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ABSTRACT
Manywebsites that recommend various services use crowdsourcing
to collect reviews and rankings. These rankings, usually concern-
ing a subset of all the offered alternatives, are then aggregated.
Motivated by such scenarios, we axiomatise a family of positional
scoring rules for profiles of possibly incomplete individual prefer-
ences. Many opportunities arise for the agents to manipulate the
outcome in this setting. They may lie in order to obtain a better
result by: (𝑖) switching the order of a ranked pair of alternatives,
(𝑖𝑖) omitting some of their truthful preferences, or (𝑖𝑖𝑖) reporting
more preferences than the ones they truthfully hold. After formalis-
ing these new concepts, we characterise all positional scoring rules
that are immune to manipulation.
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1 INTRODUCTION
The Internet seems to be a perfect environment for liars. Users
can—and do—express falsehoods, using anonymity to avoid ac-
countability. Another factor at play is the sheer amount of issues
provided by a global network, far too many for any single person
to have opinions about them all. So, a user can lie, not only in terms
of the quality, but also in terms of the quantity of the information
she holds. In fact, we can identify three types of lying: First, the
user can assert something she believes to be false; second, she can
refrain from asserting something that she believes to be true; third,
she can assert something where in reality she has no opinion.

Although lying seems eminently possible for Internet users, there
are many cases where it is nevertheless desired to solicit their true
opinions, as when crowdsourcing reviews. In this paper we apply
the three types of misrepresentation outlined above to preference
aggregation over incomplete preferences. Specifically, we consider
voting rules, which aim to select the best alternatives of a given
set. Such rules, traditionally studied by economists, have recently
received much attention from the community of computational
social choice [6]. More generally, developments in technology have
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opened many new avenues for research concerning preference
aggregation under the scope of multiagent systems and AI [8].

The study of incomplete preferences is one such avenue that
has already been explored [2, 11, 12, 17, 19–22, 27]. In particular,
Terzopoulou and Endriss [26] recently proposed a model that al-
lows for incomplete preferences that are not necessarily transitive,
covering cases like the one illustrated in the following example.

Example 1. You have been asked by a travel website to rank
different hotels according to your preferences. You have only visited
three hotels: Sandy Cabins (which is by the seaside), Luxury Towers
(which is in the city), and Snowy Chalets (which is in the mountains).
You know that you prefer Sandy Cabins to Luxury Towers when it is
summer, and Luxury Towers to Snowy Chalets when it is winter. But
you would only go to the seaside during summer, and you would
only go to the mountains in winter, so comparing Sandy Cabins
and Snowy Chalets does not make sense to you.

As well as providing an example of a non-transitive collection of
pairwise preferences, Example 1 suggests that some preferences
may be intrinsically incomplete.1

We abstract away from specific cases and refer to arbitrary alter-
natives as 𝑎, 𝑏, 𝑐 ,. . . Incomplete preferences over such alternatives
are readily representable as directed acyclic graphs, for example:

a b c d
An arrow a b means that 𝑎 is preferred to 𝑏. In text we will
drop the tail of the arrow and write 𝑎 ▷ 𝑏.

Assuming that a group of agents report this kind of preferences,
how should we determine the best, or winning, alternatives? We
provide a contribution in this direction by generalising and char-
acterising the class of positional scoring rules for incomplete pref-
erences.2 For now, suppose that we simply count how often an
alternative is preferred to other alternatives, and select the alterna-
tives with the highest count. For this method it may be profitable
to lie by omission: Starting from the above preference, an agent
could omit pairwise preferences where 𝑏 is preferred:

a b c d
Because this decreases the count of 𝑏, the new preference is a better
ballot to submit in order to make 𝑎 win.

The abovemanipulationmove would not be possible if the agents
were required to submit complete preferences. Thus incomplete

1It may be argued that the agent in Example 1 has preferences over (hotel, season)
pairs; nevertheless she must express these simply in terms of hotels, because this is
what the website has specified as the ranking domain. Other agents may have different
domains of preferences, like (hotel, weather) pairs. Although an interesting issue, we
do not consider how preferences are translated across domains further than noting
that it seems likely that expressed preferences can be non-transitive.

2Cf. the generalisation of scoring rules to multiwinner settings [13].
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preferences allow for novel types of manipulation: Besides omitting
pairwise preferences, an agent may also invent preferences that
she does not really hold, thereby adding pairwise preferences; she
may also say she prefers one alternative to another when in fact
the reverse is true, thereby flipping her preference on some pair of
alternatives. For each of these, and their combinations, we provide
necessary and sufficient conditions for positional scoring rules to
make the given type of manipulation impossible.

