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ABSTRACT
Reinforcement learning has been successful in training autonomous
agents to accomplish goals in complex environments. Although
this has been adapted to multiple settings, including robotics and
computer games, human players often find it easier to obtain higher
rewards in some environments than reinforcement learning algo-
rithms. This is especially true of high-dimensional state spaces
where the reward obtained by the agent is sparse or extremely de-
layed. In this paper, we seek to effectively integrate feedback signals
supplied by a human operator with deep reinforcement learning
algorithms in high-dimensional state spaces. We call this FRESH
(Feedback-based REward SHaping). During training, a human
operator is presented with trajectories from a replay buffer and
then provides feedback on states and actions in the trajectory. In or-
der to generalize feedback signals provided by the human operator
to previously unseen states and actions at test-time, we use a feed-
back neural network. We use an ensemble of neural networks with a
shared network architecture to represent model uncertainty and the
confidence of the neural network in its output. The output of the
feedback neural network is converted to a shaping reward that is
augmented to the reward provided by the environment.We evaluate
our approach on the Bowling and Skiing Atari games in the arcade
learning environment. Although human experts have achieved
high scores in these environments, state-of-the-art deep learning
algorithms perform poorly. We observe that FRESH achieves much
higher scores than state-of-the-art deep learning algorithms in both
environments. FRESH also achieves a 21.4% higher score than a
human expert in Bowling and does as well as an expert in Skiing.
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feedback-based reward shaping; deep reinforcement learning; hu-
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1 INTRODUCTION
Reinforcement learning (RL) is a framework that enables an agent to
explore an environment in order tomaximize its expected long-term
reward, where the reward signal is supplied by the environment. A
major attraction of this approach is that the agent can learn to com-
plete tasks even when a model of the environment (i.e. transition
probabilities between states) is unknown. With adequate computa-
tional resources, model-free RL algorithms have been successfully
applied to many domains, including board and computer games
[29, 37] and robotics [14, 26, 36]. However, it has been noted that
the sample complexity of these algorithms is typically very high,
which limits their use on real-world systems [14, 29]. Model-based
RL, on the other hand, aims to learn a model of the system, and then
optimize a policy given this model [4, 13, 18, 25]. This approach
has the benefit of reducing sample complexity, but the scope of the
policy is limited by assumptions made on the model.

Although RL algorithms have shown impressive results in cer-
tain environments [29, 37], humans are usually much more efficient
in terms of the number of actions required to obtain higher re-
wards. This has especially been observed in environments with
high-dimensional state spaces, like video games, where states are
raw pixels of images or snapshots of videos. In these settings, any
prior knowledge that a human might have about the environment,
and their ability to learn from the environment, is crucial in deter-
mining success. The authors of [33] showed that a human player is
easily able to play and win games in setups where the reward struc-
ture is sparse or significantly delayed (for e.g. receiving a reward
only for successfully completing one level of a game), while deep
RL algorithms struggle. The role of a human operator in providing
a shaping reward signal to aid the learning process of the RL agent
in such environments has not been addressed in prior work.

In this paper, we seek to effectively integrate human feedback
with deep RL algorithms in high-dimensional state spaces. We term
this FRESH , for Feedback-based REward SHaping. We assume
that there is a human operator who can provide feedback on actions
taken by the RL agent. During training, the operator is presented
with trajectories (sequences of states and actions) from a replay
buffer and indicates whether an action at a state in the trajectory
is good or bad. The operator is additionally able to provide this
feedback on the states themselves. They can also indicate that they
are not sure if an action is good or bad (cannot tell). If they feel
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Figure 1: Schematic for FRESH (Feedback-based REward
SHaping). A human operator is presented with trajectories
of game-play from the replay buffer. At each state in the tra-
jectory, the operator indicates whether the action taken in
that state is good or bad. At some states, the operator also
indicates whether the state is good or bad. This feedback is
stored in a feedback buffer. A deep feedback neural network
is used to allow the deep reinforcement learning algorithm
to generalize feedback signals obtained during training to
unseen states and actions at test-time. The output of the
feedback network is converted to a shaping reward, which
is augmented to the reward provided by the environment.

that sufficient number of feedback signals have been given on a
trajectory, they can choose to skip the remainder of that trajectory.
The motivation for this type of feedback is that it is relatively easier
for a human to understand whether a state and the consequence of
an action taken at a state will be good or bad. A schematic of our
setup is shown in Figure 1.

We wish to clarify that this approach is different from that used
in Deep-TAMER [45], which used human-feedback, but did not use
the environment reward, and instead adopted a supervised learning
framework during training. There, a human operator associated a
numerical value indicative of how good the agent’s behavior was, in
the opinion of the operator. In comparison, in FRESH, the operator
only needs to provide a qualitative indication of whether an action
in a state is good or bad, and we convert this to a shaping reward
that is integrated with the reward from the environment.

