the environment into
an internal encoding; (b) Self Short-Term Memory Encoder: This
encodes each agent’s own communication action history; (c) Inter-
action Policy: This module decides the agent’s next action based
on the agent’s encoded observations of its neighbors and of itself.
Specifically, the policy incorporates the outputs of the Social Signal
Gating Module and Self-STM Encoder and generates a probability
vector over the next action of the agent.

3.1 Social Signal Gating Module

Conceptually, the Social Signal Gating (SSG) Module allows the
agent to select only the most relevant social signals coming from
other agents. Computationally, the SSG generates an encoding for
the part of available information that depends on the neighboring
agents (the part that depends on itself is described later). As shown
in blue in Figure 3, SSG consists of three successive computational
units: (1) Social Short-Term Memory Encoder, (2) Kinesic-Proxemic-
Message Gate and (3) Signal Pooling.

Social Short-TermMemoryEncoder (Social-STM). For agent
Am , at any time t , the role of Social-STM is to generate an encoding
for each neighbor Ani ’s social signals. As shown in red in Figure
3, the Social-STM contains two encoders. (1) Non-Verbal Encoder
N encodes a history of relative gaze directions and rotated posi-

tions Pnit ,hist =

[
Gni
t ,hist

Lnit ,hist

]
∈ R4×H (2) Conversational Encoder C

encodes a history of the neighbor’s conversational actions Dni
t ,hist .

Non-Verbal Encoder N
(
Pnit ,hist

)
summarizes Am ’s observations

of neighbor Ani ’s non-verbal communication history. Conversa-
tional EncoderC

(
Dni
t ,hist

)
summarizes Am ’s observations of Ani ’s

past conversation. As shown in Figure 3, N andC are both linearly-
activated gated recurrent units (GRU) [11]. Each encoder learns
the associated temporal dynamics and outputs neighbor ‘messages’
N ∈ R64 and C ∈ R64. Jt pairs of messages are output, one pair
for each neighbor. Next, these messages are weighted by the KPM
gate’s importance score, pooled and passed to the interaction policy.

Kinesic-Proxemic-Message (KPM) gate. The role of the KPM
gate is to decide how much attention to give to each neighboring
agent’s concatenated social signal

[
N

(
Pnit ,hist

)
,C

(
Dni
t ,hist

)]
. The

KPM gateK
(
д(ni←m)
t , l (ni←m)

t

)
is a function of the relative rotated

position and orientation between Am and neighbor Ani at time t .
The KPM gate is a multi-layer perceptron, consisting of two feed-
forward layers, respectively activated by an exponential linear unit
(ELU) [12] and a hard-sigmoid function [14]. For each neighborAni ,
it outputs a scalar ‘importance’ weight K ∈ [0, 1], reflecting the
neighbor’s degree of influence on Am ’s next conversational action.

Signal Pooling. The role of the signal pooling operator is to
aggregate the weighted social signals for all Jt neighbors of Am
at time t . As shown in Figure 3, each neighbor Ani ’s concatenated
social signal is weighted by the KPM gate’s respective importance
score to obtain:

x (ni←m)
t = K

(
д(ni←m)
t , l (ni←m)

t

)
.
[
N

(
Pnit ,hist

)
C
(
Dni
t ,hist

)]
Next, similar to [55], we employ average pooling of neighbors’
weightedmessages. The pooledmessagexmt = (1/Jt )

∑Jt
i=1 x

(ni←m)
t

is passed to the interaction policy π , along with the Self Short-Term
Memory Encoder message (described next), to decide Am ’s next
conversational action.

3.2 Self Short-Term Memory Encoder

(Self-STM)

The role of the Self-STM is to encode the agents recollection of her
own past actions at time t . Similar to the Conversational Encoder,
the Self-STMC ′ encodes a history of the agent Am ’s own conversa-
tional actions Dm

t ,hist . As shown in yellow in Figure 3, C ′(Dm
t ,hist )

is a linearly-activated GRU, yielding a self ‘message’C ′ ∈ R64. This
is concatenated with the pooled neighbor message xmt and passed
to the interaction policy to decide Am ’s next conversational action.

3.3 Interaction Policy

The final module of MGpi is the interaction policy π which, at time
t , decides the agent’s next action based on the agent’s observations
of its neighbors and itself. Formally, the policy π takes as input the
concatenated outputs

[
xmt , C ′

(
Dm
t ,hist

)]
from the SSG Module

and the Self-STM (shown in green in Figures 2, 3). The interaction
policy π

( [
xmt , C ′

(
Dm
t ,hist

)] )
is modeled as two fully-connected

layers, respectively activated by an ELU and soft-max function. It
yields a |U|-dimensional output, representing a probability distri-
bution over the agent Am ’s next conversational action.

