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ABSTRACT

In this work we explore the use of latent representations obtained

from multiple input sensory modalities (such as images or sounds)

in allowing an agent to learn and exploit policies over different sub-

sets of input modalities. We propose a three-stage architecture that

allows a reinforcement learning agent trained over a given sensory

modality, to execute its task on a different sensory modality—for ex-

ample, learning a visual policy over image inputs, and then execute

such policy when only sound inputs are available. We show that

the generalized policies achieve better out-of-the-box performance

when compared to different baselines. Moreover, we show this holds

in different OpenAI gym and video game environments, even when

using different multimodal generative models and reinforcement

learning algorithms.
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1 INTRODUCTION

Recent works have shown how low-dimensional representations

captured by generative models can be successfully exploited in re-

inforcement learning (RL) settings. Among others, these generative

models have been used to learn low-dimensional latent represen-

tations of the state space to improve the learning efficiency of RL

algorithms [6, 19], or to allow the generalization of policies learned

on a source domain to other target domains [4, 5, 7]. The Disen-

tAngled Representation Learning Agent (DARLA) approach [7],

in particular, builds such latent representations using variational
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Figure 1: Concrete scenario where a policy trained over one

inputmodality (game videoframes) is transferred to a differ-

ent modality (game sound).

autoencoder (VAE) models [8, 14], and shows how learning dis-

entangled features of the observed environment can allow an RL

agent to learn a policy robust to shifts in the original domain.

In this work, we explore the application of these latent repre-

sentations in capturing different input sensory modalities to be

considered in the context of RL tasks. We build upon recent work

that extends VAE methods to learn joint distributions of multiple

modalities, by forcing the individual latent representations of each

modality to be similar [16, 18]. These multimodal VAEs allow for

cross-modality inference, replicating more closely what seems to be

the nature of the multimodal representation learning performed by

humans [3, 11]. Inspired by these advances, we explore the impact

of such multimodal latent representations in allowing a reinforce-

ment learning agent to learn and exploit policies over different

input modalities. Among others, we envision scenarios where RL

agents are provided the ability of learning a visual policy (policy

learned over image inputs), and then (re-)using such policy at test

time when only sound inputs are available. For example, in au-

tonomous cars, which are equipped with cameras and microphones,

the sound input could be used to detect the sound of sleeper lines

if the cameras stop working momentarily. Figure 1 instantiates

another application to the case of video games—a policy is learned

over images and then re-used when only the game sounds are

available, i.e., when playing “in the dark”.

To achieve this, we contribute an approach for multimodal trans-

fer reinforcement learning, which effectively allows an RL agent
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Figure 2: Networks of different generative models, highlighting the models’ data encoding (orange) and decoding (green)

pipelines. The similarity constraints imposed by the training procedures are presented in dashed lines. 2a) The VAE model

learns a latent representation of the data distribution of a singlemodality. 2b) TheAVAEmodel extends the VAEs to account for

multiple modalities, allowing for cross-modality inference. 2c) The JMVAE model learns a representation of both modalities,

allowing for both single and joint modality reconstruction, and cross-modality inference.

to learn robust policies over input modalities, achieving better out-

of-the-box performance when compared to different baselines. We

start by first learning a generalized latent space over the different

inputmodalities that the agent has access to. This latent space is con-

structed using a multimodal generative model, allowing the agent

to establish mappings between the different modalities—for exam-

ple, “which sounds do I typically associate with this visual sensory
information”. Then, in the second step, the RL agent learns a policy

directly on top of this latent space, while (possibly) only having ac-

cess to a subset of the input modalities (say, images but not sound).

In practice, this translates in the RL agent learning a policy over a

latent space constructed relying only on some modalities. Finally,

the transfer occurs in the third step, where, at test time, the agent

may have access to a different subset of modalities, but still per-

form the task using the same policy. These results hold consistently

across different OpenAI Gym [2] and Atari-like [1] environments.

This is the case even when using different multimodal generative

models [18] and reinforcement learning algorithms [10, 12].