Due to the size of the state space when operating in high di-
mensional state spaces, it will not be uncommon for the agent to
encounter states at test time that it would have never seen during
training. Moreover, the number of feedback signals that can be
provided by a human is limited. Therefore, we need to be able to
generalize from the feedback in order to determine whether a state
encountered at test time is ‘similar’ to some state seen previously.
Neural networks (NNs) will allow us to generalize from feedback.
Since an NN yields an output for any input given to it, we require a
mechanism to reject outputs that could lead the RL agent towards
‘bad’ states. One way to achieve this is by quantifying a measure of
confidence of the network in its output. This way, by setting an ap-
propriate threshold, outputs of the network that have a confidence
score below this threshold can be rejected. Only those outputs with
a confidence score above the threshold will be retained and used
during the training phase. The authors of [44] used the output of
a softmax function as a measure of confidence. However, a short-
coming of this approach is that a model could be uncertain in its
predictions even with a high softmax output [10].

Bayesian neural networks [30] have been used to represent the
uncertainty in the output of an NN. Two techniques that offset the
high costs incurred during inference are bootstrapped ensemble
NNs [24, 32] and dropout as Bayesian approximation [10]. The
bootstrap principle is to approximate the distribution of a pop-
ulation by a sample distribution [7]. This property allows us to
use an ensemble of NNs to effectively represent uncertainty in the
model where each network in the ensemble produces a value in-
dicative of its confidence in its output. In the dropout approach,
an equivalence was established between dropout training in deep
NNs and Bayesian inference in Gaussian processes. We prefer the
bootstrapped ensemble over dropout in this paper because of its
lower time complexity during inference.

1.1 Contributions
We use an ensemble of neural networks with a shared architecture
to effectively represent human feedback and predict uncertainty in
the model. The human feedback signal is then used as a shaping
reward. We evaluate our method on the Bowling and Skiing Atari
games in the Arcade Learning Environment [3]. We choose these
games because many state-of-the-art deep reinforcement learning
(DRL) algorithms are unable to achieve human-level performance.
We observe that FRESH is able to outperform state-of-the-art DRL
algorithms in both environments. In the Bowling game, FRESH
obtains a higher average score (∼ 180) than a human expert (∼ 150)
[29]. In the Skiing game, FRESH performs as well as a human expert.

1.2 Outline of Paper
The paper is organized as follows: Section 2 gives a brief introduc-
tion to reinforcement learning. Our approach is outlined in Section
3 and we present detailed results of our experiments in Section 4.
Section 5 summarizes related work and we conclude in Section 6.

2 REINFORCEMENT LEARNING
AMarkov decision process (MDP) [34] is a tuple (S,A,T, ρ0,R). S is
the set of states, A the set of actions. T : S ×A× S → [0, 1] encodes
P(st+1 |st ,at ), the probability of transition to st+1, given current
state st and action at . ρ0 is a probability distribution over the initial
states. R : S ×A×S → R denotes the reward that the agent receives
when transitioning to state st+1 from st while taking action at .

The goal for an RL agent [39] is to interact with its environ-
ment (that is modeled as an MDP) and learn a policy π , in order
to maximize J := Eτ∼π [

∑∞
t=0 γ

tR(st ,at , st+1)]. Here, γ is a dis-
counting factor, and the expectation is taken over the trajectory
τ = (s0,a0, r0, s1, . . . ) induced by policy π . If π : S → A, the policy
is deterministic. On the other hand, a randomized policy returns
a probability distribution over the set of actions, and is denoted
π : S ×A→ [0, 1]. It should be noted that the agent does not have
direct access to the transition probabilities or the reward.

The value of a state-action pair (s,a) following policy π is repre-
sented by theQ-function,Qπ (s,a) = Eτ∼π [

∑∞
t=0 γ

tR(st ,at , st+1)|s0 =
s,a0 = a]. The Q-function allows us to calculate the state value
V π (s) = Ea∼π [Q

π (s,a)]. The advantage of a particular action a,
over other actions at a state s is defined by Aπ (s,a) := Qπ (s,a) −
V π (s). The overall policy can be determined by (dynamically) up-
dating Q-values, using Q-learning [46]. Exploration strategies in
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the environment at the early stages of learning include ϵ-greedy
(choose action that maximizes Q-value with high probability, and a
random action with low probability) and Boltzmann exploration
(choose action according to a probabilistic model).

