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ABSTRACT
In the capacitated production planning problem, quantities of prod-
ucts need to be determined at consecutive periods within a given
time horizon when product demands, costs, and production capaci-
ties vary through time. We focus on a general formulation of this
problem where each product is produced in one step and setup cost
is paid at each period of production. Additionally, products can be
anticipated or backordered in respect to the demand period. We
propose a computationally efficient decentralized approach based
on the spillover effect relating to the accumulation of production
costs of each product demand through time. The performance of
the spillover algorithm is compared against the state-of-the-art
mixed integer programming branch-and-bound solver CPLEX 12.8
considering optimality gap and computational time.
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1 INTRODUCTION
Production planning considers the best use of resources to satisfy
the production demand over a time horizon while guaranteeing
service quality and minimizing production and inventory costs.
In contexts of a production demand that varies through time and
scarcity of resources to satisfy the demand, the dynamic capaci-
tated lot-sizing problem (CLSP) addresses questions like when and
how much to produce of each product such that overall production
costs are minimised [2, 11]. In this paper, we focus on deterministic,
single-level, multi-item CLSP with backorders and independent
setup costs (MCLSP-BO). That is, we address the problem of pro-
ducing multiple items from raw material with no intermediate
subassemblies using backordering [16] (possibility of satisfying the
demand of the current period in future periods).
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Anticipating or delaying production planning is crucial in con-
texts of a very high demand [15, 21]. The main question in MCLSP-
BO is which items to backorder, which ones to produce at the time
of demand release, and which ones beforehand [6, 10]. This is an
NP-hard problem [1] which has been mostly addressed with heuris-
tic approximations like the improvement heuristics, which start
from an initial (often infeasible) solution for the complete planning
horizon and then try to enforce feasibility conditions by shifting
lots from period to period at minimal extra cost [2, 13]. There also
exist meta-heuristic approaches based on the linear programming
relaxation of a shortest path formulation of the same problem, tabu
search algorithms [12], heuristic algorithms based on local optima
[4] that examine the Lagrangean relaxation and design heuristics
to generate upper bounds within a subgradient optimization proce-
dure [19], or genetic algorithms that use fix-and-optimize heuristic
and other mathematical programming techniques [20].

Existing approaches to MCLSP-BO are centralized solutions that
apply to only one decision maker. As such, they are not adaptable
to address intrinsically decentralized scenarios like those in supply
chain management, surgical scheduling of patients to a network of
private hospitals, aircraft arrival planning, or telecommunications
packet scheduling. We propose a decentralized multi-agent algo-
rithm based on the spillover effect, which is defined as a situation
that starts in one place and expands or has an effect elsewhere [18].
Particularly, the spillover effect attempts to find the best allocation
of resources to each item demand and time period based on the or-
dering of accumulated costs, and spreads the non-allocated demand
over the time horizon. We leverage the spillover effect to design,
to the best of our knowledge, the first decentralized algorithmic
solution approach to the MCLSP-BO problem.

2 PROBLEM FORMULATION
The MCLSP-BO belongs to the class of deterministic dynamic lot-
sizing problemswell known in the inventorymanagement literature
[2, 10, 11, 14, 16, 17]. The objective is to find a production schedule
for a set I of items minimizing the total backorder, holding inven-
tory, production, and independent setup costs over a finite time
horizonT = {1, . . . , |T |} subject to demand and capacity constraints.
Incoming orders are demands dit for item i ∈ I at each time period
t ∈ T . The number of resources available at the beginning of period
t is given by Rt . We assume a time-varying setup cost sit and a
linear production cost cit for item i produced at time t . Demand dit
can be anticipated or delayed in regards to the requested time t . If
anticipated, it is at the expense of a linear holding cost hit ′ , t ′ < t ,
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accrued per each anticipated time unit; if delayed, a linear backo-
rder cost bit ′ , t ′ > t , is accrued for every delayed time unit. There
is a buffer associated to each combination item-time such that its
content is increased by production quantity uit and reduced by
demand dit . Hence, if uit = dit , there is no stock nor backorder of
i at t ; if uit > dit there is stock of i at t ; and if uit < dit there is a
backorder of demands of item i at time t . We represent the stock
level as x+it and the backorder level as x

−
it and note that x

+
it ·x

−
it = 0

since no stock and backorder can coexist at the same time.
The single CLSP is NP-hard for many special cases [1, 7] and the

MCLSP is proved to be strongly NP-hard [3]. Unlike the MCLSP
model presented in [1], which does not feature integrality con-
straints for variables uit ,x+it ,x

−
it , we assume non-negative integer

values for these variables, thus leading to a generally NP-complete
integer programming problem.

