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ABSTRACT
In this paper, we design differentially private algorithms for the

contextual dynamic pricing problem. In contextual dynamic pric-

ing, the seller sells heterogeneous products to buyers that arrive

sequentially. At each time step, a buyer arrives with interests in pur-

chasing a product. Each product is represented by a set of product

features, i.e., the context, and the buyer’s valuation for the prod-

uct is a function of the product features and the buyer’s private

preferences. The goal of contextual dynamic pricing is to adjust

the price over time to learn how to set the optimal price for the

population from interacting with individual buyers. In the mean-

time, this learning process creates potential privacy concerns for

individual buyers. A third-party agent might be able to infer the in-

formation of individual buyers from how the prices change after the

participation of a particular buyer. In this work, using the notion of

differential privacy as our privacy measure, we explore the design

of differentially private dynamic pricing algorithms. The goal is to

maximize the seller’s payoff, or equivalently, minimize the regret
with respect to the optimal policy when knowing the distribution

of buyers’ preferences while ensuring the amount of privacy leak

of individual buyers’ valuations is bounded. We present an algo-

rithm that is ϵ-differentially private and achieves expected regret

˜O
(√dT

ϵ
)
, where d is the dimension of product features andT is the

time horizon.
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1 INTRODUCTION
Consider the pricing problem for an online retailer with products

to sell. If the retailer/seller has full information about the demand

curve, i.e., the distribution of buyers’ valuations for her product,

she
1
can calculate the optimal price that maximizes her own payoff

(e.g., the price multiplied by the number of products sold). However,

the information about the demand curve is often unknown a priori,

and online retailers increasingly resort to adopt dynamic pricing
strategies, which adaptively adjust prices to simultaneously gain

information about the demand curve and maximize her own payoff.

1
In this paper, we use “she” to address the seller/retailer and “he” to address the buyer.
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For example, Amazon.com has been known to dynamically adjust

the prices of their products to maximize the revenue [10].

In the setup of (non-contextual) dynamic pricing, at each time

step, the seller posts a price to an arriving buyer with unknown

valuation. If the buyer’s valuation is higher than the posted price, a

sale occurs and the seller collects the payment; otherwise, no sale

occurs. The goal of the seller is to design a pricing strategy, that

takes into account of the interactions of past buyers, to optimize her

own payoff. This dynamic pricing problem has been well studied in

the literature [4, 7, 22]. In general, it is possible to design a pricing

strategy that converges to the optimal price as if the demand curve

is known. This implies that, the seller can aggregate the information

collected from individual buyers and learn the optimal price for the

population.

On the other hand, since prices are updated based on the in-

formation of past buyers, it leads to potential privacy concern for

individual buyers. A third-party agent, even without observing

whether a sale occurs or not, might be able to infer the valuations

of individual buyers (which represent buyers’ private personal pref-

erences or financial status) from how the prices change after the

participation of individual buyers. Tomake things even worse, users

are often interacting with many online retailers and participating

in many online platforms, all this data about individuals could add

up and lead to significant privacy leak. To address this issue, we

adopt the notion of differential privacy [9, 13, 14], which has been

the gold standard notion both in academia and in industry, to for-

mally quantify the amount of privacy leak in the pricing strategy.

Intuitively speaking, a common approach to improve privacy is to

add noise in the data. However, this would simultaneously lead to

the decrease of utility. The focus of differential privacy research

have been to formalize the trade-off of privacy and utility.

In this work, we explore the above trade-off of privacy and utility

in a contextual dynamic pricing problem. In contextual dynamic

pricing, the seller has heterogeneous products to sell. Each prod-

uct is represented by a set of public product features. The buyer’s

valuation for a product is a function of the public product feature

and the buyer’s private preferences. When each buyer arrives with

interests in a certain product (the product features is the “context”),

the seller posts a price for the product. The goal of the seller is to

design a dynamic pricing policy, that takes into account interac-

tions of all past buyers, such that the policy (1) maximizes her own

payoff, or equivalently, minimizes the regret with respect to the op-

timal policy when knowing the distribution of buyers’ preferences

while (2) ensuring the amount of privacy leak of individual buyers’

valuations is bounded.

Our main result is a differentially private contextual dynamic

pricing algorithm which has two desired properties. First, it is ϵ-
differentially private, i.e., an adversary cannot learn too much about

any individual buyer’s information from observing the output of

the pricing algorithm. Second, the algorithm achieves a regret of
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˜O(
√
dT /ϵ),2 where d is the dimension of product features and T is

the time horizon.

To summarize our approaches, we first approximate the contex-

tual dynamic pricing problem as a full information online learning

problem [1, 20, 21, 24]. In order to achieve the requirement of differ-

entially privacy, we leverage the techniques of differentially private

online learning [26] and Tree-Based Aggregation Protocol [9, 14].

However, directly applying their methods does not work in our

setting, since our problem leads to non-convex loss functions due

to the nature of binary feedback (sale/no sale). To get around this

issue, we propose an alternative problem formulation and show

how to connect the results of the alternative formulation to our

focused contextual dynamic pricing problem. Lastly, we analyze

the privacy and regret guarantees of our approaches. To the best of

our knowledge, our work is the first to address the privacy issues

in dynamic pricing problems.

2 RELATEDWORK

Dynamic Pricing. The dynamic-pricing literature studies pricing

algorithms in settings when the demand function is unknown [2, 6,

7, 22, 27]. An early work in non-parametric setting is by Kleinberg

and Leighton [22], where they model dynamic pricing problems as

multi-armed bandit settings where each arm corresponds to a (dis-

cretized) posted price. They propose an algorithm which achieves

O(
√
T ) regret where T denotes the length of the learning horizon.