The third and last step unveils what sets our work apart from

the existing literature. By using (single-modality) VAE methods, the

current state-of-art approaches implicitly assume that the source

and target domains are characterized by similar inputs, such as

raw observations of a camera. In these approaches, the latent space

is used to capture isolated properties (such as colors or shapes)

that may vary throughout the tasks. This is in contrast with our

approach, where the latent space is seen as a mechanism to create

a mapping between different input modalities.

The remainder of the paper is structured as follows. In Section 2

we introduce relevant background and related work on generative

models and RL. Then, in Section 3 we introduce our approach

to multimodal transfer reinforcement learning, and evaluate it in

Section 4. We finish with some final considerations in Section 5.

2 PRELIMINARIES

This section introduces required background on deep generative

models and deep reinforcement learning.

2.1 Deep Generative Models

2.1.1 Variational Autoencoders. Deep generative models have

shown great promise in learning generalized representations of

data. For single-modality data, the VAE is widely used [8]. The VAE

model learns a joint distribution pθ (x ,z) of data x generated by a

latent variable z. Figure 2a depicts this model. The latent variable

is often of lower dimensionality in comparison with the modality

itself, and acts as the representation vector in which data is encoded.

The joint distribution takes the form pθ (x ,z) = pθ (x | z)p(z),
where p(z) (the prior distribution) is often a unitary Gaussian

(z ∼ N(0, I)). The generative distribution pθ (x | z), parameterized

by θ , is usually composed with a simple likelihood term (e.g. Gauss-

ian or Bernoulli).

The training procedure of the VAE model involves the maxi-

mization of the evidence likelihood p(x), by marginalizing over the

latent variable and resorting to an inference network qϕ (z |x) to
approximate the posterior distribution. We obtain a lower-bound

on the log-likelihood of the evidence (ELBO) logp(x) ≥ LVAE(x):

LVAE(x) = λ Eqϕ (z |x ) [logpθ (x |z)] − β KL
[
qϕ (z |x) ∥ p(z)

]
,

where the Kullback-Leibler divergence term KL
[
qϕ (z |x) ∥ p(z)

]
promotes a balance between the latent channel’s capacity and the

encoding process of data. Moreover, in the model’s training pro-

cedure, the hyperparameters λ and β weight the importance of

reconstruction quality and latent space disentanglement, respec-

tively. The optimization of the ELBO is performed resorting to

gradient-based methods.

2.1.2 Multimodal Variational Autoencoders. VAE models have

been extended in order to perform inference across different modal-

ities. The Associative Variational Autoencoder (AVAE) model [18],

depicted in Figure 2b, is able to learn a common latent represen-

tation of two modalities (x ,y). It does so by imposing a similarity

restriction on the separate single-modality latent representations

(zx ,zy ), employing a KL divergence term on the ELBO of the model:

LAVAE(x ,y) = LVAE(x)+LVAE(y)− α KL⋆
[
qϕ (zx |x) ∥ qϕ (zy |y)

]
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where KL⋆ [p ∥ q] is the symmetrical Kullback-Leibler between

two distributions p and q, and α is a constant that weights the

importance of keeping similar latent spaces in the training proce-

dure [18]. We note that each modality is associated with a different

encoder-decoder pair. Moreover, the encoder and the decoder can be

implemented as neural networks following different architectures.

Other models aim at learning a joint distribution of both modal-

ities pθ (x ,y). Examples include the Joint Multimodal Variational

Autoencoder (JMVAE) [16] or the Multi-Modal Variational Autoen-

coder (M
2
VAE) [9]. These generative models are able to build a

representation space of both modalities simultaneously while main-

taining similarity restrictions with the single-modality representa-

tions, as shown in the JMVAE model presented in Figure 2c.

However, a fundamental feature of all multimodal generative

models is the ability to perform cross-modality inference, that is the
ability to input modality-specific data, encode the corresponding

latent representation, and, from that representation, generate data

of a different modality. This is possible due to the forced approxima-

tion of the latent representations of each modality, and the process

follows the orange and green arrows in Figure 2.

2.2 Reinforcement Learning

Reinforcement learning (RL) is a framework for optimizing the be-

haviour of an agent operating in a given environment. This frame-

work is formalized as a Markov decision process (MDP)—a tuple

M = (X,A, P , r ,γ ) that describes a sequential decision problem

under uncertainty. X and A are the state and action spaces, respec-

tively, and both are known by the agent. When the agent takes

an action a ∈ A while in state x ∈ X, the world transitions to

state y ∈ X with probability P(y | x ,a) and the agent receives an

immediate reward r (x ,a). Typically, functions P and r are unknown
to the agent. Finally, the discount factor γ ∈ [0, 1) sets the relative

importance of present and future rewards.