4 IMITATION LEARNING AND GROUP

IDENTIFICATION

By modeling the MGpi Network’s modules N , C , G, C ′, and π as
fully-differentiable functions, we ensure that it is trainable end-
to-end via back-propagation, using demonstrations of multiagent
multigroup state and action sequences 1.

1Our code may be found here: https://github.com/navysanghvi/MGpi
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Figure 4: Examples of simulated communications (static two agent case)

Imitation Learning. We perform imitation learning to learn a
policy from several ‘expert’ demonstrations. In this work, we adopt
the approach of behavior cloning, which enablesMGpi to learn from
a set of demonstrationsD directly, via supervised learning without
needing to explicitly learn state transitions or reward functions.
Similar approaches can be found in recent work on multiagent
behavior prediction [1, 45]. We explain how these demonstrations
are obtained in Section 5. Each demonstration D ∈ D is of length
T , and denoted by D = {(St ,U t )}

T
t=1, where St and U t are the

joint state and joint action of the M interacting agents at time t .
Therefore, St =

{
Smt

}M
m=1, andU t =

{
dmt

}M
m=1, where S

m
t and dmt

are individual agent state and action, as described in the notation
in Section 3. Note that St contains no information about the group
each agent belongs to.

Group Assignments. We emphasize again that training of the
MGpiNetwork requires no supervisionwith respect to group assign-
ments. Moreover, we identify these assignments implicitly using
the KPM gate module K . For every agent Am , in order to minimize
the error betweenMGpi’s predicted action d̂

m
t and demonstrated

action dmt , KPM gate K must implicitly learn spatial attention. The
higher the ‘importance’ weight assigned by K to a neighbor’s en-
coded non-verbal and conversational history, the more likely the
neighbor is to be in the same group as the Am , and the greater its
influence on Am ’s resulting policy π .

Group Identification. Once theMGpi network parameters are
learned, we use the KPM gate activations to identify groups. In
order to identify groups, at each time step, we define a distance
D(n, j) between two agentsn, j based on the output of learned gating
function K : D(n, j) = 1− 1

2 (K(д
(j←n), l (j←n))+K(д(n←j), l (n←j))).

The distance is simply computed from the weighted average of the
bi-directional weights computed by the KPM gate. We compose
an affinity matrix of pairwise distances between all agents and
run the DBSCAN clustering algorithm [22] to cluster people into
conversational groups. As mentioned in our Introduction, this is
a relatively simple and straight-forward approach. It is compared
in Section 6 with state-of-the-art approaches based on complex
o-space estimation under assumptions of particular spatial layouts
called F-formations [34].

5 EXPERIMENTS: SOCIAL INTERACTION

SIMULATOR

Conversational Action Data. We aim to learn computational
models that can encode the kinesics and proxemics in group for-
mation and conversational actions (e.g., responding, distraction,
etc) in multiagent multigroup scenarios. Unfortunately, there are
no public datasets of large-scale demonstrations of the physical

Figure 5: Example physical layout [15] and subsequent con-

versational interaction. Arrows represent gaze directions,

head colors indicate conversational action - red: speaking,

yellow: distracted, green: listening.

positions, gaze directions, group assignments, and communication
actions of multiple socially interacting people. Existing datasets
[15, 45, 62] only provide sequences of the physical positions, gaze
directions and group assignments (but annotated only sparsely).
More importantly, no conversational action annotations are provided.
Similarly, there are no social interaction simulators for the kind of
face-to-face behavioral actions of interest to us. In order to evalu-
ate the capacity of our proposed model, we simulate multigroup
human communication, drawing inspiration from several prior
studies and observations of small-group conversational dynamics
[27, 28, 30, 33, 40]. While we simulate sequences of non-verbal
interactions, we point out that the physical layouts of agents are
from real-world datasets.

Initial Agent Layout Data: We experiment with both artifi-
cially constructed and real-world data to form our initial multi-
group layouts - specifically, we use (a) Synthetic [15]2, (b) Coffee
Break [15], and (c) Cocktail Party [62] datasets to provide 100, 119,
and 320 non-identical, independent layouts respectively. Multiple
people (6-12 per layout) are organized into several groups (Fig. 1).