Another natural approach is to model the uncertainty about buy-

ers’ valuations using a set of parameters, and then estimate those

parameters using classical inference methods such as maximum

likelihood or least square estimation [5, 7, 12]. Our work is similar

to this line of work, in which we assume a parametric model for buy-

ers’ valuations and apply inferences. More specifically, the setting

we consider builds onmodels with features/covariates [1, 20, 21, 24],

where the buyer’s context-based valuation is a linear function of

unknown parameter, public product features, and the buyer’s indi-

vidual parameter (i.e., preference shock). A regret bound of O(
√
T )

is achieved in several recent works [7, 20, 21]. Other closely related

work to ours is by Cohen et al. [11] and Lobel et al. [23]. In their

setting, the buyers are homogeneous and the valuation functions

are deterministic functions, while we model heterogeneous buyers

through the notion of preference shocks. Our work differs from

the dynamic pricing literature through explicitly addressing the

privacy concerns. To our knowledge, we are the first to incorporate

the notion of differential privacy in dynamic pricing.

Differential Private Online Learning. Differential privacy [13]

is a rigorous notion requiring that changing the data of only a

single individual, or alternatively, of only a single attribute of an

individual, has a negligible effect on computations done using this

data. In online settings, while it seems challenging to ensure pri-

vacy guarantees since a change in a single time step may affect the

outputs at all future steps, is has has been shown to be achievable

with elegant designs. This problem was first considered by Dwork

et al. [14] and Chan et al. [9], where the authors introduced the

tree-based aggregation protocol for releasing the cumulative sums

2
We use

˜O(·) to disregard the logarithmic factors.

of vectors in a differentially private manner, while ensuring that

the total amount of noise added for each cumulative sum is only

poly-logarithmically dependent on the number of vectors. Jain et al.

[19] considered a more general problem. The authors developed

algorithms to preserve (ϵ,δ )-differential privacy and achieve regret

bounds of the order
˜O( 1ϵ
√
T log( 1δ )). Our technique is related to the

one by Thakurta and Smith [26], which provided a modified Follow-

the-Approximate-Leader template for online convex optimization

that achieves a regret rate
˜O(

√
dT
ϵ ). Moreover, Cardoso and Cum-

mings [8] study algorithms for online submodular minimization

that preserve differential privacy under full information feedback

and bandit feedback. Another close antecedent to our setting is a

recent work by Shariff and Sheffet [25], where the authors study

how to achieve a different privacy notion, joint differential privacy

in contextual bandits, they design a private linear-UCB algorithm

via the tree-based technique to ensure privacy. Our work differs

from this line of work in that our setting exhibit specific feedback

structure (i.e., the binary feedback) and their algorithm cannot be

applied.

3 PRELIMINARIES AND FRAMEWORK

Notations. For any two vectors a,b ∈ Rd , we use ⟨a,b⟩ to denote

their inner product. For a vectorv , ∥v ∥p is the Lp -norm ofv , i.e.,

∥v ∥p = (
∑
i |vi |

p )1/p . When the subscript p is omitted, it is the

L2-norm. Suppose that f : X → R is a real-valued function whose

domain is an arbitrary set X. Let supp(f ) be the support of f , i.e.,
the set of points in X where f is non-zero.

3.1 Contextual dynamic pricing framework
Consider a pricing problem faced by a seller with heterogeneous

products to sell. At each time period t = 1, 2, ...,T , a buyer arrives
with interests in purchasing a product. We assume the buyer arrival

is stochastic and randomly drawn from some unknown distribution.

The context sequence could be adversarial. Each product is repre-

sented by a vector of features (i.e., context) denoted by xt ∈ Rd ,
which is publicly observable. The buyer’s valuation for the product

is a function of the product features and his own private preference.

To simplify the presentation, we start by assuming the buyer’s

value of a product is a linear function of the product features x and

the buyer’s preference θ . We discuss the generalization to other

function forms in Section 6.

In particular, we follow the standard styled formulation in contex-

tual dynamic pricing [1, 11, 21, 24]. We write the valuation function

as follows:

vt (xt ) = ⟨xt ,θ⟩ + zt , (1)

where θ is a population-wide parameter unknown to the seller, and

zt is a scalar random variable and is called preference shocks for
individual buyer at time t .

Preference shocks are assumed to be i.i.d. drawn from a zero-

mean distribution over R.3 We denote its cumulative distribution

function by F , and the corresponding density by f (z) = F ′(z).

3
The assumption of zero-mean distribution is without loss of generality. If the mean

of the zt distribution is non-zero, we can add the bias term as the d + 1-th dimension

of θ and make the distribution of zt to be 0.
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When it is clear from the context, we omit the subscript and denote

vt (xt ) as v(xt ) or vt . Feature vectors xt s are observable, while

model parameter θ is a-priori unknown to the seller. Therefore, the

buyer’s valuation v(xt ) is also unknown to the seller.

At each period t , the seller posts a price pt . If pt ≤ v(xt ), a sale
occurs, and the seller collects revenue pt . If the price is set higher
than the market value, pt ≥ v(xt ), no sale occurs and no revenue

is generated. The goal of the seller is to design a pricing policy that

maximizes the collected revenue. Note that at each step, the seller

has access to the previous feedbacks (sale/no sale) from the buyer

and can use this information to adaptively adjust the current price.

Technical assumptions.Without loss of generality, we normalize

xt and θ such that ∥xt ∥ ≤ 1, and X = {x ∈ Rd : ∥x ∥ ≤ 1} and

∥θ ∥ ≤ W for a known constantW . We denote by Θ the set of

feasible parameters, namely, Θ = {θ ∈ Rd : ∥θ ∥ ≤ W }. We now

make the following assumptions on the distribution of F :

Assumption 1. The function F (v) is strictly increasing. Further,

F (v) and 1 − F (v) are log-concave in v .

Log-concavity is a common modeling choice in the economics

literature [2, 3]. The assumption holds with several common prob-

ability distributions including normal, uniform, and (truncated)

Laplace, exponential, and logistic distributions.

Remark 1. Note that if the density f (v) is symmetric and the

distribution F (v) is log-concave, then 1 − F (v) is also log-concave.

Moreover, if density f (v) is log-concave, the distribution F (v) is
also log-concave. This implies that Assumption 1 is satisfied when

density f is symmetric and log-concave.

Remark 2. If a distribution is a Monotone Hazard Rate (MHR)

distribution, i.e.,
1−F (v)
f (v) is decreasing in v , then 1 − F (v) is log-

concave. This implies that all MHR and symmetric distributions

satisfy Assumption 1.