Solving the MDP consists in finding an optimal policy π∗
—a

mapping from states to actions—which ensures that the agent col-

lects as much reward as possible. Such policy can be found from

the optimalQ-function, which is defined recursively for every state

action pair (x ,a) ∈ X × A as

Q∗(x ,a) = r (x ,a) + γ
∑
y∈X

P(y | x ,a) max

a′∈A
Q∗(y,a′).

Multiple methods can be used in computing this function [15], for

example Q-learning [17].

More recently, research has geared towards applying deep learn-

ing methods in RL problems, leading to new methods. For example,

Deep Q Network (DQN) is a variant of the Q-learning algorithm

that uses a deep neural network to parameterize an approxima-

tion of theQ-functionsQ(x ,a;θ ), with parameters θ . DQN assumes

discrete action spaces A, and has been proved suitable for learn-

ing policies that beat Atari games [12]. Continuous action spaces

require specialized algorithms. For example, Deep Deterministic

Policy Gradient (DDPG) is an actor-critic, policy gradient algorithm

that can deal with continuous action spaces, and has been shown

to perform well in complex control tasks [10].

3 MULTIMODAL TRANSFER

REINFORCEMENT LEARNING

Consider an agent facing a sequential decision problem described

as an MDP M = (X,A, P , r ,γ ). This agent is endowed with a set

{I1, I2, . . . , IN } of N different input modalities, which can be used

in perceiving the world and building a possibly partial observation

of the current state x ∈ X. Different modalities may provide more,

or less, perceptual information than others. Some modalities may

be redundant (i.e., provide the same perceptual information) or

complement each other (i.e., jointly provide more information).

Our goal is for the agent to learn a policy while observing only

a subset of input modalities I train, and then use that same policy

when observing a possibly different subset of modalities, I test, with
as minimal performance degradation as possible.

Our approach consists of a three-stages pipeline:

(1) Learn a perceptual model of the world.
(2) Learn to act in the world.
(3) Transfer policy.

We now discuss each step in further detail.

3.1 Learn a perceptual model of the world

Let I denote the Cartesian product of input modalities, I = I1 ×
I2 × · · · × IN . Intuitively, we can think of I as the complete percep-

tual space of the agent. Figure 3a depicts an example on a game,

where the agent can have access to twomodalities, Iimage and Isound,
corresponding to visual and sound information.

We write i to denote an element of I. At each moment t , the
agent may not have access to the complete perception i(t) ∈ I, but

only to a partial view thereof. Following our discussion in Section 1,

we are interested in learning a multimodal latent representation

of the perceptions in I. Such representation amounts to a set of

latent mappings F = {F1, . . . , FL}. Each map Fℓ takes the form

Fℓ : projℓ → Z, where Z is a common latent space and projℓ
projectsI to some subspace ofK modalities,Iℓ = Iℓ1×Iℓ2×. . .×IℓK .
In Figure 3a the set of mappings F is used to compute a latent

representation z from sound and image data.

To learn such mappings, we start by collecting a dataset of M
examples of coupled sensorial information:

D(I) =
{
i(1), . . . , i(M )

}
.

We then follow an unsupervised learning approach, and train a mul-

timodal VAE on dataset D(I) to learn a generalized latent space

over the agent’s input modalities. The latent mappings in F corre-

spond to the encoders of the VAE model, while the decoders can

be seen as a set of inverse latent mappings, F −1 = {F−1
1
, . . . , F−1L }

that allow for modality reconstruction and cross-modality infer-

ence. Figure 3b depicts a concrete example of how the multimodal

latent space can be used to perform cross-modality inference of

sound data given an image input using the modality-specific maps.