3 FEEDBACK-BASED REWARD SHAPING
The use of human feedback in high-dimensional state spaces raises
the following questions:
Q1: How can feedback signals provided by a human operator be

effectively used in high-dimensional state spaces?
Q2: How can this feedback be meaningfully integrated with deep

reinforcement learning (DRL) algorithms?
In this section, we present FRESH , a feedback-based reward shap-
ing approach towards answering these questions. We assume that
an RL agent has to learn to maximize its reward in an environment
that has a high-dimensional state space. An example of such an
environment is an Atari game in the Arcade Learning Environment.
‘States’ in this environment are collections of pixels (images). Al-
though deep NNs have been successful in outperforming a human
expert player in many Atari games [29], there are some games
where the expert is still able to perform better than state-of-the-
art DRL algorithms. This paper studies two examples of the latter
(Bowling and Skiing), and we demonstrate that FRESH performs at
least as well as a human expert player in these environments.

3.1 Binary-valued Human Feedback
We assume that a human operator is able to provide binary-valued
feedback on actions and states. We do not require the operator to be
an expert. However, we assume that this operator will have the abil-
ity to understand game-play in the environment after explanation
by an expert. Feedback given on an action is a (local) interpretation
of the quality of the action at a particular state, independent of
how ‘good’ or ‘bad’ the state is. In comparison, feedback provided
on a state is a (more global) interpretation on whether the current
observed state is good or bad in terms of the rewards that can be
obtained. The reason we use this type of feedback signal is that in
many settings, rather than assigning a numeric value, it is relatively
easier for a human to interpret whether a state or an action taken in
a particular state is simply ‘good’ or ‘bad’. Specifically, the human
provides feedback on actions implicitly according to a hidden func-
tion hs,a (·, ·) : S × A → {0, 1}, and feedback on states according
to a hidden function hs (·) : S → {0, 1}. In each case, 0/1 denote
bad/ good. The human operator can additionally provide feedback
signals that indicate not sure (if they are not certain whether an
action in a state is ‘good’ or ‘bad’) and skip (if the operator feels that
sufficient number of feedback signals have been provided for a tra-
jectory). These latter two signals are not used to train the agent, but
they allow the human operator to significantly reduce the amount
of time spent in the training phase. We note that both hs,a and hs
can be time-varying, implying that the feedback can change for
the same state or state-action pair as the agent training process
proceeds. Moreover, the human operator might also change their
expectations of the agents’ performance over time, which justifies
the time-varying nature of the feedback signal.

We assume that at each time, in a state st , there is exactly one ac-
tion at that is the ‘best’ in that state. That is, taking this action will

lead to the agent receiving a higher (accumulated) reward than tak-
ing any other action. We formulate a binary classification problem,
and use maximum likelihood estimation (MLE) to determine the
best action in a state. We denote the predicted probability that ac-
tion ai is the best in state s by f ai (s). Furthermore,

∑ |A |
i=1 f

ai (s) = 1.
To implement our maximum likelihood estimator, we use cross-
entropy loss with both positive and negative labels:

L(f ai (s),hs,ai ) = −hs,ai log f ai (s) − (1 − hs,ai ) log
∑
a,ai

f a (s),

where hs,ai is the binary-valued human feedback associated to
state-action pair (s,ai ).

We formulate an analogous classification problem for feedback
on states. Let д(s) denote the predicted probability that state s is
good. The loss function used to evaluate this prediction is:

L(д(s),hs ) = −hs logд(s) − (1 − hs ) log(1 − д(s)),

3.2 Generalizing Human Feedback
A challenge in high-dimensional state spaces that is not encoun-
tered in the tabular setting is that the agent might observe a lot of
states at test-time that it might have never seen during training.
Moreover, since the number of feedback signals that a human can
provide is often limited, it is important to be able to generalize from
the feedback in order to determine whether a state encountered at
test time is similar to some state seen during training. In order to
fully exploit the feedback signals given by a human, we leverage
deep neural networks (DNNs). DNNs have been shown to have the
ability to use feedback on states and actions and generalize it to
other states and actions that have not been previously seen, but
‘similar’ to those already known [11]. We term the neural networks
used to abstract the feedback provided by a human operator as
feedback neural networks (FNNs) for the rest of this paper.

Using NNs to generalize human feedback presents another chal-
lenge. NNs typically produce an output for any input, and do not
have a measure of confidence. This could lead to a scenario when
the network produces an arbitrary output to an input state that it
has never seen during training, and this could lead the RL agent
to undesired/ incorrect states. This necessitates development of a
mechanism that allows the agent to reject the output of FNNs.