3.2 Objectives
Our goal is to design a dynamic pricing algorithm that (1) optimizes

the seller’s utility, i.e., the total revenue and (2) keeps individual

buyers’ valuations private. We use the notion of differential privacy

as the measure for the privacy, and use the notion of regret to

measure the seller’s utility.

Differential privacy.We follow the standard notion of differential

privacy and define the privacy notion below.

Definition 1 ((ϵ,δ )-differential privacy [13]). A pricing policy A

maps a sequence of preference shocks Z = {z1, ..., zT } and an

arbitrary (adversarial) sequence of observed product features X =
{x1, ...,xT } to a sequence of prices P = {p2, ...,pT } ∈ RT−1, i.e.,
A(X,Z) = P. A randomized pricing policy A is (ϵ,δ )-differentially
private if for any two neighboring preference shock sequences Z
and Z′ that differ in at most one entry, and for all P ⊂ RT−1, it
holds:

Pr(A(X,Z) ∈ P) ≤ eϵ Pr(A(X,Z′) ∈ P) + δ . (2)

If δ = 0, we say that A is ϵ-differentially private.

Intuitively, the above notion of differential privacy requires that

changing any single zt does not change the probability distribution

of the price sequence significantly. Hence, the output of pricing

policy A will only reveal limited information about the buyer no

matter he participates or not.

Seller’s regret. The seller’s utility is measured using regret, which

is the maximum expected revenue loss relative to an oracle optimal

policy that knows the hidden model parameter θ in hindsight. Note

that the expected revenue from a posted price p is given by:

p · Pr(vt ≥ p) = p(1 − F (p − xt · θ )).

Using the first order condition, we can obtain the optimal price

p∗(xt ):

p∗(xt ) =
1 − F

(
p∗(xt ) − ⟨xt ,θ⟩

)
f
(
p∗(xt ) − ⟨xt ,θ⟩

) . (3)

In the following discussion, we use p∗t to denote p∗t (xt ) to simplify

the presentation. Define the buyer’s virtual valuation Φ(v) = v −
(1 − F (v))/f (v) and define the optimal pricing function Ψ(v) =
v + Φ−1(−v). By Assumption 1, Φ is injective and hence Ψ is well-

defined. Moreover, it is easy to verify that Ψ is non-negative. Thus,

the optimal price can be defined as follows:

p∗t = Ψ(⟨xt ,θ⟩). (4)

We now formally define the regret of a seller’s pricing policy.

LetA be the seller’s policy that sets price pt at period t , and pt can
depend on the history of events up to time t . The worst-case regret
is defined as:

RegretA (T ) = sup

X,θ

T∑
t=1

(
p∗t I(vt ≥ p∗t ) − pt I(vt ≥ pt )

)
. (5)

Note that the dependence of X,θ are encoded in vt and pt .

4 OUR ALGORITHM
In this section we present our private pricing algorithm, which is

differentially private and achieves regret of the same order com-

pared to the non-private pricing policy. Our algorithm builds on

techniques used in online optimization and a tree-based privacy

algorithm for continual observations. We first briefly review the

techniques we use.

Private follow the approximate leader. The contextual dynamic

pricing problem can be casted as online learning problems with

the goal of optimizing certain functions, as will be defined later.

[26] have developed Private Follow The Approximate Leader (PFTAL),
a differentially private algorithm for online convex optimization,

which takes as input a sequence of convex functions and outputs a

sequence of points that minimizes regret. PFTAL is also shown to

satisfy the predefined privacy guarantee simultaneously.

PFTAL is adapted from a subgradient descent type algorithm,

Follow The Approximate Leader (FTAL) [18], a variant of the Fol-

low The Regularized Leader algorithm. Compared to the standard

Follow The Regularized Leader algorithm, FTAL uses quadratic ap-

proximations
˜f1, ..., ˜fT to compute the subgradient updates instead

of the functions f1, ..., fT . PFTAL then ensures the privacy guaran-

tee by adopting a tree-based aggregation protocol for releasing the

cumulative sums of gradients in a differentially private manner.
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Tree-Based Aggregation Protocol. Our notion of privacy is for

continual observations, which was first introduced by [14]. The

tree-based aggregation protocol, proposed by [9], which we refer

as TBAP, was designed to ensure a more efficient accuracy-privacy

trade-off. The protocol maintains a binary tree whose T leaves

correspond to theT entries in the input sequence. Each node in the

tree maintains a noisy (privacy-preserving) sum of the input entries

in its subtree – by construction, each input affects at most only

log(T ) nodes of the tree. The sum at each internal node is (ϵ/log(T ))-
differentially private. By the composition property of differential

privacy [13], the entire tree is thus ϵ-differentially private. This

protocol is the key ingredient of a variety of works that deal with

privacy in online settings, including the above mentioned online

convex optimization [19, 26], online submodular optimization [8]

and contextual bandits [25].

4.1 Our private pricing algorithm
In this section, we present our algorithm which is built on PFTAL.

We first note that we cannot directly apply the general framework

of online learning algorithms, including FTAL, to our problem. In

online learning algorithms, it is assumed that (i) the loss function

ℓt at every time step is convex, and (ii) the first-order information

of the loss functions are available.
4
However, to cast our dynamic

pricing problem as an online learning problem, from our regret

notion in Equation (5), the loss function ℓt is the negative of the

revenue obtained in time period t , i.e., ℓt = −pt I(pt ≥ vt ). It
is easy to see that the loss functions are not convex. Moreover,

the first order information of previous loss functions depend on

the corresponding realized valuations v1, ...,vt−1, which are never

revealed to the seller.

To address this challenge, below we show that instead of directly

formulating the dynamic pricing problem as a online learning prob-

lem with non-convex loss functions, we can define an alternative

problem with convex loss. Furthermore, as we will prove later in

Section 5, the solution for the alternative online learning problem

leads to a sublinear regret in the dynamic pricing problem.