Rules of Interaction: To design multigroup communication
protocols, we draw inspiration from several observations of small-
group conversational dynamics in literature, namely: speaking and
turn-taking, [27], addressing [33], interest in meetings [28, 30], and
the relation of speaking time and dominance [40]. We design per-
group rules for two scenarios: (1) Static scenario, where agents
stay within a social group and do not transition to other groups.
Six conversational actions are consideredUstat = {Speaking, Lis-
tening, Distracted, Strongly Addressing,Weakly Addressing, Respond-
ing}. (2) Dynamic scenario, where agents transition from group
to group, leading to a temporally evolving group assignments. Seven
conversational actions are consideredUdyn = Ustat ∪ {Moving}.

2http://profs.sci.univr.it/~cristanm/ssp/
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Table 1: Results for Static Scenario: Action Prediction (mean average precision), and Test Loss (cross-entropy)

Model (mAP’s) J = 2 4 8 12

Neighbor States Only (NSO) 0.67 0.69 0.70 0.68
Self State Only (SSO) 0.76 0.76 0.76 0.76
Equal Pooling (EQPOOL) 0.87 0.86 0.85 0.85
Social Pooling (SOCPOOL) 0.85 0.84 0.84 0.84

MGpi Network 0.88 0.88 0.89 0.88

Model (cross-entropy losses) J = 2 4 8 12

Neighbor States Only (NSO) 0.99 0.95 0.89 1.00
Self State Only (SSO) 0.29 0.29 0.29 0.29
Equal Pooling (EQPOOL) 0.21 0.22 0.22 0.22
Social Pooling (SOCPOOL) 0.21 0.22 0.22 0.25

MGpi Network 0.20 0.21 0.20 0.21

Table 2: Results for Dynamic Scenario: Action Prediction (mean average precision), and Test Loss (cross-entropy)

Model (mAP’s) J = 2 4 8 12

Neighbor States Only (NSO) 0.57 0.62 0.65 0.64
Self State Only (SSO) 0.78 0.78 0.78 0.78
Equal Pooling (EQPOOL) 0.85 0.86 0.85 0.85
Social Pooling (SOCPOOL) 0.85 0.85 0.86 0.85

MGpi Network 0.87 0.87 0.88 0.88

Model (cross-entropy losses) J = 2 4 8 12

Neighbor States Only (NSO) 1.24 1.12 1.05 1.07
Self State Only (SSO) 0.31 0.31 0.31 0.31
Equal Pooling (EQPOOL) 0.26 0.26 0.25 0.25
Social Pooling (SOCPOOL) 0.27 0.27 0.25 0.26

MGpi Network 0.25 0.23 0.25 0.22

Based on observations from literature described above, we design
per-group probabilistic rules conditioned on a temporal history
of past group actions, to decide the evolution of each agent’s con-
versational actions. The same rules are applied to every group in
the scene. We simulate 600-step interaction episodes starting from
each set of initial layouts ((a),(b) and (c) above) to obtain training
data. Figure 5 shows an example of initial multigroup layout and
subsequent interaction3.

We reiterate: group assignment information is used only for
evaluation and not for supervisory training signals to MGpi. In-
stead, MGpi implicitly identifies groups using the KPM gate. We
hypothesize that our automatic KPM gating mechanism will learn
to discover relevant neighbors in both static and dynamic scenarios.
While we recognize the gap between reality and our simulations,
we believe that, in the absence of existing data or other simulators,
this is a necessary first step towards understanding how to model
multiagent multigroup interaction.

Two-Agent Simulation Example. Using Figure 4, we illus-
trate our rules in a simple two-agent case. In the static scenario,
as shown in Figure 4(a), one agent is Speaking while the other is
Listening. The Listening agent may become Distracted (Figure 4(b))
with a certain probability. After some time steps, the Speaking agent
may start Strongly Addressing the group, to draw back the attention
of the Distracted member (Figure 4(c)). Once the Speaking agent has
spoken for some time, it yields to the other. The other agent is then
Responding followed by Speaking (Figure 4(d)). The Speaking agent
might transition toWeakly Addressing (Figure 4(e)). Additionally,
in a dynamic scenario, a group member who is Distracted may start
Moving toward another group. When a Moving agent joins a new
group, it is welcomed as the next speaker.