The collection of the initial data needed to generate D(I) can

be easier or harder depending on the complexity of the task. In

Section 4 we discuss mechanisms to perform this.
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Figure 3: 3a) Each time step of a game includes visual and sound components that are intrinsically coupled. This coupling can

be encoded in a latent representation using the family of latent maps F . 3b) Depicts how themultimodal latent representation

can be used in inferring the sound associated with a given image, using the image latent map Fimage and sound inverse latent

map F−1
sound

.

3.2 Learn to act in the world

After learning a perceptual model of the world, the agent then

learns how to perform the task. We follow a reinforcement learning

approach to learn an optimal policy for the task described by MDP

M. During this learning phase, we assume the agent may only have

access to a subset of input modalities I train. As a result, during its
interaction with the environment, the agent collects a sequence of

triplets {(
i(0)
train
,a(0), r (0)

)
,
(
i(1)
train
,a(1), r (1)

)
, . . .

}
,

where i(t )
train

, a(t ), r (t ) correspond to the perceptual observations,

action executed, and rewards obtained at timestep t , respectively.
However, our reinforcement learning agent does not use this

sequence of triplets directly. Instead, it pre-processes the perceptual

observations using the previously learned latent maps F to encode

the multimodal latent state at each time step as z(t ) = Ftrain

(
i(t )
train

)
,

where Ftrain ∈ F maps Itrain into Z. In practice, the RL agent uses

a sequence of triplets{(
z(0),a(0), r (0)

)
,
(
z(1),a(1), r (1)

)
, . . .

}
to learn a policy π : Z → A, that maps the latent states to actions.

Any continuous-state space reinforcement learning algorithm can

be used to learn this policy π over the latent states. These latent

states are encoded using the generative model trained in the pre-

vious section, and as such, the weights of this model are frozen

during the RL training.

3.3 Transfer policy

The transfer of policies happens once the agent has learned how to

perceive and act in the world. At this time, we assume the agent may

now have access to a subset of input modalities I test, potentially
different from I train, i.e., the set of modalities it used in learning the

task policy π . As a result, during its interaction with the environ-

ment, at each time step t , the agent will now observe perceptual

information i(t )
test

.

In order to reuse the policy π , the agent starts by pre-processing

this perceptual observation, again using the set of maps F previ-

ously trained, but now generating a latent state z(t ) = Ftest
(
i(t )
test

)
,

where Ftest ∈ F now maps Itest into Z. Since policy π maps the

latent spaceZ to the action space A, it can now be used directly

to select the optimal action at the new state z(t ).
Effectively, the agent is reusing a policy π that was learned over a

(possibly) different set of input modalities, with no additional train-

ing. This corresponds to a zero-shot modality transfer of policies.

Figure 4 summarizes the three-steps pipeline hereby described.

Image

Latent
Representation

z

Sound

Image

Sound

Action

π

F F−1

Figure 4: Summary of the three-steps approach for cross-

modality transfer in reinforcement learning. The first step

learns a perceptual model of the world, described by the la-

tent mappings F (and corresponding inverses), which map

perceptions to a common latent spaceZ. In the second step,

the agent learns a policy π that maps the latent space to ac-

tions, with an RL approach using observations from a given

subset of inputmodalities. The third step concerns the reuse

of the same policy π , assuming new observations from a po-

tentially different subset of modalities. This is possible by

first encoding the new observations in the multimodal la-

tent space.
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Figure 5: Visual and sound perceptual information in the

pendulum scenario. The tip of the pendulum emits a fre-

quency that is received by three microphones placed at the

bottom left and right (bl ,br ) and middle top (mt).

4 EXPERIMENTAL EVALUATION

We evaluate and analyze the performance of our approach on differ-

ent scenarios of increasing complexity, not only on the task but also

on the input modalities. We start by considering a modified version

of the pendulum environment from OpenAI gym, with a simple

sound source. Then, we consider hyperhot, a space invaders-like

game that assesses the performance of our approach in scenarios

with more complex and realistic generation of sounds.

4.1 pendulum

We consider a modified version of the pendulum environment

from OpenAI gym—a classic control problem, where the goal is

to swing the pendulum up so it stays upright. We modify this

environment so that the observations include both an image and

a sound component. For the sound component, we assume that

the tip of the pendulum emits a constant frequency f0, which is

received by a set of S sound receivers {ρ1, . . . , ρS }. Figure 5 depicts
this scenario, where the pendulum and its sound are in red, and the

sound receivers correspond to the circles.