An alternative online learning formulation.We now describe

the intuitions in formulating the alternative online learning prob-

lem. As we can see in Equation (4), computing the optimal price

can be reduced to obtaining an accurate estimate of the hidden

parameter θ . Moreover, we can update the estimate on θ through

maximum likelihood estimations using only the sale outcomes from

the previous rounds. Now consider the online learning problem

with loss function being the negative of the log-likelihood function

(as a function of θ instead of v):

ℓt (θ ) = −I{yt = 1} log(1 − F (pt − ⟨xt ,θ⟩))−

I{yt = 0} log(F (pt − ⟨xt ,θ⟩)),

whereyt ∈ {0, 1} indicates whether there is a sale with posted price
pt at time t :yt = I{pt ≥ vt }. With this definition, by Assumption 1,

the loss functions are convex in θ , and the first-order information

can also be computed. Therefore, we can apply standard online

learning algorithms on this alternative online learning problem.

4
Or one can query the value of function and then further compute the gradient

information.

Note that the solution of this alternative online learning problem

does not trivially imply a sublinear regret in the dynamic pricing

problem with regret refined in Equation (5). In Section 5, we show

how to construct their connections via a series of inequalities.

Differentially private solutions. Belowwe describe how to solve

the alternative online learning problem and how to obtain a differ-

entially private dynamic pricing algorithm from the solutions by

borrowing ideas from PFATL. The steps are summarized in Algo-

rithm 1.

We first regularize the loss function to ensure strong convexity.

Define the following H -regularized loss function,

ℓHt (θ ) = ℓt (θ ) +
H

2

∥θ ∥2, (6)

whereH a parameter that we will tune to optimize the regret bound.

Each ℓHt is now H -strongly convex.

The key step of the algorithm is to use the quadratic approxima-

tions
˜ℓH
1
, . . . , ˜ℓHT of the loss functions ℓH

1
, . . . , ℓHT . At every time

step, the algorithm will generate a vector θ̂t ∈ Rd as the estimate

of θ which will be further used to compute the price pt according

to Equation (4). Let θ̂1, . . . , θ̂t be the sequence of estimates up to

time t . With strong convexity of ℓHt at hand, we can then lower

bound ℓHt on every point in Θ by the following paraboloid:

˜ℓHt = ℓ
H
t (θ̂t ) + ⟨∇ℓ

H
t (θ̂t ),θ − θ̂t ⟩ +

H

2

∥θ − θ̂t ∥
2. (7)

Note that by approximation,
˜ℓHt and ℓHt have the same value and

gradient at θ̂t .

We will update
˜θt according to the “leader" of the previous cu-

mulative losses: let
˜θt+1 = argminθ ∈Θ

∑t
τ=1

˜ℓHτ (θ ) be the “leader”

of previous loss functions
˜ℓH
1
, . . . , ˜ℓHt . Ignoring the constant term,

we can write
˜θt+1 as follows:

˜θt+1 = argmin

θ ∈Θ
⟨

t∑
τ=1
∇ℓHτ (θ̂τ ),θ⟩ +

H

2

t∑
τ=1
∥θ − θ̂τ ∥

2.

Since the optimal pricing function in Equation (4) is injective, to

ensure the privacy of pt w.r.t. zt , by the immunity of differential pri-

vacy to any post-processing computations[15], it suffices to ensure

the privacy w.r.t. the estimate θ̂t , which is completely determined

by the cumulative gradient informationωt =
∑t
τ=1 ∇ℓ

H
τ (θ̂t ).

5

Then the problem is reduced to compute an well-approximated

private version ω̂t for ωt while still maintaining accuracy. To

achieve this, we utilize Tree-Based Aggregation Protocol to com-

pute ω̂t . The details of such private aggregation protocol is given

in Appendix A.

Armed with the private ω̂t , we can compute the private version

θ̂t for ˜θt as follows:

θ̂t+1 = argmin

θ ∈Θ
⟨

t∑
τ=1

ω̂t ,θ⟩ +
H

2

t∑
τ=1
∥θ − θ̂τ ∥

2. (8)

The pricept+1 will be computed according to optimal price function

(4) based on current parameter estimate θ̂t+1.

5
Without additional knowledge about the private data, the computations performed

on the output of a differentially private algorithm are also differentially private. Let

A : D → R be (ϵ, δ )-differentially private, and let f : R → R′ be an arbitrary

randomized function. Then f ◦ A : D → R′ is (ϵ, δ )-differentially private.
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Algorithm 1 Private Pricing Algorithm

1: Input: Set Θ ⊆ Rd , pricing function Ψ(·), privacy constraint ϵ ,
strong convexity parameter H , Lipschitz parameter uF .

2: Input: Product features {xt }t ≥1 (arrivals in an online se-

quence).

3: At t = 1, select an arbitrary θ̂1 ∈ Θ, set price p1 = 0.

4: ω̂1 ← TBAP(uF , ϵ,∇ℓH
1
(θ̂1)).

5: for t = 1, ... do
6: θ̂t+1 ← argminθ ∈Θ⟨ω̂t ,θ⟩ +

H
2

∑t
τ=1 ∥θ − θ̂τ ∥

2
.

7: Set the price pt+1 ← Ψ
(
⟨xt+1, θ̂t+1⟩

)
, observe yt+1.

8: ω̂t+1 ← TBAP(uF , ϵ,∇ℓHt+1(θ̂t+1)).
9: end for

5 ANALYSIS ON PRIVACY AND REGRET
In this section, we present the analysis of the privacy and regret

guarantee of Algorithm 1. The informal result of this section is

stated as below.
6

Theorem 1 (Informal). Consider the valuation function defined
in Equation (1). Under Assumption 1, Algorithm 1 is an ϵ-differentially
private algorithm that achieves regret in the order of ˜O(

√
dT /ϵ).