A class of NNs called Bayesian neural networks [30] are able to
produce both an output, and a value indicating the confidence of
the NN in the output. However, this process is computationally
expensive. To obtain these confidence values, approximations of
Bayesians NNs using dropout [10] and ensemble of NNs for pre-
dicting model uncertainty [24, 32] have been proposed. We use the
bootstrap ensemble NN architecture in this paper due to its lower
time complexity during inference when compared to dropout.

In order to achieve a further reduction in complexity, we use a
shared network architecture as shown in Figure 2. In this architec-
ture, the entire network has Ks + Ka heads, with Ks bootstrapped
heads for learning feedback on states and Ka bootstrapped heads
for learning feedback on actions, along with a shared network. Each
head is randomly initialized and trained on a bootstrapped subset
of feedback data, that is sampled with replacement from the entire
feedback data. All heads share the same preceding layers, which
allows the entire network to be trained more efficiently. We collect
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Figure 2: Figure a shows the multi-head architecture with
shared layers for the feedback neural network that we use
in this paper. Figures b and c show architectures of parts of
the networks corresponding to learning feedback on actions
and feedback on states respectively.

the prediction from each head and use the mean of these predictions
as the final prediction.

Let fj =
(
f a1j (s), f

a2
j (s), . . . , f

a |A|
j (s)

)
denote the output of the

j-th action head, where f aij (s) is the probability that action ai is
the best in state s , and let дj (s) denote the output of the j-th state
head. In order to predict the human feedback on actions, we define:

predaction(s) = argmax
i ∈{1, ..., |A | }

{ 1
Ka

Ka∑
j=1

f aij (s)
}
,

and to predict human feedback on states, we define:

predstate(s) =


1, if 1

Ks

Ks∑
j=1

дj (s) > 0.5,

0, otherwise.
We calculate the empirical standard deviation of individual predic-
tion by different heads and use it as a proxy for the confidence value.
Let paj (s) = argmax

i ∈{1, ..., |A | }
f aij (s) denote the prediction of the j-th ac-

tion head. Then, the confidence value ca (s) for predicting human
feedback on actions can be obtained by computing the empirical
standard deviation:

ca (s) = 1 −

√√√√
1

Ka − 1

Ka∑
j=1

(
paj (s) −

∑Ka
j=1 p

a
j (s)

Ka

)2
The (proxy for the) confidence cs (s) of predicting the human feed-
back on states can be computed similarly.

3.3 Reward Shaping
The reward signal supplied by the environment can often be sparse
and/ or significantly delayed, although it can accurately define de-
sired goals for the agent. In order to make the learning procedure
more efficient, the human feedback can be introduced through re-
ward shaping. Once an approximation of the human feedbackmodel
is available, we can transfer the model output to more frequent
and timely reward signals, although this additional reward may
sometimes be incorrect due to an error made by human operator
providing the feedback.

In order tomake use of the feedback given by the human operator,
and not limit the agent’s performance when this operator makes
an error, we present a way to combine FNNs with the environment
reward. Let st , at , and st+1 respectively denote the state and action
at time t , and the next state after taking action at in st . The feedback
received on actions is transferred to an additional reward ra as:

ra (st ,at , st+1) =

{
1, if at = predaction(st ) and ca (st ) > 1 − βa
0, otherwise,

where βa is a pre-assigned constant threshold. If the action taken
by the agent is consistent with the best action predicted by the FNN
and the confidence of FNN in the prediction ca (st ) is higher than
1 − βa , then an additional reward is provided. Similarly, feedback
received on states can be transferred to an additional reward rs as:

rs (st ,at , st+1) =

{
1, if predstate(st+1) = 1 and cs (st+1) > 1 − βs
0, otherwise,

If re denotes the environment reward, the shaped reward r (st ,at , st+1)
is then:
r (st ,at , st+1) = re (st ,at , st+1) + λara (st ,at , st+1) + λsrs (st ,at , st+1),

(1)
where λa and λs are the weights, balancing the importance of the
three rewards. Although λa and λs can decay over time, during our
experiments we observed that keeping them constant works well.