Formally, we let I = Iimage × I
sound

denote the complete per-

ceptual space of the agent. The visual input modality of the agent,

Iimage, consists of the raw image observation of the environment.

On the other hand, the sound input modality, I
sound

, consists of the

frequency and amplitude received by each of the S microphones of

the agent. Moreover, both image and sound observations may be

stacked to account for the dynamics of the scenario.

In this scenario, we assume a simple model for the sound gener-

ation. Specifically, we assume that, at each timestep, the frequency

f ′i heard by each sound receiver ρi follows the Doppler effect. The
Doppler effect measures the change in frequency heard by an ob-

server as it moves towards or away from the source. Slightly abusing

our notation, we let ρi denote the position of sound receiver ρi
and e the position of the sound emitter. Formally,

f ′i =

(
c + Ûρi ·

(
e − ρi

)
c − Ûe ·

(
ρi − e

) )
f0,

where c is the speed of sound and we use the dot notation to repre-

sent velocities. Figure 6a depicts the Doppler effect in the pendulum

scenario.

~v

(a)

~v

(b)

Figure 6: Different sound properties in the pendulum sce-

nario. 6a) Depicts the Doppler effect: as the sound source

moves near (away from) the observer, the arrival time of

the emitted waves decreases (increases), thus increasing (de-

creasing) the frequency. 6b) Depicts how the amplitude of

the sound decreases with the distance from the source. Fad-

ing semi-circles denote smaller intensities.

We then let the amplitude ai heard by receiver ρi follow the

inverse square law

ai =
K

∥e − ρi ∥
2
,

where K is a scaling constant. Figure 6b depicts the inverse square

law applied to the pendulum scenario, showing how the amplitude

of the sound generated decreases with the distance to the source.

We now provide details on how our approach was set up. All

constants and training hyper-parameters used are summarized in

Appendix A.1.

4.1.1 Learn a perceptual model of the world. For this task, we
adopted the AVAE model to learn the family of latent mappings F .

The AVAE was trained over a dataset D(I) withM observations of

images and sounds im =
(
im
image

, im
sound

)
, collected using a random

controller. The random controller proved to be enough to cover the

state space. Before training, the images were preprocessed to black

and white and resized to 60×60 pixels. The sounds were normalized

to the range [0, 1], assuming the minimum and maximum values

found in theM samples.

For the image-specific encoder we adopted an architecture with

two convolutional layers and two fully connected layers. The two

convolutional layers learned 32 and 64 filters, respectively, each

with kernel size 4, stride 2 and padding 1. The two fully connected

layers had 256 neurons each. Swish activations were used [13]. For

the sound-specific encoder, we adopted an architecture with two

fully connected layers, each with 50 neurons. One dimension batch

normalization was used between the two layers. The decoders fol-

lowed similar architectures. The optimization used Adam gradient

with pytorch’s default parameters, and learning rate ηavae.
The AVAE loss function penalized poor reconstruction of the im-

age and sound. Image reconstruction loss was measured by binary

cross entropy scaled by constant λimage, and sound reconstruc-

tion loss was measured by mean squared error scaled by constant

λ
sound

. The prior divergence loss terms were scaled by β , and the

symmetrical KL divergence term by α .

4.1.2 Learn to act in the world. The agent learned how to per-

form the task using the DDPG algorithm, while only having access
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to the image input modality—that is I train = Iimage. These image ob-

servations are encoded into the latent space using Ftrain = Fimage—

the image-specific encoder of the AVAE trained in 4.1.1. Thus, the

agent learns a policy π that maps latent states to actions.

The actor and critic networks consisted of two fully connected

layers of 256 neurons each. The replay buffer was initially filled

with samples obtained using a controller based on the Ornstein-

Uhlenbeck process, with the parameters suggested by Lillicrap et al.

[10]. The Adam gradient was used for optimizing both networks,

with learning rates ηcritic and ηactor.

4.1.3 Transfer policy. We evaluated the performance of the pol-

icy trained in 4.1.2, when the agent only has access to the sound

input modality, i.e., I test = I
sound

.