5.1 Privacy guarantee
Recall that a general recipe for achieving privacy is through adding

noise, drawn from a particular distribution, to the output of the

function. The choice of the noise distribution is scaled with the func-

tion’s property (i.e., the sensitivity). To simplify the presentation,

we first define the following quantities:

uF = sup

|x | ≤M

{
max

{
−
∂ log(F (x))

∂x
,−
∂ log(1 − F (x))

∂x

}}
,

wF = inf

|x | ≤M

{
min

{
−
∂2 log(F (x))

∂x2
,−
∂2 log(1 − F (x))

∂x2

}}
,

where uF and wF characterize the shape of the function log F .7

Since both F and 1−F are log-concave, we havewF > 0. It is easy to

see that the loss function ℓt (θ ) is also uF -Lipschitz.M is defined as

M = 2W +Φ−1(0). With this definition,M−W will be the maximum

price the seller could offer. To see this, note that by 1-Lipschitz

property of function Ψ, we have pt − Ψ(0) = |Ψ(⟨xt ,θ⟩) − Ψ(0)| ≤
|⟨xt ,θ⟩ − 0| = |⟨xt ,θ⟩| ≤W . Thus, pt ≤W + Ψ(0) =W + Φ−1(0).
Let uf = maxx ∈supp(f ) f (x) and u

′
f = maxx ∈supp(f ) f

′(x). We now

give following example on how to compute the values ofM , uF and

wF .

Example 1. Consider the case where θ is restricted in an unit ball,

i.e, ∥θ ∥ ≤ 1, this impliesW = 1. For an exponential distribution (in

the form of f (x) = γe−γ x ) with parameter γ > 0, one can compute

that M will equal to γ + 2. For a uniform distribution in range

[−6, 6], thenM will be 5. From the definition, to reason about the

6
In addition to theoretical analysis, we also implement the algorithm and run simula-

tions to examine the practical performances of the algorithm. The results suggest the

algorithm is robust with different privacy guarantee in practice (Note that the regret

bound only bound the worst case performance) and also aligned with our analuysis

qualitatively. The simulation results will be included in the full paper.

7
The technical reasons for choosing these definitions will be more clear when we

attempt to bound inequality (13) from equation (11) and (12).

values of uF andwF , instead of searching among all support of F ,
we only need to consider the range of [−M,M]. Thus, in the case

when ∥θ ∥ ≤ 1 and F is uniform distributed in range [−6, 6]. We can

infer that uF = 1 andwF = 1.

Note that via the cumulative gradient ω̂t , Algorithm 1 uses entire

historical information, including the arrived contexts {xt }t ≥1, the
price the seller set {pt }t ≥1, and the sale {yt }t ≥1 up to time t to com-

pute the price pt+1. By ensuring that the gradient is differentially

private, and informed by the robustness to post-processing property

of differential privacy, we conclude our algorithm is private:

Theorem 2 (Privacy guarantee). Algorithm 1 , together with
using TBAP(uF , ϵ, {∇ℓHt }t ≥1) as the subroutine, is ϵ-differentially
private for any sequence of preference z1, . . . , zT .

The proof, which utilizes the structure of binary tree and com-

position property of differential privacy, is omitted due to space

constraint and will be included in the appendix of full paper.

Remark 3. As mentioned, the private aggregation protocol only

use at most ⌈log
2
T ⌉ + 1 noisy terms to compute the estimate ω̂t .

Thus, the estimation error of ω̂t w.r.t. ωt can be bounded at the

order of O
(uF√d log

2(T )
ϵ

)
. To see this, note that according to the line

9 in TBAP, the L2-norm of noise vector γ ∈ Rd we add to each node

is Gamma distributed with the standard deviation O
(uF√d log(T )

ϵ
)
.

Multiply the maximum number of noisy terms will return the es-

timation error. Compared to non-differentially private contextual

dynamic pricing algorithms, in which the best regret is known to be

˜O(
√
T ) [7, 20, 22], the above noise we add to ensure ϵ-differentially

private only increase our regret by a factor of

√
d/ϵ . The analysis

of this regret guarantee is described below.

5.2 Regret guarantee
In terms of regret guarantee, we show that Algorithm 1 enjoys the

regret of
˜O(
√
dT /ϵ). On a high level, our proof proceeds with the

following key steps.

• Step 1: Intuitively, to achieve optimal pricing, it requires the

algorithm to accurately estimate the unknown parameter

θ . Thus, we first show that the Algorithm 1’s cumulative

prediction error for the parameter θ , defined as follows,

Error(T ) =
T∑
t=1
⟨xt ,θ − θ̂t ⟩

2,

is upper bounded by the “pseudo-regret" incurred on func-

tion ℓt s.

• Step 2: We show how to reduce the problem on bounding

E[RegretA (T )] to the problem on bounding the “pseudo-

regret" on function ℓt through connecting through Error(T ).
• Step 3: The third step relates the regret on ℓHt (which our

algorithm operates over) to the “pseudo-regret" on ℓt , hence

establishing the bound on E[RegretA (T )] using the regret

on ℓHt .

• Step 4: The last step utilizes a generic result of differen-

tially private online learning algorithm to bound the regret

incurred on ℓHt .
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Step 1. In this step, we show that the cumulative prediction error

Error(T ) can be upper bounded by the “pseudo-regret" incurred

on function ℓt s, namely,

∑T
t=1

(
ℓt (θ̂t ) − ℓt (θ )

)
. The analysis will

rely on Taylor approximation and other inequalities. The following

lemma summarizes the results of this step.

Lemma 1 (Accuracy of {θ̂t }). Let θ̂t be the solution of the opti-
mization problem (8), then, under Assumption 1, with probability at
least 1 − 1/T 2, we have

Error(T ) ≤
4

wF

T∑
t=1

(
ℓt (θ̂t ) − ℓt (θ )

)
+
2u2F
w2

F
logT . (9)

To prove Lemma 1, consider the Taylor expansion of following

function f (x) : f (x) = f (a) + f ′(a)(x − a) +
f ′′(a)
2!
(x − a)2 + . . ..