3.4 Algorithm
We evaluate FRESH when it is used with deep RL algorithms that
use a replay buffer for learning, e.g. DQN. The procedure for col-

Algorithm 1 HumanFeedbackCollection
Input: Replay buffer Bq storing trajectory experience and buffer

Bf storing human feedback. Masking distributionsMs ,Ma
1: Sample a trajectory τ from Bq and visualize τ for feedback.
2: for (st ,at , rt , st+1) ∈ τ do
3: if new feedback on state fs is available then
4: sample ms ∼ Ms and store (st+1, fs ,ms )in Bf
5: end if
6: if new feedback on action fa is available then
7: sample ma ∼ Ma and store (st ,at , fa ,ma ) in Bf
8: end if
9: end for
10: return Bf

lecting the human feedback is summarized in Algorithm 1. First,
we sample a trajectory τ from the replay buffer Bq (line 1). Any
choice of sampling method can be used in this step. For example,
the trajectory with highest or lowest reward may be given higher
priority at different training stages. This sampled trajectory is then
presented to the human operator in order to receive feedback. The
speed at which τ is displayed to the human can be much slower
than actual game play. For example, when the states are represented
by images, we can apply a lower frame rate so that it will be easier
for the operator to assess states and actions in the trajectory. After
feedback on a state fs or feedback on an action fa is provided, a
mask ms ∈ Z

Ks or ma ∈ Z
Ka will be sampled from a masking
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distribution. This will indicate which heads this feedback should
be used to train. For example, the components of the mask can
be independently drawn from a Bernoulli distribution (double or
nothing bootstrap) or from an exponential distribution (Bayesian
non-parametric posterior of a Dirichlet process) [32]. We note that
feedback will not be provided on all states or actions, since the
human operator might refuse to provide an assessment if they are
not sure of the quality of the state/action. The feedback together
with the mask will be stored in the feedback buffer (line 3-8).

Algorithm 2 describes FRESH. The feedback buffer is initialized
by providing feedback on trajectories from random play to train the
feedback networks FNN (lines 1-7). The FNNs are updated using
stochastic gradient descent (SGD). For training the value networks
Q , we use a DQN-based algorithm [42, 43], but the reward function
is changed to Equation (1) (lines 9-12). The human operator is
asked to provide feedback every Nc episodes (lines 13-15). If Nf
new feedback signals are available, the FNN is re-tuned (lines 16-19).

Algorithm 2 FRESH for DQN
Input: Value networksQ . Feedback networks FNN. Masking distri-

butionsMs ,Ma . Replay buffer Bq storing experience for train-
ing DQN and buffer Bf storing human feedback for training
FNN. Thresholds βa and βs . Weights λa and λs . Feedback col-
lection frequency Nc and FNN update frequency Nf . Initial
number of trajectories and feedback ni andmi .

1: repeat
2: Sample trajectories based on random play and store trajecto-

ries in Bq .
3: until Collect ni trajectories in Bq
4: repeat
5: Bf = HumanFeedbackCollection(Bq ,Bf ,Ms ,Ma )

6: until collectmi feedback in Bf
7: sample batches from Bf and update FNN using SGD
8: for Episode i=1, . . . do
9: repeat
10: execute action a = argmaxa Q(s,a), observe reward r and

next state s ′ and store (s,a, r , s ′) in Bq
11: update Q using DQN algorithm but change reward func-

tion to Equation (1)
12: until end of episode
13: if i % Nc == 0 then
14: Bf = HumanFeedbackCollection(Bq ,Bf ,Ms ,Ma )

15: end if
16: if Number of new feedback newf > Nf then
17: sample batches from Bf and update FNN using SGD
18: newf ← 0
19: end if
20: end for

4 EXPERIMENTAL EVALUATION
We evaluate FRESH on two Atari games in the Arcade Learning
Environment [3]. Figure 3 shows screen shots of game play in the
Bowling and Skiing environments. Although human experts can
achieve high scores with relative ease in these games, it has been

Figure 3: Snapshots from game-play in the Atari games of
Bowling (left) and Skiing (right). In Bowling, the goal for the
player is to roll the ball and knock down asmany pins as pos-
sible. In Skiing, the goal for the player is to reach the bottom
of a valley as soon as possible, and at the same time, pass
through as many gates as possible while avoiding obstacles.

extremely difficult for state-of-the-art deep reinforcement learning
(DRL) algorithms tomatch this.We observe that the performance on
these games using FRESH compares favorably with that of a human
expert, and is significantly improved over other DRL algorithms.

4.1 Game Description and Experiment Setup
The Bowling game comprises four actions, no-action, up, down, fire.
A game lasts 10 rounds and the player (agent) gets two chances in
each round to roll the bowling ball to knock down as many pins
as possible. The game begins with the player choosing a position
to release (fire) the ball by moving vertically using actions up or
down. After releasing the ball, the player gets one chance to steer
the direction of the ball by taking actions up or down. The reward
structure of the game makes it difficult for state-of-the-art deep
reinforcement learning (DRL) algorithms to obtain a high reward.
In particular, the player does not receive an immediate reward if
all pins are knocked down in one turn. Instead, this reward will be
supplied at the end of the next turn, together with the reward for
that turn. This makes it difficult for DRL algorithms to correctly
provide credit for actions by simply looking at the reward.