Baselines. We now describe experiments and results of apply-
ing theMGpi network to predict communication actions of simu-
lated social agents. We compareMGpi with the following baselines,
including communication models used in prior work:

3Example simulator videos may be found here: https://github.com/navysanghvi/MGpi

Neighbor State Only (NSO):We omit Self-STM Encoder C ′ so
as to only use cues from neighbors. This helps us test whether ob-
servations of the self are necessary for modeling social interaction.

Self State Only (SSO):We omit the Social Signal Gating Module
so as to use cues of the agent’s self alone. This helps us test whether
observations of nearby agents’ social signals are necessary for
modeling social interaction.

Equal Pooling (EQPOOL): Prior work studies the role of message
broadcasting in scenarios where one agent simply averages mes-
sages it receives from other agents [24, 43, 55]. We implement this
message broadcasting baseline by omitting the KPM gate K so that
all neighbor encoded ‘messages’ N andC are equally weighted, such
that x (ni←m)

t =
[
N

(
Pnit ,hist

)
C
(
Dni
t ,hist

)]
. This helps us test if

equal social perception to neighbor agents is sufficient for modeling
social interaction.

Social Pooling (SOCPOOL): We adopt social pooling [1, 37] as a
second message broadcasting baseline. It uses a grid that divides
the 2D world into non-overlapping regions and pools messages
by region. In our experiments, we use a 4 × 4 grid around target
locations, each of size 50× 50 pixels (this configuration yielded best
performance). For each region, we average x (ni←m)

t over neighbors
Ani located in that region. For this baseline, the KPM gate and origi-
nal Signal Pooling Mechanism of MGpi are replaced by an operator
that performs grid-wise pooling and concatenates pooled messages.
We expect this baseline to learn to implicitly gate messages by
down-weighting messages in far away grids.

Training/Evaluation Scheme. Demonstrations of multigroup
communication were collected as described previously. For each
layout in each dataset (Synthetic, Coffee Break and Cocktail Party),
agents changed modes 600 times, i.e., T = 600. We split demon-
strations into two subsets with equal number of layouts from each
dataset, and learned models on one subset to test the other. All
metrics are averaged over the two test subsets for two-fold cross-
validation. All models were trained for 30 epochs with mini-batches
of size 4096, various numbers of agents J ∈ {2, 4, 8, 12}, and a
history window H = 15, and we confirmed that neither further
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training nor smaller mini-batches improved performance. Each
network was trained to minimize categorical cross entropy (also
called negative log likelihood) between predicted probabilities of
actions {{Û t }

T
t=1}D and actual demonstrated actions {{U t }

T
t=1}D

via Adam [35]. We report the cross-entropy loss on testing subsets.
As every model assigns maximum probability to one of six (static
scenario) or seven (dynamic scenario) actions, we also evaluate the
model on mean average precision (mAP) over actions.

Results. Tables 1 and 2 show all model performances in com-
munication action prediction, with H = 15, and various numbers
of neighbors J . We emphasize that J is only fixed during training;
since a single Social-STM Encoder is learned, any number of neigh-
bors may be considered at every time step during testing - in fact,
different numbers of neighbors may be considered for each agent
in the scene.

As hypothesized,MGpi effectively learns protocols in both static
and dynamic scenarios, outperforming strong baselines in terms
of both mean average precision (mAP) and test loss, validating
our choices of various encoding modules and demonstrating each
one’s necessity. Confusion matrices of action prediction for all
networks (omitted here for spcae) show that NSO and SSO work
complementarily: NSO predicts better if agents make strong or weak
addressing decisions by observing others. On the other hand, SSO
performs better when observation of the self is necessary, i.e., in
order to predict if agents keep speaking, listening, are distracted or
responding. MGpi outperforms baselines for most actions, both in
the static and dynamic case, with lower ambiguity.

History = 5 History = 10 History = 15

Figure 6: Social Attention of KPM Gate: For various posi-

tions of a neighbor Ani (e.g., any blue figure) in a fine grid

aroundAm (magenta figure, black circles), warmer colors in-

dicate higher outputs from the learned KPM gate K . Gaze
directions дmt = [−1, 0], дnit = [+1, 0]. History windows

H ∈ {5, 10, 15}.