Then for some point θ ′ on the line segment joining θ and θ̂t , we
have

ℓt (θ ) − ℓt (θ̂t ) = ⟨∇ℓt (θt ),θ − θ̂t ⟩

−
1

2

⟨θ − θ̂t ,∇
2ℓt (θ

′)(θ − θ̂t )⟩. (10)

Recall that we can write the gradient and Hessian of ℓt as follows:

∇ℓt (θ ) = τt (θ )xt , ∇
2ℓt (θ ) = χt (θ )x

⊤
t xt ,

where

τt (θ ) =

{
−
∂ log(F (κt (θ )))

∂x , yt = 0

−
∂ log(1−F (κt (θ )))

∂x , yt = 1

(11)

χt (θ ) =

{
−
∂2

log(F (κt (θ )))
∂x 2

, yt = 0

−
∂2

log(1−F (κt (θ )))
∂x 2

, yt = 1

(12)

And κt (θ ) = pt − ⟨xt ,θ⟩. It is easy to check that |κt (θ )| ≤ M .

Recall that uF is defined as the upper bound of the first derivative

of ℓt (θ ), thus τt (θ ) ≤ uF . By the definition ofwF , we have χt (θ ) ≥
wF , which further implies that ∇2ℓt (θ ′) ⪰ wFx

⊤
t xt . Plugging in

Equation (10), we obtain

ℓt (θ ) − ℓt (θ̂t ) ≤ ⟨∇ℓt (θ ),θ − θ̂t ⟩ −
wF
2

⟨xt ,θ − θ̂t ⟩
2. (13)

We next bound the first term of RHS in above inequality (13). Let Σt
be the σ -algebra generated by {zt }t ≥1, i.e., Σt encode the history

information till to time t . Let Jt = ⟨∇ℓt (θ ),θ − θ̂t ⟩ = τt (θ )⟨xt ,θ −

θ̂t ⟩. It is easy to see that we have:

E[Jt |Σt−1] = E[τt (θ )|Σt−1]⟨xt ,θ − θ̂t ⟩ = 0.

Thus, J (T ) =
∑T
t=1 Jt is a martingale adapted to the filtration

{Σt }t ≥1.

Lemma 2. Consider the abovemartingale difference sequence {Jt }t ≥1
adapted to the filtration {Σt }, then with the probability at least
1 − 1/T 2, we have

J (T ) ≤ 2uF
√
logT · Error1/2(T ). (14)

The proof relies on concentration inequalities to bound the devi-

ations of J (T ) from the “high-probability” behavior.

Proof. Recall that τt (θ ) is upper bounded by uF , thus condi-

tioned on Σt−1, we have |Jt | ≤ δt where δt = uF |⟨xt ,θ − θ̂t ⟩|.
Consider the moment generating function E[eλJt ], for any λ ∈ R,
we have

E[eλJt |Σt−1] ≤ E

[
δt − Jt
2δt

e−λδt +
δt + Jt
2δt

eλδt |Σt−1

]
≤ E

[
e−λδt + eλδt

2

]
+ E[Jt |Σt−1]

(
e−λδt + eλδt

2δt

)
= cosh(λδt ) ≤ eλ

2δ 2

t /2,

where the first inequality is due to the convexity of eλx . Condition-
ing on Σt−1 and applying the iterated expectation:

E[eλJt ] = E
[
eλ

∑T−1
t=1 Jt E[eλJt |ΣT−1]

]
≤ E

[
eλ

∑T−1
t=1 Jt ]eλ

2δ 2

T /2.

Iterating over time T gives us the following bound:

E[eλJ (T )] ≤ eλ
2
∑T
t=1 δ

2

t /2.

By Markov inequality, for any a ≥ 0, we have

Pr(J (T ) ≥ a) = Pr(eλJ (T ) ≥ eλa ) ≤ e−λaE[eλJ (T )]

≤ e−λa+λ
2
∑T
t=1 δ

2

t /2

≤ e−a
2/(2

∑T
t=1 δ

2

t ),

where the last inequality is via optimizing λ.

Applying a = 2

√
logT

( ∑T
t=1 u

2

F ⟨xt ,θ − θ̂t ⟩
2
)
1/2

will complete

the proof. □

Taking the summation over T and substituting above inequality

into (13), we have the following

Error(T ) ≤
2

wF

T∑
t=1

(
ℓt (θ̂t ) − ℓt (θ )

)
+
2uF
wF

√
logTError1/2(T )

with probability at least 1 − 1/T 2
. Rearranging the terms in the

above inequality, we conclude the desired result in Lemma 1.

Step 2. With the above lemma at hand, we show that we can

bridge the incurred regret RegretA (T ) with the cumulative loss∑T
t=1 ℓt (θ̂t ) − ℓt (θ ). This is summarized in the following Lemma.

Lemma 3. Consider the parametric valuation model defined in
Equation (1). Under Assumption 1, the regret of our private pricing pol-

icy, Algorithm 1, is bounded as: RegretA (T ) ≤ C

(
E
[ ∑T

t=1
(
ℓt (θ̂t ) −

ℓt (θ )
) ]
+

2u2

F
w2

F
logT

)
+M/T , where C =

4uf +2Mu′f
wF

.

The proof constructs an inequality between RegretA (T ) and the
prediction error Error(T ). By the result we obtained in Step 1, we

can then achieve the above lemma.

Proof. Let rt = p
∗
t I(vt ≥ p∗t )−pt I(vt ≥ pt ) be the instantaneous

regret at time t . Then we have:

E[rt |Σt−1] = E[p
∗
t I(vt ≥ p∗t ) − pt I(vt ≥ pt )|Σt−1]

= p∗t
(
1 − F

(
p∗t − ⟨xt ,θ⟩

) )
− pt

(
1 − F

(
pt − ⟨xt , θ̂t ⟩

) )
.
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Define function д(·;u) : R → R such that д(p;u) = p(1 − F (p −
u)). The first-order condition of д(p; ⟨xt ,θ⟩) at p∗t implies that

д′(p∗t ; ⟨xt ,θ⟩) = 0. Take the Taylor expansion of д(p; ⟨xt ,θ⟩) at
point p∗t , then there must exist p′ such that:

д(pt ; ⟨xt ,θ⟩) = д(p
∗
t ; ⟨xt ,θ⟩) +

1

2

д′′(p′; ⟨xt ,θ⟩)(pt − p
∗
t )
2.