3 THE SPILLOVER ALGORITHM
The spillover algorithm builds upon an iterative auction model.
The demand of item i at time t is represented by an autonomous
liquid agent a = (i, t ) that solves a single-item CLSP and bids for
the allocation of demand da . Unlike models that use a single re-
source allocating agent [8, 9], we propose a decentralized approach
with multiple time container agents, one per each period k ∈ T
constrained by available resources (capacity) Rk . Hence, each one
of |A| = |I | · |T | liquid agents bids for allocation of its own demand
da in periods k ∈ T with locally minimum cost. Each container
agent k ∈ T allocates its available resources to bidders ensuring that∑
a uak ≤ Rk ; i.e., the sum of allocated demands remains bounded

by its capacity Rk . A liquid agent (i, t ) is thus regarded as having
a chamber chamberik at each container k whose volume uak ≥ 0
is dependent of the volumes of other liquid agents allocated to the
container and upper-bounded by the container’s capacity Rk .

Liquid agent a iteratively requests resource allocation in con-
tainer agents k ∈ T until its demand da doesn’t get completely
allocated, i.e.,

∑
k ∈T uak = da or it hasn’t bid for all k ∈ T . Initially,

this demand is released at container k = t , which is modelled as a
rational collaborative agent that controls the a’s demand through
valve cak (production uak ). Depending on how much liquid of da
is produced at t , agent a negotiates advancing or postponing the
demand with the containers before or after t through two types of
valves, a valve to control the flow of demand of a to the posterior
time periods k ∈ {t + 1, . . . , |T |} and a valve to control the flow
of liquid agent (i, t ) to time periods prior t ; i.e., k ∈ {t − 1, . . . , 1}.
Figure 1 shows the flow of demand of a particular item i = 1 at
container t , across subsequent containers t + 1, t + 2, . . ., and prior
containers t − 1, t − 2, etc.

The anytime spillover algorithm iteratively runsmultiple auction-
based negotiations between liquid and container agents. Containers
announce their available resources and liquid agents bid for avail-
able containers with locally lowest cost. Then containers assign the
demand of liquid agents that locally maximize their social welfare.
It is essentially a decentralized heuristic approach that spills the
demand dit of liquid agent (i, t ) over neighbouring containers due
to limited capacity of container t to satisfy such demand; and this
applies to every item i at every time period t . Generally speak-
ing, given a liquid agent a = (i, t ), the direction and quantity of

Figure 1: Flow of demand of a liquid agent (1, t )

spillage depends on: (1) accumulated unit production cost (UPCak )
for time period k : Eq. (1) (set up cost and production cost at k plus
accumulated holding and backorder costs if any); and (b) estimated
accumulated cost (EACa ): Eq. (2), where Γa ⊂ T is the set of avail-
able containers that have capacity to produce at least one unit of
their product.

UPCak =




cik + sik +
∑t−1
m=k him , ∀k ∈ T |k < t

cik + sik , for k = t

cik + sik +
∑k
m=t+1 bim , ∀k ∈ T |k > t

M ·
∑k
m=t+1 bim , for k = |T | + 1

(1)

EACa =
∑

k ∈Γa∪{ |T |+1}
UPCak (2)

4 EXPERIMENTS AND RESULTS
We compared the performance of our spillover algorithm, the first
decentralized approach to theMCLSP-BO – to the best of our knowl-
edge –, with a centralized and optimal CPLEX solution over ran-
domly generated and diversified problem set for large-scale capaci-
tated lot-sizing. The experiment parameters are generated similarly
to [5] and [9]. Table 1 shows the optimality gap in relation to the
centralized solution found by CPLEX and the computational time
of the Spillover algorithm. The average optimality gap is 25% and
we can observe it is not generally dependent on the number of
items. The computational time is less than 0.1 in all experiments,
which contrasts with the exponentially increasing time of CPLEX.
Besides the significant results of the algorithm, we also highlight
other benefits of decentralizing MLCSP-BO such as keeping the
minimum possible exposition of private agent information.

Table 1: Summary of the computational results

# items 50 60 70 80 90 100 110 120 130 140 150

Avg. Gap (%) 28 28 30 16 16 28 27 28 27 27 27
CPU time (ms) 11 12 18 16 18 19 23 24 27 28 30
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