Learned Social Attention. Figure 6 represents physical con-
straints learned by the MGpi Network’s KPM gate K to judge if
neighbor agentAni is in the same group as agentAm . These visuals
are obtained after training in the static scenario. We visualize the
output from K at various locations around Am while fixing relative
gaze д(ni←m). As expected, we see improved learning with larger
history windows H , and choose H = 15 in our experiments. We
confirm that increasing the history window does not improve per-
formance, suggesting that, once trained on real-world scenarios,
MGpi might be able to reflect the optimal length of short-term mem-
ory exhibited in humans. Also as expected, we see a higher output
from our KPM gate when agents are looking toward each other, i.e.,
when the neighbor Ani is toward the left of the image, looking in
+x direction, i.e., toward Am , who is looking in −x direction.

6 EXPERIMENTS: GROUP IDENTIFICATION

IN REAL DATA

We have demonstrated the effectiveness of the MGpi network in
learning group communication policy with simulated social agents.
We now test the effectiveness of our learned automatic social signal
gating mechanism, the KPM gate, in identifying communication
groups in real-world data [15, 62].

Training MGpi. Similar to Section 5, we train MGpi using a
dataset of simulated interactions from a mixture of initial layouts
from the Synthetic [15], Coffee Break [15] and Cocktail Party [62]
datasets. For the sake of equal representation in our training data,
we use 100 initial layouts from each dataset, for a total of 300 demon-
strations ofT = 600 steps each. Each dataset has several continuous
frames with various numbers of people annotated with positions,
orientations, and group assignments (Fig. 1). MGpi is trained for
20 epochs, in both static and dynamic scenarios, setting J = 12,
which is sufficiently larger than group membership (6 at most) in
the datasets. This ensures that the network must learn to filter
out irrelevant social cues from non-group agents, strengthening
the contribution of the KPM gate to good network performance.
Further, this enhances the chances that KPM gate’s learned social
attention is effective for group identification.

Unsupervised Group Identification. As described in Section
4, onceMGpi is trained, we define a distance D(n, j) between two
agentsn, j based on the output of learned gating functionK :D(n, j) =
1 − 1

2 (K(д
(j←n), l (j←n)) + K(д(n←j), l (n←j))). For every initial lay-

out in real-world datasets Synthetic, Coffee Break, and Cocktail
Party [15, 62], we use this simply computed distance measure to
form an affinity matrix of pairwise distances between agents in the
scene. Using this affinity matrix, we run the DBSCAN clustering
algorithm [22] to cluster people into conversational groups.

Evaluation. Group detection performance is measured by the
F1 score (harmonic mean of Precision and Recall) under the |G |
condition [15, 50]. Per frame, a group is judged to be detected
correctly if all constituent people are grouped into a single cluster.
Precision, Recall and F1 scores are averaged over frames for each
dataset (Synthetic, Coffee Break, Cocktail Party) separately, as well
as over all datasets. Due to the stochastic nature of training MGpi,
we show average and standard deviation of KPM gate’s performance
over 5 training runs.

Comparisons. We define a pose-only baseline, which runs DB-
SCAN using actual euclidean distances between agents in each
scene, scaled by the maximum such distance. Unlike MGpi and
other state-of-the-art methods, this does not use gaze or body ori-
entation information. In addition to this simple baseline, several
state-of-the-art group identificationmethods DS[32], HVFF-ms [50],
GCFF [51], GRUPO [58] are chosen for comparison. These methods
are based on complex o-space estimation under assumptions of par-
ticular spatial layouts called F-formations [34], often using heuristic
parameters. By contrast, KPM gate offers a direct, unsupervised
approach to group identification.

Results. From Table 3 we see that our learning process of the
KPM gate is very stable and has very low standard deviation across
training runs. Our simplemethod takes a fewmiliseconds to run and
could be used for real-time group identification. On the Synthetic
dataset, our approach significantly outperforms all state-of-the-art
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Table 3: Evaluation on group detection: Precision, Recall and F1 scores under the |G | criterion.
State-of-the-art methods DS [32], HVFF-ms [50], GCFF [51], and GRUPO [58] are compared against a simple baseline and the

KPM gate (ours). Standard deviation across 5 training runs are shown in brackets. Due to averaging over a lesser number of

datasets, italicized results for DS and GRUPO cannot be taken into account for a fair comparison

Method⇒ DS HVFF-ms GCFF GRUPO Pose-only KPM gate (ours)

Dataset ⇓ Metric ⇓ Baseline Static Scenario Dynamic Scenario

Synthetic
Precision 0.68 0.72 0.91 N/A 0.88 1.00 (0.000) 1.00 (0.000)
Recall 0.80 0.73 0.91 N/A 0.58 0.96 (0.008) 0.98 (0.000)
F1 Score 0.74 0.73 0.91 N/A 0.70 0.98 (0.004) 0.99 (0.000)