The absolute value ofд′′(p′; ⟨xt ,θ⟩) is upper bounded by a constant
C = 2uf +Mu ′f :

|д′′(p′; ⟨xt ,θ⟩)| ≤ |2f (p
′ − ⟨xt ,θ⟩) + p

′ f ′(p′ − ⟨xt ,θ⟩)|

≤ 2uf +Mu ′f .

Thus,

E[rt |Σt−1] = д(pt ; ⟨xt ,θ⟩) − д(p
∗
t ; ⟨xt ,θ⟩)

≤

2uf +Mu ′f

2

(pt − p
∗
t )
2

=
2uf +Mu ′f

2

(
Ψ
(
⟨xt ,θ⟩

)
− Ψ

(
⟨xt , θ̂t ⟩

) )2
≤

2uf +Mu ′f

2

⟨xt ,θ − θ̂t ⟩
2,

where the last inequality is due to the 1-Lipschitz property of

function Ψ. Define the event G when (9) holds. Then the prob-

ability of the complement of event G, denoted by Gc , is given by

Pr(Gc ) ≤ 1/T 2
. By the law of total expectation, we can now step

to upper bound the regret by expected cumulative prediction error:

RegretA (T ) ≤
T∑
t=1
E[rt ] =

T∑
t=1
E[E[rt |Σt−1]]

=

T∑
t=1
E[E[rt · I(G)|Σt−1] + E[rt · I(G

c )|Σt−1]]

≤

2uf +Mu ′f

2

T∑
t=1
E
[
⟨xt ,θ − θ̂t ⟩

2
]
+
M

T
.

With the fact we showed in Lemma 1, the proof is complete. □

Step 3. Now the problem reduces to upper bound the cumulative

loss

∑T
t=1 ℓt (θ̂t )−ℓt (θ ), which we will bound using the “real" regret

incurred on the loss functions {ℓHt }t ≥1. Note that for any sequence

of vectors θ1, . . . ,θT ∈ Θ, we have the following:

T∑
t=1

ℓt (θt ) −min

θ ∈Θ

T∑
t=1

ℓt (θ ) ≤
T∑
t=1

ℓHt (θt ) −min

θ ∈Θ

T∑
t=1

ℓHt (θ ) +
HT
2

W 2 .

This is due to the approximation we defined in Equation (7).

Step 4. We are now ready to prove an upper bound on the regret

of Algorithm 1 when the prices are set to satisfy the desired privacy

guarantee. The regret bound of Algorithm 1 is given in following

theorem:

Theorem 3 (Regret guarantee). Consider the value function
defined in Equation (1). Under the Assumption 1, for any sequence of
arriving product contexts, the expected regret of Algorithm 1 is upper

bounded byE[RegretA (T )] = O
©«
C
√
log

2.5 T
(
uF+2W

√
d log

2.5 T
ϵT

)
2

ϵ
√
T
ª®®¬+

C ′ logT +M/T , where C =
4uf +2Mu′f

wF

√
d and C ′ =

2Cu2

F

w2

F

√
d
.

To prove this theorem, we reuse the analysis by Thakurta and

Smith [26] via the following lemma:

Lemma 4. Let f1, . . . , fT be L-Lipschitz, H -strongly convex func-
tions and C ∈ Rd be the compact convex set. Then the expected
regret of PFTAL satisfies E[

∑T
t=1 ft (θt ) − minθ ∈C

∑T
t=1 ft (θ )] =

O

(
d (L+H ∥C ∥)2 log2.5(T )

ϵH

)
.

Proof. Note that in Equation (6), we add the L2-regularizer to ℓt .
The loss function ℓHt is H -strongly convex, and it has the following

Lipschitz property:

|ℓHt (θ1) − ℓ
H
t (θ2)| ≤ |ℓt (θ1) − ℓt (θ2)| +

H

2

∥θ1 − θ2∥
2

≤ uF ∥θ1 − θ2∥ +
H

2

∥θ1 − θ2∥∥θ1 + θ2∥

≤ (uF + HW )∥θ1 − θ2∥,

where the last equality is due to ∥θ ∥ ≤ W for all θ ∈ Θ. Thus,

invoking the result in Lemma 4 will yield us E
[ ∑T

t=1 ℓt (θ̂t ) −

minθ ∈Θ
∑T
t=1 ℓt (θ )

]
= O

( d (uF+2HW )2 log2.5(T )
ϵH

)
+ HT

2
W 2

. Together

with the results we show in Step 3, above regret bound can be

achieved by setting H = O

(√
d log

2.5(T )
ϵT

)
. □

Remark 4. Note that this regret bound is robust to adaptively

arrived adversarial product contexts {xt }t ≥1. By simplifying the

constants and ignoring the logarithmic terms, the above regret

bound is reduced to the bound of the order
˜O(

√
dT
ϵ ), which is worse

than the non-private regret bound of
˜O(
√
T ), up to a constant factor

√
d
ϵ . This is due to the noise we added to the updates

˜θt .

6 DISCUSSION: NONLINEAR VALUATION
Our discussion so far focuses on linear valuation models given in

Equation (1). While it is a standard model in dynamic pricing, it is

natural to ask whether our private pricing framework applies to

more general nonlinear valuationmodels. In this section, we explore

another set of valuation models in the following form [17, 21]:

vt (xt ) = ψ (⟨ϕ(xt ),θ⟩ + zt ), (15)

where ϕ : Rd → Rd is a product feature mapping function and

ψ : R→ R is a general strictly increasing and log-concave function.

Remark 5. Note that the above family of nonlinear functions

captures many important scenarios such as: (i) Log-log model

(ψ (x) = ex ,ϕ = ln(x)); (ii) Semi-log model (ψ (x) = ex ,ϕ = x);
and (iii) Logistic model (ψ (x) = ex /(1 + ex ),ϕ = x ), among others.

Below we demonstrate that adopting this family of nonlinear

valuation functions in contextual dynamic pricing shares the same

order of regret bound as with the linear valuation function under

the same privacy guarantee. The only difference in the analysis

(when the valuation functions are different) is on how to compute
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the prices with the computed private estimate θ̂t according to

the optimal pricing function as we see in Equation (4) for linear

valuation functions.

