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ABSTRACT
Crowdsourcing platforms operate by offering their clients the abil-

ity to obtain cost-effective solutions for their problems through

contests. The top contestants with the best solutions are rewarded,

and the submitted solutions are provided to the clients. Within

the platforms, the contestants can self-select which contest they

compete in. In this paper, we measure crowdsourcing efficiency

induces by the strategic behavior of contestants. We first propose a

game-theoretic model of self-selection in Tullock contests (SSTC).
To study the efficiency of SSTC, we establish the existence of a pure-

strategy Nash equilibrium (PSNE). We then study the efficiency,

via the price of anarchy (PoA), that comes from the worst-case

equilibria of SSTC. We develop general efficiency PoA bounds with

respect to PSNE, fully mixed NE, and general equilibrium concepts.

For the case of identical contestants, we show that the pure and

fully mixed PoA are one when the number of contestants is large –

implying self-selection is efficient. In simulations, we show that an

empirical bound well approximates the pure PoA, and the bound

goes to one as the number of contestants becomes large.
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1 INTRODUCTION
Due to the recent successes [9, 11] in using crowdsourcing platforms

such as Topcoder and Freelancer to generate high-quality, low-cost

solutions for real-world problems, the economy for task completion

and problem-solving has now shifted to include crowdsourcing.

Crowdsourcing platforms organize and post a client’s problem

as an online contest, and the online workers or contestants sign up

to compete by submitting solutions. After the contest, a reward is

assigned to the winner, and the submitted solutions are provided

to the client. Within a crowdsourcing platform, each contestant

can self-select which contest s/he competes in, and maybe strategic

in this choice to maximize his/her utilities. The platform’s goal is

to ensure each contest produces quality solutions with sufficient

contestants and effort in each contest. However, the contestants’
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self-selection outcome may be different from an optimal, efficient

outcome of the platform. As a result, the platform’s solution quali-

ties depend crucially on contestants’ strategic behavior.

Contribution. We aim to address the efficiency question of self-

selection in crowdsourcing contests from a theoretical perspective.

To answer the question, we provide the following contributions. (1)

We propose and study a novel model of self-selection in Tullock

contests (SSTC) to account form Tullock contests and each of the

n contestants’ ability to select a contest to compete in. (2) We show

that there is a polynomial time algorithm to compute a pure-strategy

Nash equilibrium (PSNE). (3) We define the platform’s objective to

be the aggregate effort of the contestants in the contests and use the

price of anarchy (PoA) to measure the efficiency of self-selection

(verse the worst equilibria). We derive PoA bounds with respect to

PSNE, fully mixed NE, and general equilibrium concepts (see Table

1). (4) We conduct simulations on randomly generated SSTC and

show that our pure PoA bound can be quite large. We show that an

empirical bound well approximates the pure PoA, and the bound

goes to one as the number of contestants becomes large.

2 SELF-SELECTION IN TULLOCK CONTESTS
To define the game of self-selection in Tullock contests (SSTC), we

let M = {1, ...,m} be the set of the same-typem Tullock contests

and N = {1, ...,n} be the set of n contestants. A (pure) strategy

of a contestant i is si = (ai , ei ) with a binary selection vector ai
and an effort vector ei ∈ R

+
0

m
of sizem where ai j = 1 denotes the

selection of contest j and ei j denotes the i’s effort in contest j ∈ M .

Thus, the strategy set of contestant i ∈ N is Si ∈ A × R+
0

m
and

A = {ai ∈ {0, 1}
m |
∑
j ∈M ai j = 1}. We let S = S1 × ... × Sn denote

the joint-pure strategy profile of the contestants. We let vi to be

the value of i ∈ N for winning the contests.

Given a joint pure-strategy profile s = (si , s−i ) ∈ S , the utility of
contestant i is ui (si , s−i ) =

∑m
j=1 ai j (vipi j (s)−ei j ), where pi j (s) =

ai j ei j∑
k∈N ak j ek j

is i’s probability of winning contest j given s;pi j (s) = 0

when ai j = 0 for every i ∈ N and pi j (s) = 1∑n
k=1 ak j

when ei j = 0

and ai j = 1 for each i ∈ N . When there is a single contestant, the

contestant wins the prize with probability 1 with zero and negligible

effort (i.e., pi j (s) = 1 and ei j = 0 if ai j = 1 and

∑
k ∈N ak j = 1).

Due to the uniqueness of the PSNE in a single Tullock contest and

the two-stage setup of the game, given the contest selection profile

a = (ai , a−i ) ∈ An , the ei j for each contestant i ∈ N and contest

j ∈ M can be determined deterministically via the equilibrium

characterization in [8, 14] (denoted as e∗i j ). Thus, a PSNE in SSTC

boils down to finding a stable contest selection profile.

Theorem 2.1. For any game of SSTC, there is a PSNE. Moreover,
we can find one in polynomial time.
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3 POA ANALYSIS OF SSTC
In the crowdsourcing setting, the contestants’ efforts are often trans-

lated into solutions of different qualities. While the top solution

is often announced as the winner in a contest, the other submit-

ted solutions are not completely discarded (i.e., different machine

learning classifiers can be combined to build a more powerful clas-

sifier via some ensemble approaches; see also [11]). As a result, the

platform seeks many high-quality solutions, which correspond to

the overall effort of a contest. The overall effort objective given a

profile a ∈ An is OE (a) =
∑n
i=1
∑m
j=1 ai je

∗
i j (ai ,a−i ). The platform

wants to find an aopt ∈ argmaxa∈An OE (a). The pure PoA [10] of

SSTC is PoA = maxa∗ is a PSNE
OE (aopt )
OE (a∗ ) , which is the ratio of the

overall effort of the optimal profile OE (aopt ) and the overall effort

of the worst PSNE of SSTC. PoA can be defined with respect to fully

mixed NE and other equilibrium concepts. Table 1 summarizes our

PoA results. We refer the readers to the full version of the paper

for the complete theorems and proofs.