Related work. The literature on manipulation in voting was
pioneered by Gibbard [15] and Satterthwaite [24] who indepen-
dently proved that, given some fairly weak conditions, no voting
rule is immune to strategic manipulation. The conditions include
requiring that the agents report complete preferences, as well as
that the voting rule outputs a single winner (such voting rules are
referred to as resolute). Later work has relaxed the single-winner
condition, which leads to the question of how to extend preferences
over alternatives to preferences over sets of alternatives. Early con-
tributions concerning this issue were made by Gärdenfors [14] and
Kelly [16], followed more recently by Duggan and Schwartz [10],
Ching and Zhou [7], and Sato [23].3

Several papers have previously studied the aggregation of incom-
plete preferences as well [2, 11, 12, 17, 19–22, 26, 27]. A prevalent
approach in computational social choice [2, 17, 27] is to consider
the various completions of an incomplete preference profile and
search for the alternatives that are possible or necessary winners.
Such approaches are sensible if we assume that the preferences are
completable [4], but this is not the case for preferences that are
intrinsically incomplete, as described in Example 1.

Aggregation rules designed with genuinely incomplete prefer-
ences in mind were defined by Terzopoulou and Endriss [26]. These
authors consider rules that assign weights to agents depending
on the size of their truthful preferences, while we, in this paper,
additionally explore positional scoring rules. Baumeister et al. [2]
describe specific definitions of scoring rules as well, but restrict at-
tention to truncated preferences and primarily provide complexity
results, as opposed to our work which is of a more axiomatic and
conceptual nature. Emerson [11] calls for more studies of voting
with incomplete preferences and informally discusses a number of
options for applying the Borda count on such settings.

Other papers have also tackled the problem of manipulation with
incomplete preferences, obtaining similar results to ours. However,
their starting concerns and definitions are somewhat different. Pini
et al. [21] consider agents that can change their preference in any
way and show that this makes it impossible to avoid weak dictators
(i.e., agents that always have one of their most preferred alternatives
among the winners). In contrast, our focus on specific types of
manipulation of practical interest allows for some strong possibility
results. The setting of Endriss et al. [12] differs from ours in that
there agents can only report preferences of predetermined forms.

Implicit connections can also be drawn to work that considers
complete preferences. For example, because Brandt [5] does not
impose transitivity, taking the strict part of his preference relation

3We relax the single-winner condition because the positional scoring rules that we
consider satisfy anonymity and neutrality, which immediately implies that the output
must be irresolute. In the complete setting, positional scoring rules were axiomatised
by Smith [25] and Young [29]. Myerson [18] generalised the axiomatisation to profiles
of votes that could take any form over the set of alternatives.

leads to a similar framework to ours. His results concerning re-
stricted versions of manipulation complement the results of our
paper, as they apply to Condorcet-consistent rules—traditionally
opposed to the scoring rules in which we are interested.

Structure overview. The basic voting model that we use is
introduced in Section 2. Section 3 provides an axiomatisation of
the class of positional scoring rules for incomplete preferences;
it is complementary to but independent of the later sections. In
Section 4 we formalise our notion of manipulation, which includes
defining the three manipulation types of omission, addition, and
flipping. We also characterise when positional scoring rules are
immune to manipulation. Further results can be found in Sections 5
and 6, addressing combinations of manipulation types and single
ones, respectively. We show that there is no positional scoring rule
that prevents manipulation by omission and flipping or by omission
and addition, but we obtain rules that prevent manipulation by both
addition and flipping, and by omission alone. Section 7 concludes.

2 THE MODEL
In this section we present our basic framework.

Our scenario involves finite sets of agents 𝑁 = {1, 2, . . . , 𝑛}, with
𝑛 ≥ 2, and a finite set of alternatives 𝐴 = {𝑎, 𝑏, 𝑐, . . .}, with |𝐴| ≥ 3.
Every agent 𝑖 ∈ 𝑁 holds pairwise preferences over the alterna-
tives [26]. For example, 𝑎 ▷𝑖 𝑏 expresses that agent 𝑖 prefers 𝑎 to 𝑏,
for 𝑏 ≠ 𝑎. The symbol ▷𝑖 refers to agent 𝑖’s entire preference, which
is a (possibly empty) set of strictly ordered pairs of alternatives:

▷𝑖 = {(𝑎, 𝑏) ∈ 𝐴×𝐴 : 𝑎 ▷𝑖 𝑏}.