In particular, since ϕ is strictly increasing, one can compute the

optimal price p∗t (xt ) by the first-order condition:

ψ ′(ψ−1(p∗t )) =
p∗t f (ψ

−1(p∗t ) − ⟨ϕ(xt ),θ⟩)

F (ψ−1(p∗t ) − ⟨ϕ(xt ),θ⟩)
.

Let h(v) = f (v)/(1 − F (v)) denote the hazard rate function for

distribution F and p̃∗t = ψ
−1(p∗t ). Thus, we can write above equation

in the following form:

⟨ϕ(xt ),θ⟩ = p̃
∗
t − h

−1

(
ψ ′(p̃∗t )

ψ (p̃∗t )

)
.

Due to log-concavity of functionψ ,
ψ ′(v)
ψ (v) =

d
dv logψ (v) is mono-

tonically decreasing. Since 1 − F is also log-concave, then h is in-

creasing, which further implies that−h−1
(
ψ ′(v)/ψ (v)

)
is increasing.

Thus, function Ψ is strictly increasing and well-defined. Further-

more, it is easy to see that function Ψ is also 1-Lipschitz. Also

define

Ψ−1(v) = v − h−1
(
ψ ′(v)

ψ (v)

)
.

The optimal price can then be computed as follows:

p∗t = ψ (Ψ(⟨ϕ(xt ),θ⟩)). (16)

The loss function we optimize to update the private estimates {θ̂t }
is then given by:

ℓt (θ ) = −I{yt = 1} log(1 − F (ψ−1(pt ) − ⟨ϕ(xt ),θ⟩))−

I{yt = 0} log(F (ψ−1(pt ) − ⟨ϕ(xt ),θ⟩)).

Accordingly, in private Algorithm 1, we will compute the current

price as pt = ψ−1
(
Ψ(⟨ϕ(xt ), θ̂t ⟩)

)
. Moreover, the difference be-

tween the posted price and the optimal price can be bounded as

|pt−p
∗
t | =

��ψ−1 (Ψ(⟨ϕ(xt ), θ̂t ⟩))−ψ−1 (Ψ(⟨ϕ(xt ),θ⟩)) �� ≤ Lψ ∥θ̂t−θ ∥,
with the Lipschitz constant Lψ for function ψ . With above modi-

fications, our analysis of Algorithm 1 for linear valuation model

extends over to the nonlinear model (15). The order of regret bound

we achieve for linear model (1) thus holds for above nonlinear

model up to a constant factor.

7 CONCLUSION AND FUTUREWORK
We explore the design of differentially private algorithms for the

contextual dynamic pricing problem. We present an algorithm that

is ϵ-differentially private and achieves expected regret
˜O
(√dT

ϵ
)
,

where d is the dimension of product features and T is the time

horizon.

Future work includes the exploration of more general user valu-

ation models. For example, our current model assumes the hidden

parameter θ is static over time. In practice, since buyer population

might (slowly) evolve, it would be interesting to generalize this

model to the case on varying {θt } and explore the utility-privacy

trade-off in this time-varying setting. Furthermore, since differen-

tial privacy only provides a theoretical upper bound on the privacy

leak, it would be interesting to explore the practical amount of

privacy leak, possibly constrained to a certain set of adversarial

strategies in learning buyer valuations from prices.

A TREE-BASED AGGREGATION PROTOCOL
For the completeness of the paper, we state Tree-Based Aggregation

Protocol [9, 14] in this section.

We consider the problem of computing partial sums while pre-

serving differential privacy. Formally, let V = {v1,v2, . . . ,vT } be a

sequence of vectors, where at time t , a new vectorvt ∈ R
d
arrives.

The goal is to output st , which is a privacy-preserved version of

cumulative sum

∑t
τ=1vτ at each time t , without compromising too

much of the accuracy. We use Tree-Based Aggregation Protocol

to ensure the privacy guarantee. Let Γ be a complete binary tree

with its leaf nodes being l1, . . . , lT . Each internal node of Γ stores

the sum of all the leaf nodes in the sub-tree rooted at that node.

First note that one can compute any partial sum st using at most

⌈log
2
T ⌉ + 1 nodes of Γ. Thus, if the sum at each internal node is

(ϵ/log
2
(T ))-differentially private, by the composition property of

differential privacy [16], the entire tree is ϵ-differentially private.

Algorithm 2 Private Tree Based Aggregation Protocol (TBAP)

1: Input: A sequence of vector (v1, . . . ,vT ∈ R
d ) (arrive in se-

quentially). µ: L2-norm bound onvt . Privacy guarantee param-

eter ϵ .
2: Output: A sequence of noisy partial sums s1, . . . , sT ∈ R

d
.

3: Initialization: Initialize a complete binary tree Γ of size

2
⌈log

2
T ⌉+1 − 1 with leaves storingv1, . . . ,vT .

4: for t = 1, . . . ,T do
5: Acceptvt sequentially. Let Lvt→root = {vt → · · · → root}

be the path fromvt to the root.
6: Let Λ be the first node in Lvt→root that is the left child in Γ.

Let Lvt→Λ = {vt → · · · → Λ}.
7: for all nodes α in path Lvt→root do
8: α ← α +vt
9: if α ∈ Lvt→Λ, then α ← α + γ where γ ∈ Rd is sampled

according to Pr(γ = γ̂ ) ∝ exp

(
−

∥γ̂ ∥2ϵ
µ( ⌈log

2
T ⌉+1)

)
.

10: end for
11: Initialize vector st ∈ Rd to zero. Let b be a (⌈log

2
T ⌉ + 1)-bit

binary representation of t .
12: for i = 1, . . . , [log

2
T + 1] do

13: if bit bi = 1 then
14: if i-th node in Lvt→root (denoted L

i
vt→root) is the left

child in Γ, then st ← st + Livt→root.

15: else st ← st+left sibling of Livt→root.

16: end if
17: end for
18: return noisy partial sum st
19: end for
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