Given a sound observation, the agent first preprocesses it using

the latent map Ftest = F
sound

, generating a multimodal latent state

z—we denote this process as avaes. The agent then uses the policy

to select the optimal action in this latent state.

As a result, we are measuring the zero-shot modality transfer

performance of policy π—that is, the ability of the agent to per-

form its task while being provided perceptual information that is

completely different from what it saw during the reinforcement

learning step, without any further training. Table 1 summarizes

the transfer performance in terms of average reward observations

throughout an episode of 300 frames. Our approach avaes + ddpg

is compared with two baselines:

• random baseline, which depicts the performance of an un-

trained agent. This effectively simulates the performance

one would expect from a non-transferable policy trained

over image inputs, and later tested over sound inputs

• sound ddpg baseline, a DDPG agent trained directly over

sound inputs (i.e. the sounds correspond to the states). Pro-

vides an estimate on the performance an agent trained di-

rectly over the test input modality may achieve.

From Table 1, we conclude our approach provides the agent

with an out-of-box performance improvement of over 300%, when

compared to the untrained agent (non-transferable policy). It is also

interesting to observe that the difference in performance between

our agent and sound ddpg seems small, supporting our empirical

observation that the transfer policy succeeds very often in the task:

swinging the pole up
1
.

4.2 hyperhot

We consider the hyperhot scenario, a novel top-down shooter

game scenario inspired by the space invaders Atari game
2
, where

the goal of the agent is to shoot the enemies above, while avoiding

their bullets by moving left and right.

Similarly to the pendulum, in this scenario, the observations

of the environment include both image and sound components.

In hyperhot, however, the environmental sound is generated by

multiple entities ei emitting a predefined frequency f
(i)
0

:

1
We also note that the performance achieved by the sound ddpg agent is similar to

that reported in the OpenAI gym leaderboard for the pendulum scenario with state

observations as the position and velocity of the pendulum.

2
We opted to use a custom environment implemented in pygame, since the space

invaders environment in OpenAI gym does not provide access to game state, making

it hard to generate simulated sounds.

Figure 7: Visual and sound perceptual information in thehy-

perhot scenario. All enemies and bullets emit sounds that

are received by four microphones at bottom left and right

(bl ,br ) and paddle left and right (pl ,pr ).

• Left-side enemy units, e0, and right-side enemy units, e1,

emit sounds with frequencies f
(0)

0
and f

(1)

0
, respectively.

• Enemy bullets. e2, emit sounds with frequency f
(2)

0
.

• The agent’s bullets, e3, emit sounds with frequency f
(3)

0
.

The sounds produced by these entities are received by a set of S
sound receivers {ρ1, . . . , ρS }. Figure 7 depicts the scenario, where
the yellow circles are the enemies; the green and blue bullets are

friendly and enemy fire, respectively; the agent is in red; and the

sound receivers correspond to the white circles. The agent is re-

warded for shooting the enemies, with the following reward func-

tion:

r =


10 if all enemies are killed, i.e., win
−1 if player is killed or time is up, i.e., lose
0 otherwise

The environment resets whenever the agent collects a non-zero

reward, be it due to winning or losing the game.

We let the perceptual space of the agent be as I = Iimage× Isound,
with the visual input modality of the agent, Ivision, consisting in the

raw image observation of the environment. The sound, however,

is generated in a more complex and realistic way. We model the

sinusoidal wave of each sound-emitter ei considering its specific fre-

quency f
(i)
0

and amplitude a
(i)
0
. At every frame, we take the sound

waves of every emitter present in the screen, considering their dis-

tance to each sound receiver in S . The sound wave generated by

Table 1: Zero-shot performance of the policy trained over

the image input modality, when using sound inputs only.

Presents the average reward per episode, over 75 episodes.

Results averaged over 10 randomly seeded runs.

pendulum

Rewards

Approach avg ± std

avaes + ddpg −2.00 ± 0.97

random −6.30 ± 0.29

sound ddpg −1.41 ± 0.91
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emitter ei is observed by receiver ρ j as

a(i) = a
(i)
0

exp

(
−δ ∥ei − ρ j ∥

2

)
,

where δ is a scaling constant, ei and ρ j denote the positions of
sound emmitter ei and sound receiver ρ j , respectively. We generate

each sinusoidal sound wave for a total of 1047 discrete time steps,

considering an audio sample rate of 31 400 Hz and a video frame-

rate of 30 fps. As such, each sinusoidal sound wave represents the

sound heard for the duration of a single video-frame of the game

(similarly to what is performed in Atari videogames). Finally, for

each sound receiver, we sum all emitted waves and encode the

amplitude values in 16-bit audio depth, considering a maximum

amplitude value of aM and a minimum value of −aM .