The Skiing game consists of three actions, no-action, left, right.
The player controls their direction of motion in order to avoid obsta-
cles (trees and moguls) and pass through the gates. The goal for the
player is to reach the bottom of the valley as soon as possible, and
in the process, pass through as many gates as possible. This game
is difficult for DRL algorithms to play since the reward indicating
the number of gates passed through is supplied only at the end the
game, making the credit assignment task difficult.

In all our experiments, we use the same neural network archi-
tecture and hyper-parameters for DQN as [43] does. Additionally,
we apply double Q-learning [42] to avoid overestimation of action
values. The shared network of our feedback neural network (FNN)
has the same architecture as the convolutional layers of DQN, and
each head of the FNN adopts three fully-connected layers with
batch-normalization. Each state is a tensor stacked by 4 gray-scale
images, obtained by converting 4 consecutive colored video game
frames. The regions of the frames showing the game score are
removed when the frame is an input to the FNN. We clip the en-
vironment reward using the same approach as [29] does, and set
λa = 0.2 and λs = 0.1 across the experiments. In the early stages
of training the FNN, when sufficient diverse feedback signals are
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Figure 4: FRESH outperforms state-of-the-art deep rein-
forcement learning algorithms, and also outperforms a hu-
man expert player in Bowling. The shaded region indicates
the variance of the reward.

not available, the agent might be distracted from the true goal and
run into a cycling problem, as indicated in [31]. To alleviate this
problem, when |st − st−1 | is smaller than a known threshold value
(which is indicative of the agent being stuck in a local state), we
give the agent a penalty to offset the reward supplied by the FNN.
This works well in our experiments. Bernoulli distribution is used
as the masking distribution. To evaluate Algorithm 2, a human
operator provides feedback using a computer with an user interface
to visualize trajectories and receiving feedback. While providing
feedback, the human trainer is allowed to say not sure for states
and actions for which the human is not sure about the quality. In
the following, we first evaluate the performance of FRESH in both
Bowling and Skiing and then present a detailed study on the effect
of the different components of the FNN in Bowling.

4.2 FRESH for Bowling and Skiing
We first collect ni = 100 trajectories using random play, which are
sorted based on the accumulated reward. The trajectory with the
highest reward is given the highest priority to obtain human feed-
back. We collect a total ofmi = 500 feedback signals for Bowling
andmi = 5000 signals for Skiing from trajectories of random play.
While training the DQN, we collect feedback signals every Nc = 30
episodes. When Nf = 300 new feedback signals is available, we
update the FNN using all the data in the feedback buffer. In our
experiments, we observed that the ratio of the feedback signal good
over bad is around 0.2. In this section, we fix the number of heads
Ka = Ks = 10 and thresholds (βa = 1.0, βs = 0.02).

Figures 4 and 5 show the performance of FRESH in Bowling and
Skiing. Each curve is an average over five runs with different human
feedback and initialization. Shaded regions indicate the standard
deviation. We compare the performance of FRESH (Algorithm 2)
with Double-DQN [42], IMPALA [8], Rainbow [16], and Human
expert. We use the best final performance reported in the literature
for Double-DQN, IMPALA and Rainbow. The human expert perfor-
mance data is from [29]. Since the trained FNN is able to output an
estimated best action for every state, it can also be used as a policy.
Therefore, we report the performance of using FNN alone as well.

FRESH allows the agent to learn good policies in both environ-
ments. In contrast, state-of-the-art DRL algorithms fail even after
training for > 100 million frames. FRESH lets the agent learn poli-
cies that allow it to obtain higher scores than a human expert in
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Figure 5: FRESH outperforms state-of-the-art deep rein-
forcement learning algorithms, and performs as well as a
human expert player in Skiing. The shaded region indicates
the variance of the reward.

Bowling. This indicates that FRESH can not only guide the learn-
ing process but also that the final performance is not limited by
the quality of feedback. In Skiing, FRESH outperforms the policy
induced by the FNN and achieve a similar score as a human expert.

We observe that FRESH allows the agent to achieve an average
score of 187 in Bowling. This is 21.4% higher than the average score
obtained by a human expert in this environment. The highest score
obtained by our algorithm in Bowling is > 200. State-of-the-art deep
RL algorithms perform poorly in comparison- DDQN obtains an
average score of 70.5, while the other methods report an even lower
score. Deep-TAMER [45], on the other hand, is able to achieve an
average score of around 180, and a high-score of around 200. In
Skiing, FRESH is able to obtain an average score of −4400, which
is equal to that obtained by an human expert player. The deep RL
algorithms perform poorly in this environment also. The authors
of [45] do not report a score in the Skiing environment.