Given a preference ▷, two alternatives 𝑎 and𝑏 are connected if 𝑎 = 𝑏,
or if there is a path from 𝑎 to 𝑏 in the undirected version of the
graph defined by ▷. Similarly, 𝑎 and 𝑏 are said to be in an undirected
cycle if that graph has a cycle that contains both, or if 𝑎 = 𝑏.

We assume that preferences are acyclic: If 𝑎1 ▷𝑎2 ▷ · · ·▷𝑎𝑘 , then
it cannot be the case that 𝑎𝑘 ▷ 𝑎1, for 2 ≤ 𝑘 ≤ |𝐴|. We denote by D
the set of all acyclic preferences over 𝐴. We stress that an acyclic
preference ▷ may not be transitive; there may exist alternatives
𝑎, 𝑏, 𝑐 ∈ 𝐴 such that 𝑎 ▷ 𝑏 and 𝑏 ▷ 𝑐 , but 𝑎 ▷̸ 𝑐 .

A profile ▷ = (▷1, . . . ,▷𝑛) ∈ D𝑛 collects the preferences of all
agents in 𝑁 . We write (𝑎𝑏) as shorthand for the permutation on 𝐴
that swaps 𝑎 and 𝑏, and we write ▷(𝑎𝑏) for the preference ▷ with
every occurrence of 𝑎 and 𝑏 switched. We also apply this notation
to profiles: ▷(𝑎𝑏) is the profile ▷ with 𝑎 and 𝑏 switched. Given a
subset of the agents 𝐼 ⊆ 𝑁 , a partial profile ▷−𝐼 denotes the part
of ▷ where all agents besides those in 𝐼 report their preferences. By
(▷, . . . ,▷,▷−𝐼 ) we denote the profile where agents in 𝑁 \𝐼 report
the same preferences as in ▷, and where all agents in 𝐼 report
the same preference ▷. Two profiles ▷ = (▷1, . . . ,▷𝑛) ∈ D𝑛 and
▷′ = (▷𝑛+1, . . . ,▷𝑛+𝑘 ) ∈ D𝑘 can be combined to form

(▷,▷′) = (▷1, . . . ,▷𝑛,▷𝑛+1, . . . ,▷𝑛+𝑘 ) ∈ D𝑛+𝑘 .

A voting rule 𝐹 is a function that maps a profile ▷ ∈ D𝑛 , for any
group 𝑁 , to a nonempty subset of 𝐴, that is, the set of winners.
Thus, 𝐹 (▷) may contain several, tied, winners.

We are specifically interested in voting rules that hinge on as-
signing points to alternatives. A scoring function is a function
𝑠 : (D × 𝐴) → R that assigns a score to every alternative in a
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given preference. We will write 𝑠▷ (𝑎) as an abbreviation for 𝑠 (▷, 𝑎).
A scoring function is non-trivial if 𝑠▷ (𝑥) ≠ 𝑠▷ (𝑦) for some 𝑥,𝑦 ∈ 𝐴
and ▷ ∈ D. A positional scoring function ensures moreover the sym-
metrical treatment of all alternatives; one may thus think of scores
assigned to positions in a graph. Formally, a scoring function 𝑠 is
positional if and only if for all permutations 𝜎 : 𝐴 → 𝐴, preferences
▷ ∈ D, and alternatives 𝑥 ∈ 𝐴, we have that 𝑠▷ (𝑥) = 𝑠▷𝜎 (𝑥𝜎 ),
where 𝑥𝜎 = 𝜎 (𝑥) and ▷𝜎 = 𝜎 (▷) = {(𝑎𝜎 , 𝑏𝜎 ) : 𝑎 ▷ 𝑏}.

A scoring rule for incomplete preferences 𝐹𝑠 , associated with a
scoring function 𝑠 , takes a profile of incomplete preferences and
returns all alternatives with maximal scores, where the score of an
alternative is the sum of the scores given by the scoring function
across all agents. Formally, 𝐹𝑠 : D𝑛 → 2𝐴\{∅} is defined by

𝐹𝑠 (▷) = argmax
𝑥 ∈𝐴

∑
𝑖∈𝑁

𝑠▷𝑖 (𝑥).