We now provide details on how our approach was set up. All

constants and training hyper-parameters used are in Appendix A.1.

4.2.1 Learn a perceptual model of the world. We trained anAVAE

model to learn the family of latent mapping F , with a datasetD(I)

withM observations of images and sounds collected using a random

controller. Before training, the images were preprocessed to black

and white and resized to 80 × 80 pixels, and the sounds normalized

to the range [0, 1].

For the image-specific encoder we adopted an architecture with

three convolutional layers and two fully connected layers. The

three convolutional layers learned 32, 64 and 64 filters, respectively.

The filters were parameterized by kernel sizes 8, 4 and 2; strides

4, 2 and 1; and paddings 2, 1 and 1. ReLU activations were used

throughout. For the sound-specific component, we used two fully

connected layers of 512 neurons each, with one dimension batch

normalization between the layers. The decoders followed similar

architectures. The increase in size of these layers when compared

to the pendulum task is due to more complex nature of the sounds

considered in this scenario. The optimizer and loss function were

configured in the same way as in the previous scenario.

4.2.2 Learn to act in the world. The agent learned how to play

the game using the DQN algorithm, while having access only to

image observations, I train = Iimage, corresponding to the video

game frames. The image observations are encoded into the latent

space using Ftrain = Fimage—the image-specific encoder of the

AVAE model trained in the previous step. As such, the learned

policy maps these latent states to actions.

The policy and target networks consisted of two fully connected

layers of 512 neurons each. We adopted a decaying ϵ-greedy policy.

4.2.3 Transfer policy. We then evaluated the performance of the

policy learned with image inputs, when the agent only has access to

the sound modality, i.e., I test = I
sound

. Given a sound observation,

the agent preprocesses it using the latent map Ftest = F
sound

, thus

generating a multimodal latent state z—this process is denoted as

avaes. The agent then uses the policy to select the optimal action

in this latent state.

Table 2 summarizes the transfer performance of the policy pro-

duced by our approach avaes + dqn, in terms of average discounted

rewards and game win rates over 100 episodes. We compare the

performance of our approach with additional baselines:

• avaev + dqn, an agent similar to ours, but which encodes the

latent space with visual observations (as opposed to sounds).

• image dqn, a DQN agent trained directly over visual inputs.

Considering the results in Table 2, we observe:

• A considerable performance improvement of our approach

over the untrained agent. The average discounted reward of

the random baseline is negative, meaning this agent tends

to get shot often, and rather quickly. This is in contrast with

the positive rewards achieved by our approach. Moreover,

the win rates achieved by our approach surpass those of the

untrained agent by 5-fold.

• A performance comparable to that of the agent trained di-

rectly on the sound, sound dqn. In fact, the average dis-

counted rewards achieved by our approach are slightly high-

er. However, the sound dqn agent followed the same DQN

architecture and number of training steps used in our ap-

proach. It is plausible that with further parameter tuning,

the sound dqn agent could achieve better performances.

• The approach that could fine-tune to the most informative

perceptual modality, image dqn, achieved the highest perfor-

mances. While achieving lower performances, our approach

is the only able to perform cross-modality policy transfer,

that is, being able to reuse a policy trained on a different

modality. One may argue that this trade-off is worthwhile.

The DQN networks of all approaches followed similar architectures

and were trained for the same number of iterations.

4.3 Discussion

The experimental evaluation performed shows the efficacy and

applicability of our approach. The results show that this approach

effectively enables an agent to learn and exploit policies over dif-

ferent subsets of input modalities. This sets our work apart from

existing ideas in the literature. For example, DARLA follows a simi-

lar three-stages architecture to allow RL agents to learn policies that

are robust to some shifts in the original domains [7]. However, that

approach implicitly assumes that the source and target domains

are characterized by similar inputs, such as raw observations of a

camera. This is in contrast with our work, which allows agents to

transfer policies across different input modalities.