4.3 Discussion: Bowling
In order to better understand the performance of our algorithm, we
carry out several modifications:

(1) Type of feedback: We train the FNN using feedback on actions
only, feedback on states only, or feedback on both actions and
states. The number of heads of the FNN is fixed atKa = Ks =
10, and the thresholds are fixed to (βa = 1.0, βs = 0.02).

(2) Number of heads: We modify the number of heads of the
FNN. We consider the cases: Ka = Ks = 1 (no ensemble),
Ka = Ks = 5, Ka = Ks = 10 and Ka = Ks = 20. When
Ka ,Ks > 1, thresholds are fixed to βa = 1.0 and βs = 0.02.
Feedback on both states and actions is used to train the FNN.

(3) Thresholds: We fix Ka = Ks = 10 and use feedback on both
states and actions to train the FNN, but vary the thresholds.
We compare: no threshold, (βa = 1.0, βs = 0.02), (βa =
1.0, βs = 0.2), (βa = 0.5, βs = 0.02).

Due to the difficulty of obtaining large amounts of human interac-
tion data, we reuse feedback data collected from the experiments
of the previous section and train FNN at the start of DQN training.

Figure 6 compares the effect of using different types of feedback
for training the FNN. We observe that feedback provided on both
states and actions, or only on actions allows the agent to achieve
super-human performance. Providing feedback on actions alone
is only slightly worse in terms of average reward obtained and
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Figure 6: Effect of using different types of feedback in Bowl-
ing. The highest scores are achieved when both, feedback
on states and actions are used. Providing feedback on states
alone is not sufficient to guide the agent’s learning process.
The shaded region indicates the variance of the reward.
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does not have the confidence to discard less useful outputs.
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Figure 8: Averaged standard deviation of rewards in Bowl-
ing for different number of FNN heads. Using 10 heads has
the lowest average standard deviation. Having fewer heads
could result in the FNN retaining less useful outputs, while
having more heads makes training more difficult.

number of episodes required to perform better than a human expert.
In comparison, if only feedback on states is used to train the FNN,
the agent is not able to obtain a high reward. This indicates that
feedback on states alone is not sufficient to efficiently guide the
agent’s learning process. A signal that incorporates feedback on
actions taken at a state is better suited for this environment.
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Figure 9: Effect of using different thresholds in Bowling.
βa = 1.0 and βs = 0.02 results in the highest reward. βa = 1.0
retains about 97% of the FNN output, and βs = 0.02 retains
about 85% of the FNN output.
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Figure 10: Averaged standard deviation of obtained rewards
in Bowling for different threshold values. βa = 1.0, βs = 0.02
results in the lowest average standard deviation. Standard
deviations for other threshold values is higher due to the
FNN rejecting or accepting too many outputs of the FNN.

In Figures 7 and 8, we show the effect of varying the number
of heads of the FNN on the learning process. When no ensemble
is used, the average reward obtained is lower than that received
by a human expert, and the (mean of the) standard deviation of
the reward is high. This is an indication that in the absence of an
ensemble, the agent could obtain a higher reward than a human ex-
pert player in some cases, but the large variance could also indicate
that the performance is unstable. We observe that Ka = Ks = 10
yields the best performance in terms of both variance (lowest) and
averaged reward (highest). Our conjecture is that having too many
heads can make the training process more difficult while having
too few heads might not be able to provide a good confidence value
in order to discard some less useful outputs of the FNN.

Figures 9 and 10 show the effect of using different thresholds to
eliminate some outputs of the FNN. FRESH performs the best in
terms of the average reward obtained, and variance of this reward
when (βa = 1.0, βs = 0.02). In this case, setting βa = 1.0 retains
about 97% of the FNN outputs, and βs = 0.02 retains about 85% of
the FNN output. We observe that for some other threshold values,
the performance is degraded due to rejecting or accepting too many
outputs of the FNN (for example, βa = 0.5 rejects around 15% and
βs = 0.2 keeps around 97% of the FNN outputs).
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5 RELATEDWORK
The role of feedback provided by a human to an agent in RL set-
tings has been studied by multiple researchers. A survey of recent
research in using human guidance for deep RL tasks is presented
in [50]. We summarize related work in some of these techniques
that are most relevant to this paper in this section.