Note that for distinct scoring functions 𝑠 and 𝑠 ′ it may be the case
that 𝐹𝑠 = 𝐹𝑠′ . Then, we say that 𝑠 and 𝑠 ′ are equivalent. We withhold
proof of the following in the interest of space.

Proposition 1. Two scoring functions 𝑠 and 𝑠 ′ are equivalent if and
only if there are real numbers {𝛼▷}▷∈D and 𝛽 > 0 such that for all
alternatives 𝑥 ∈ 𝐴 and preferences ▷, 𝑠▷ (𝑥) = 𝛼▷ + 𝛽 · 𝑠 ′▷ (𝑥).

Here are some positional scoring functions that are new to the
literature of incomplete preferences, of which domination scoring
was informally described in the introduction.

Domination scoring. Define ds : (D ×𝐴) → R by

ds▷ (𝑥) = |{𝑦 ∈ 𝐴 : 𝑥 ▷ 𝑦}|.

Cumulative scoring. Define cs : (D ×𝐴) → R by4

cs▷ (𝑥) =
{

0 if 𝑥 ▷ 𝑦 for no 𝑦 ∈ 𝐴,
1 +∑

𝑦∈𝐴
𝑥▷𝑦

cs▷ (𝑦) otherwise.

Veto scoring. Define vs : (D ×𝐴) → R by

vs▷ (𝑥) =
{

1 if there is some 𝑦 ∈ 𝐴 such that 𝑥 ▷ 𝑦,
0 otherwise.

Stepwise scoring. Define ss : (D ×𝐴) → R by

ss▷ (𝑥) =
𝑘∑
𝑖=1

𝑠 (𝐶𝑖 ,𝐶),

where C = {𝐶1, . . . ,𝐶𝑘 } is a partition of 𝐴 into sets of alternatives
that are in the same undirected cycle, 𝑥 ∈ 𝐶 for 𝐶 ∈ C, and 𝑠 :
(C×C) → R is defined below (for ▷𝑐𝑢 denoting the undirected
version of the relation ▷𝑐 ⊆ C×C such that 𝐶𝑖 ▷𝑐 𝐶 𝑗 if and only if
𝑥 ▷ 𝑦 for some 𝑥 ∈ 𝐶𝑖 and 𝑦 ∈ 𝐶 𝑗 ):

If 𝐶𝑖 = 𝐶 𝑗 , then 𝑠 (𝐶𝑖 ,𝐶 𝑗 ) = 0, and if 𝐶𝑖 ≠ 𝐶 𝑗 , then

𝑠 (𝐶𝑖 ,𝐶 𝑗 ) =


1/2 if 𝐶𝑖 ▷𝑐𝑢 𝐶1 ▷𝑐𝑢 . . .𝐶𝑚 ▷𝑐 𝐶 𝑗 for some𝑚 ≥ 0

−1/2 if 𝐶 𝑗 ▷
𝑐 𝐶1 ▷𝑐𝑢 . . .𝐶𝑚 ▷

𝑐
𝑢 𝐶𝑖 for some𝑚 ≥ 0

0 otherwise

Stepwise scoring assigns to two alternatives 𝑥 and 𝑦 the same
score when they are in the same undirected cycle. Otherwise, if

4Note that the definition of the cumulative scoring is recursive.
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Figure 1: Left to right; scores given by domination, cumula-
tive, veto, and stepwise scoring for an example preference.

𝑥 is preferred to 𝑦, then ss▷ (𝑥) = ss▷ (𝑦) + 1. The cumulative-
scoring function gives each alternative a score one greater than the
summed score of all the alternatives to which it is preferred. For
complete input profiles, the domination-scoring rule reduces to the
Borda rule [3]; the cumulative-scoring rule reduces to the (complete)
positional scoring rule with score vector (2 |𝐴 |−2, . . . , 4, 2, 1, 0); the
veto-scoring rule reduces to the veto rule; and the stepwise-scoring
rule reduces to the trivial rule that returns the set of all alternatives
for all input profiles. See Figure 1 for an illustration of the different
scores these functions give for an example preference.