Table 1: PoA Results for Various Equilibrium Concepts
Equilibrium Heterogeneous Homogeneous

PSNE ≤ 2mv1/vn 1 (n ≥ 2m)

Fully Mixed NE See Full Paper 1 (n → ∞)

General See Full Paper ≤ 2m(m + n) −m
v1 (vn ) is the highest (lowest) contestant value for winning

v1 = ... = vn in the homogenous settings

4 SIMULATIONS: POA AND PSNE
We consider randomly generated SSTC instances where the con-

testants’ values are drawn uniformly from [0, 1]. The results are

averaged over 100 instances. We denote a∗ to be the PSNE from The-

orem 2.1, Bound1 = mOE
[n] (1n ), Bound2 = mv1, and LB = n1

vn
2

(see the full paper). For small instances of the generated SSTC

games, we show (i) the overall effort of our PSNE is close to that

of the worst PSNE and (ii) our Bound1 can be used to approximate

OE (aopt ). We then study large numbers of contestants setting.

Comparing PoA Bounds.We show the average PoA bounds of

the instances in Table 2. Since we use brute force to compute aopt

and the (exact) PoA, we are restricted to small instance sizes. Our

derived bounds (last two columns) are too loose due to LB(=vn/2)
being too small and vn is drawn uniformly from [0, 1]. We would

expect our bounds to be better if the values are distributed closely.

Our a∗ provides a good lower bound since PoA is very close to

OE (aopt )
OE (a∗ ) , and

Bound1
OE (a∗ ) is a good approximation to PoA when the

number of contests/contestants is small/large. We observe that

the PoA bounds increase as the number of contests increases and

decrease as the number of contestants increases.

Table 2: Pure PoA Bounds
n,m PoA

OE (aopt )
OE (a∗ )

Bound1
OE (a∗ )

Bound2
OE (a∗ )

Bound1
LB

10,2 1.05 1.05 1.33 2.11 49.51

10,3 1.10 1.10 1.77 2.83 76.45

15,2 1.04 1.03 1.24 1.82 79.55

15,3 1.07 1.07 1.51 2.21 138.68

Large Numbers of Contestants. When the number of contes-

tants is large, we focus on
Bound1
OE (a∗ ) .We considern = {30, 60, 120, 240,

480, 960} andm = {10, 20}. Figure 1(a) Right shows the values of
Bound1
OE (a∗ ) as the number of contestants increases when there are 10
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Figure 1: Properties of PSNE from Theorem 2.1. (a) Left - The Dis-
tributions of (Active) Contestants in Contests (a) Right - The PoA
approximation from Bound1

OE (a∗ ) , (b) The numbers/percentages of active
contestants in contests, and (c)n×m-grid representation of a∗ (white
= 1, black = 0, v1 ≥ ....vn , only active contestants)

and 20 contests. Given that
Bound1
OE (a∗ ) is an approximation to PoA,

this suggests that PoA could converge to one as the number of

contestants increases. Figure 1(a) Left shows the distributions of

contestants over contests and indicates that the contestants are

evenly distributed with a large number of contestants (n > 60). As

the number of contestants grows, the minimum number of contes-

tants in each contest increases while only a small fraction of top

contestants (with the highest values) compete in contests (Figure

1(b)). However, more contests lead to more overall participation

with fewer contestants in each contest. Figure 1(c) depicts the PSNE

generated from Theorem 2.1 for two random instances.

5 RELATEDWORK
Multiple Contest Models. The work of [6] considers contestants

who select multiple contests to compete in for prizes under the

multiple all-pay auctions with incomplete information framework

where first each contestant chooses a contest and a bid and then the

highest bid winner is announced. The major difference is that we

consider multiple Tullock contests with complete information. The

work of [1, 2] and [12] considers self-selection of contestants in

two contests of various prize structures under different variations

of Tullock contests and Lazear and Rosen models, respectively.

The closest work to ours is [4] where all contestants are homoge-

nous but have a different value for each contest. They provide a

partial PSNE characterization result when the game satisfies some

(integral) conditions. They consider a similar platform’s objective

and PoA related problem (e.g., difference instead of ratio) for PSNE.

Our pure PoA = 1 result coincides with theirs in the case of ho-

mogenous SSTC. Their result holds when the number of contestants

goes to infinity (i.e., n → ∞) while our bound is explicit and tighter.
PoA Analysis in Auctions.Most of the PoA results in auctions

are for social welfare functions (platform’s objective) defined on

the values (in opposed to revenue/effort) of the buyers (e.g., see

[5, 13, 15]). The onlyworkwe are aware of is [7] where they consider

the PoA of revenue, suggesting a PoA analysis for contests when

modeled all-pay auctions with incomplete information. Another

seemingly related work is that of valid utility games [3, 16]. Valid

utility games assume that social welfare is no less than the sum of

the utility of the players. This assumption does not hold for us.
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