Reward shaping modifies rewards supplied by the environment
to accelerate the learning process of the agent [5, 17, 41]. A frame-
work called TAMER (Training an Agent Manually via Evaluative Re-
inforcement) that enabled shaping (interactively training an agent
via an external signal provided by a human) was presented in [21].
This work was extended to enable human feedback to augment an
RL agent that learned using an MDP reward signal in [22, 23]. The
outcome was that using this human feedback achieved a significant
reduction in sample complexity. More recently, the authors of [45]
proposed Deep-TAMER, an architecture that extends the TAMER
framework to environments with high-dimensional state spaces.
In Deep-TAMER, the policy is given by a neural network that is
trained via supervised learning using data from feedback provided
by a human operator (while not considering the reward given by
the environment). Another extension of TAMER, DQN-TAMER [1],
modeled additional characteristics of human observers like infer-
ring human reward from facial expressions. Signals provided by
the human operator in TAMER was a numerical value indicative of
how good the agent’s behavior was, in the opinion of the operator.

Potential-based reward shaping (PBRS) methods used ‘poten-
tial functions’ to accelerate the learning process, while preserving
the identity of optimal policies [31, 47, 49]. The potential function
was designed to encode ‘rules’ of the environment of the RL agent.
However, potential functions will typically need to be pre-specified.
This has restricted the use of PBRS to tabular/ low-dimensional
state spaces [15, 38]. The cycling problem (repeatedly visiting cer-
tain states) mention in Section 4.1 can be resolved by PBRS. This
suggests that transforming the FNN output to a potential-based
reward is an interesting direction of future research.

Preference-based RL [6] was used to communicate complex goals
to allow systems to interact with real-world environments in a
meaningful way. Although this approach required a human ob-
server to compare trajectories and provide feedback during training,
it alleviated the need for expert observers, since non-experts can eas-
ily compare and distinguish between ‘good’ and ‘bad’ trajectories.
The human preferences were translated into a scalar reward, which
was then used as a reward signal to an RL algorithm. This allowed
the RL agent to directly learn from expert preferences. However,
this approach is limited by assumptions on the existence of a (total)
order among the set of trajectories. A survey of preference-based
RL methods is presented in [48] for the interested reader.

Consequences of the type and quality of human feedback that
could result in forgetting of learned behavior was presented in
COACH [28], which used policy-dependent human feedback to
learn an optimal policy. The human feedback was interpreted as an
unbiased estimate of the advantage function (i.e., the incremental
value derived by an action in comparison to the current policy). The
authors demonstrated that the role of human feedback is diminished
as the agent learns the desired behavior. An extension to domains
with large state spaces, Deep-COACH, was presented in [2].

Another policy-based method to provide human feedback is pol-
icy shaping [12]. Here, feedback is a label on the optimality of an
action, rather than a reward signal added to the reward from the
environment. In this setup, the RL agent, in addition to receiving a
reward from the environment, obtained an indication of whether
the most recent action was correct or incorrect, and this label was
used to infer the human’s belief of the optimal policy in the current
state. Further, it could be the case that there might be inconsisten-
cies between the intended communication of the human and the
information received by the agent, which results in the construction
of a Bayes optimal feedback policy. Extensions to this work consid-
ered the effect of human attention [9]- which allows a robot (the RL
agent) to learn desired behaviors faster by encouraging exploration
of the environment in the presence of human supervision and ex-
ploiting actions for which positive feedback has been provided in
states previously observed by the human supervisor- and settings
where the robot can request feedback in states where it is not sure
of the feedback received previously [20]. A similar approach that
studied the interpretation of feedback strategies adopted by a hu-
man trainer as a probabilistic model was presented in [27], and this
resulted in a strategy-aware Bayesian learning (SABL) algorithm.

Demonstrations provided by a human operator were used to
synthesize a ‘baseline policy’ in Human-Agent Transfer (HAT) [40].
This baseline policy was then used to guide learning during the RL
procedure. CHAT [44] extended HAT to consider possible errors
made while summarizing demonstrations, and used this uncertainty
to improve performance. Instead of providing demonstrations, the
authors of [35] presented DAGGER, an iterative imitation learning
method which required a domain expert be available to provide
correct actions during the entire learning process. A subsequent
paper [19] presented HG-DAGGER that predicted the performance
of the agent using a threshold that modeled uncertainty.

6 CONCLUSION
We presented FRESH, a feedback-based reward shaping framework
to effectively integrate human feedback with deep RL algorithms
in high-dimensional state spaces. We used a feedback neural net-
work to effectively generalize feedback signals provided by the
human operator, and an ensemble of neural networks to represent
the confidence of the neural network in its output. Our approach
was evaluated on the Bowling and Skiing Atari games of the ar-
cade learning environment. FRESH performed much better than
state-of-the-art deep learning algorithms in these environments.
In Bowling, FRESH obtained an average score of 187, which was
21.4% higher than the score obtained by a human expert [29]. The
highest score obtained by FRESH in Bowling was > 200. In Skiing,
FRESH obtained an average score of −4400, which was equal to
that obtained by a human expert player.
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