3 AXIOMATISATION OF SCORING RULES
FOR INCOMPLETE PREFERENCES

Scoring rules, being intuitive and easy to understand, are widely
used in practice, for example in political elections, sports competi-
tions, and web applications. They also satisfy a number of appealing
normative properties, traditionally known as axioms. The following
are obvious translations of axioms from the complete [25, 29] to
the incomplete framework.
Anonymity. For all sets of agents 𝑁 , permutations 𝜋 : 𝑁 → 𝑁 ,

and profiles ▷ = (▷1, . . . ,▷𝑛), it holds that 𝐹 (𝜋 (▷)) = 𝐹 (▷),
where 𝜋 (▷) = (▷𝜋 (1) , . . . ,▷𝜋 (𝑛) ).

Neutrality. For all permutations 𝜎 : 𝐴 → 𝐴 and profiles ▷ =

(▷1, . . . ,▷𝑛), it holds that 𝐹 (𝜎 (▷)) = 𝜎 (𝐹 (▷)), where𝜎 (▷) =
(𝜎 (▷1), . . . , 𝜎 (▷𝑛)) and 𝜎 (𝐹 (▷)) = {𝜎 (𝑎) : 𝑎 ∈ 𝐹 (▷)}.

Reinforcement. For all profiles ▷ and ▷′, if 𝐹 (▷) ∩ 𝐹 (▷′) ≠ ∅,
then 𝐹 (▷,▷′) = 𝐹 (▷) ∩ 𝐹 (▷′).

Continuity. For all profiles ▷ and ▷′, there exists a positive inte-
ger 𝐾 such that, for every integer 𝑘 that is greater than 𝐾 , it
holds that 𝐹 (▷, . . . ,▷︸   ︷︷   ︸

𝑘

,▷′) ⊆ 𝐹 (▷).

Of these axioms, anonymity, reinforcement, and continuity hold
for scoring rules [18]. This leaves neutrality, which is to be con-
nected to positional scoring functions. However, non-positional and
positional scoring functions may be equivalent.5 Because of this,
non-positional scoring functions may define neutral scoring rules.
Let us define a positional scoring rule as one that can be represented
by some positional scoring function. Lemma 1 helps bridge the gap
between positional scoring rules and positional scoring functions,
and leads into the axiomatisation (Theorem 1).

Lemma 1. A scoring function 𝑠 is equivalent to some positional
scoring function if for all alternatives 𝑥,𝑦 ∈ 𝐴 and preferences ▷ ∈ D,

𝑠▷ (𝑥) − 𝑠▷ (𝑦) = 𝑠▷(𝑥𝑦) (𝑦) − 𝑠▷(𝑥𝑦) (𝑥), and (1)
𝑠▷ (𝑧) − 𝑠▷ (𝑦) = 𝑠▷(𝑥𝑦) (𝑧) − 𝑠▷(𝑥𝑦) (𝑥) for all 𝑧 ≠ 𝑥,𝑦. (2)
5E.g., take 𝑎,𝑏 ∈ 𝐴: For 𝑎 ▷𝑏 let 𝑠▷ (𝑎) = 1, 𝑠▷ (𝑏) = 0; for 𝑏 ▷′ 𝑎, let 𝑠▷′ (𝑎) = 2,

𝑠▷′ (𝑏) = 1; set all other scores to 0.
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Proof. By the fact that all permutations over 𝐴 can be expressed as
successive permutations only involving two alternatives, (1) and
(2) together imply that, for an arbitrary permutation function 𝜎 ,
preference ▷, and alternatives 𝑎 and 𝑏,

𝑠▷ (𝑎) − 𝑠▷ (𝑏) = 𝑠▷𝜎 (𝑎𝜎 ) − 𝑠▷𝜎 (𝑏𝜎 ) . (3)

Consider |𝐴| applications of (3) to an arbitrary 𝑎 ∈ 𝐴:∑
𝑥 ∈𝐴

𝑠▷ (𝑎) − 𝑠▷ (𝑥) =
∑
𝑥 ∈𝐴

𝑠▷𝜎 (𝑎𝜎 ) − 𝑠▷𝜎 (𝑥𝜎 ) .

This can be rewritten as follows:

|𝐴| · 𝑠▷ (𝑎) −
∑
𝑥 ∈𝐴

𝑠▷ (𝑥) = |𝐴| · 𝑠▷𝜎 (𝑎𝜎 ) −
∑
𝑥 ∈𝐴

𝑠▷𝜎 (𝑥𝜎 ) .