Coffee Break
Precision 0.40 0.40 0.61 N/A 0.53 0.63 (0.004) 0.61 (0.004)
Recall 0.38 0.38 0.64 N/A 0.46 0.63 (0.010) 0.62 (0.005)
F1 Score 0.39 0.39 0.63 N/A 0.49 0.63 (0.005) 0.62 (0.001)

Cocktail Party
Precision N/A 0.30 0.63 0.65 0.29 0.60 (0.004) 0.63 (0.010)
Recall N/A 0.30 0.65 0.63 0.27 0.56 (0.007) 0.55 (0.003)
F1 Score N/A 0.30 0.64 0.64 0.28 0.58 (0.005) 0.59 (0.005)

Overall Mean
Precision 0.54 0.47 0.71 0.65 0.57 0.74 (0.002) 0.75 (0.004)
Recall 0.59 0.47 0.73 0.63 0.44 0.72 (0.008) 0.72 (0.002)
F1 Score 0.56 0.47 0.72 0.64 0.49 0.73 (0.004) 0.73 (0.002)

methods in terms of all metrics. On the Coffee Break dataset, our
approach outperforms other methods in terms of Precision. and
performs as well as the best (GCFF) in terms of F1 score. On the
Cocktail Party dataset, our method performs slightly worse than
the best (GCFF and GRUPO), but better than HVFF-ms. Overall, our
method outperforms all methods in terms of Precision and F1 score,
and performs comparably to the best (GCFF) in terms of Recall.

Discussion. Our work improves over prior work in ways that
are even more significant than our superior overall performance:
(1) Imitation leads to group detection: Most importantly, unlike prior
work, our model is not trained explicitly for group detection. In-
stead, our focus is on behavioral imitation (learning a model that
mimics human interaction). The surprising result is that, after train-
ing for behavior imitation, the output of KPM gate also performs
successfully on the task of group detection.
(2) Data-driven approach, features, parameters: All methods we com-
pare with rely on the assumption that people in groups position
themselves in specific layouts (F-formations) developed in interac-
tional socio-linguistics. By contrast, our models use no prior knowl-
edge about layouts - we learn spatial layouts from data. Methods
like GRUPO [58] use hand-defined parameters, features (e.g, stride,
lambda, gaussian mixtures), and expensive iterative mode-finding
sub-algorithms. By contrast, ourmethod has a single learned feature
(KPM gate) and performs low-cost O(N 2) unsupervised clustering.
GRUPO uses the additional feature of lower body orientation, which
our method does not.

In summary, we have demonstrated state-of-the-art performance
using a simple, direct method without the use of hand-crafted pa-
rameters, features or layout assumptions. The remarkable emer-
gence of social perception in the form of group identification has
been compared with various explicit methods for this task.

7 CONCLUSION

In this work, we presented MGpi, a deep neural network model of
non-verbal and conversational interactions among multiple people

and multiple groups. In the absence of real-world annotated data or
simulators of multigroup face-to-face conversational behavior (e.g.,
speaking, listening, responding), we have designed our own social
interaction simulator. While we consider discrete conversational
actions among agents, we believe this is a necessary first step toward
designing more complex models of real-world multigroup social
intelligence.

We have demonstrated the necessity and efficacy of each in-
terpretable component of MGpi, by evaluating several ablative
baselines on their ability to predict the next appropriate action. We
have demonstrated MGpi’s superior performance in scenarios with
static and dynamically evolving group assignments. We reiterate
that training MGpi requires no explicit group annotations. Instead,
its Kinesic-Proxemic-Message gate (KPM gate) learns to express
social attention based on non-verbal cues, as a result of training for
a socially intelligent policy.

We have demonstrated the remarkable emergence of KPM gate’s
ability to identify groups in real-world data, and achieved state-of-
the-art results with our direct, unsupervised method, without using
complex layout assumptions or hand-defined parameters.

In a dearth of real-world data onmultiagentmultigroup conversa-
tional interactions, valuable future work would involve large-scale
collection of non-verbal and verbal exchanges between multiple
groups of people. The availability of more diverse data of human-
to-human exchange (e.g., body orientation, gestures, facial expres-
sions, etc) would equip us to better design computational models
like MGpi. Furthermore, such data would equip our models to bet-
ter reason about social perception and propriety, by allowing the
training of deep modules for a wider range of classes of behavioral
actions, e.g., illustrators, emblems and attitudes [59].
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