Table 2: Zero-shot performance of the policy trained over

the imagemodality, when using sound inputs only. Provides

a comparison with different baselines. Middle column is the

average discounted reward per episode. Right column is the

win rate of the agent. Both averaged over 100 episodes. Re-

sults averaged over 10 randomly seeded runs.

hyperhot

Rewards Win pct

Approach avg ± std avg ± std

avaes + dqn 0.15 ± 0.16 36.10 ± 10.38

avaev + dqn 0.21 ± 0.11 43.20 ± 7.03

random −0.33 ± 0.16 8.30 ± 5.75

sound dqn 0.10 ± 0.22 27.30 ± 21.44

image dqn 1.54 ± 0.20 75.00 ± 5.33
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Our approach achieves this by first learning a shared latent

representation that captures the different input modalities. In our

experimental evaluation, for this first step, we used the AVAEmodel,

which approximates modality-specific latent representations, as

discussed in Section 3.1. This model is well-suited to the scenarios

considered, since these focused on the transfer of policies trained

and reused over distinct input modalities. We envision other sce-

narios where training could potentially take into account multiple

input modalities at the same time. Our approach supports these

scenarios as well, when considering a generative model such as

JMVAE [16], which can learn joint modality distributions and en-

code/decode both modalities simultaneously.

Furthermore, our approach also supports scenarios where the

agent has access to more than two input modalities. The AVAE

model can be extended to approximate additional modalities, by

introducing extra loss terms that compute the divergence of the

new modality specific latent spaces. However, it may be benefi-

cial to employ generative models specialized on larger number of

modalities, such as the M
2
VAE [9].

5 CONCLUSIONS

In this paper we explored the use of multimodal latent representa-

tions to capture multiple input modalities, in order to allow agents

to learn and reuse policies over different modalities. We were partic-

ularly motivated by scenarios of RL agents that learn visual policies

to perform their tasks, and which afterwards, at test time, may only

have access to sound inputs.

To this end, we formalized themultimodal transfer reinforcement

learning problem, and contributed a three stages approach that

effectively allows RL agents to learn robust policies over input

modalities. The first step builds upon recent advances inmultimodal

variational autoencoders, to create a generalized latent space that

captures the dependencies between the different input modalities

of the agent, allowing for cross-modality inference. In the second

step, the agent learns how to perform its task over this latent space.

During this training step, the agent may only have access to a

subset of input modalities, with the latent space being encoded

accordingly. Finally, at test time, the agent may execute its task

while having access to a possibly different subset of modalities.

We assessed the applicability and efficacy of our approach in dif-

ferent domains of increasing complexity. We extended well-known

scenarios in the reinforcement learning literature to include, both

the typical raw image observations, but also the novel sound com-

ponents. The results show that the policies learned by our approach

were robust to these different input modalities, effectively enabling

reinforcement learning agents to play games in the dark.
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A APPENDIX

A.1 Constants and hyper-parameters

f0 440.0Hz

K 1.0

scenario c 20.0

sound receivers {lb, rb,mt}
frame stack 2

latent space 10

λimage, λsound, β ,α 1.0

avae batch size 128

epochs 500

ηavae 1e−3

M 20 000

batch size 128

ηactor, ηcritic 1e−4, 1e−3

ddpg γ 0.99

max episode length 300 frames

replay buffer 25 000

max frames 150 000

τ 1e−3

Table 3: Constants used in the pendulum scenario.

f 0
0
, f 1

0
, f 2

0
, f 3

0
(261, 329, 392, 466) Hz

a0
0
, a1

0
, a2

0
, a3

0
, aM 1.0

scenario δ 0.025

c 20.0

sound receivers {lb, rb,pl ,pr }
frame stack 2

latent space 40

λimage 0.02

λ
sound

0.015

β 1e−5

avae α 0.05

batch size 128

epochs 250

ηavae 1e−3

M 32 000

batch size 128

η 1e−5

dqn γ 0.99

max episode length 450 frames

replay buffer 350 000

max frames 1 750 000

Table 4: Constants used in hyperhot scenario.
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