So, given a scoring function 𝑠 ′ that satisfies (1) and (2), in order to
show that 𝑠 ′▷ (𝑎) = 𝑠 ′▷𝜎 (𝑎𝜎 ) it suffices to show that∑

𝑥 ∈𝐴
𝑠 ′▷ (𝑥) =

∑
𝑥 ∈𝐴

𝑠 ′▷𝜎 (𝑥𝜎 ) . (4)

Suppose that (1) and (2) hold for 𝑠 . We want to find an equivalent
positional scoring function 𝑠 ′. If 𝑠 is positional, we are done because
it is equivalent to itself. If not, there are some ▷∗, some permutation
function 𝜎 , and some alternative 𝑥 such that 𝑠▷∗ (𝑥) ≠ 𝑠▷∗𝜎 (𝑥𝜎 ). Fix
an alternative 𝑎 ∈ 𝐴. Define 𝑠 ′ as follows: First set 𝑠 ′▷∗ (𝑥) = 𝑠▷∗ (𝑥).
Next, for each distinct permutation ▷∗𝜌 of ▷∗, let

𝑠 ′▷∗𝜌 (𝑦) = 𝑠▷∗𝜌 (𝑦) + 𝑠▷∗ (𝑎) − 𝑠▷∗𝜌 (𝑎𝜌 ) for all 𝑦 ∈ 𝐴. (5)

After going through the permutations of ▷∗, there may still be some
other ▷†, 𝜔 and 𝑦 such that 𝑠▷† (𝑦) ≠ 𝑠▷†𝜔 (𝑦𝜔 ), in which case the
process needs to be repeated for ▷†. As there are only finitely many
preferences and the process will not consider the same preference
twice, eventually there will be no more such cases. For all remaining
preferences ▷ set 𝑠 ′▷ = 𝑠▷. Note that 𝑠 ′ is equivalent to 𝑠 and that
(1) and (2) still hold.

We have above defined 𝑠 ′. Now take arbitrary 𝑥 ∈ 𝐴, pref-
erence ▷, and permutation function 𝜎 . We want to show that
𝑠 ′▷ (𝑥) = 𝑠 ′▷𝜎 (𝑥𝜎 ). If the score 𝑠 was changed for no permutation
of ▷, then 𝑠▷ (𝑥) = 𝑠▷𝜎 (𝑥𝜎 ) and indeed 𝑠 ′▷ (𝑥) = 𝑠 ′▷𝜎 (𝑥𝜎 ) as required.
Otherwise, there are some ▷∗ for which 𝑠▷∗ = 𝑠 ′▷∗ , and permutation
functions 𝜌 , 𝜔 such that ▷∗𝜌 = ▷ and ▷∗𝜔 = ▷𝜎 . We can suppose
that these are those permutation functions that were used in the
construction of 𝑠 ′—if either is instead the identity permutation, the
required equality trivially holds. Regardless, (4) holds:∑
𝑥 ∈𝐴

𝑠 ′▷ (𝑥) =
∑
𝑥 ∈𝐴

𝑠 ′▷∗𝜌 (𝑥𝜌 )
because alternatives
appear exactly once

=
∑
𝑥 ∈𝐴

𝑠▷∗𝜌 (𝑥𝜌 ) + 𝑠▷∗ (𝑎) − 𝑠▷∗𝜌 (𝑎𝜌 ) by (5)

=
∑
𝑥 ∈𝐴

𝑠▷∗ (𝑥) by (3)

=
∑
𝑥 ∈𝐴

𝑠 ′▷∗ (𝑥) by definition of 𝑠 ′

The required equality concerning ▷∗ and ▷∗𝜔 = ▷𝜎 can be obtained
in an identical manner. □

Theorem 1. A voting rule for possibly incomplete preferences inD is
a positional scoring rule if and only if it satisfies anonymity, neutrality,
reinforcement, and continuity.

Proof. Every positional scoring rule obviously satisfies all the ax-
ioms of the statement, so the “only if” holds. For the “if”; a voting
rule over incomplete preferences that satisfies anonymity, neutral-
ity, reinforcement, and continuity has to be a scoring rule 𝐹𝑠 for
some scoring function 𝑠 by Myerson [18]. If 𝑠 is trivial, then 𝐹𝑠 is
positional. For non-trivial 𝑠 , we show that (1) and (2) of Lemma 1
hold, and thus that the scoring rule 𝐹𝑠 is positional.

For (1), fix arbitrary alternatives 𝑎, 𝑏 ∈ 𝐴 and preference ▷. We
will construct a profile where both 𝑎 and 𝑏 are winning, and such
that if (1) did not hold they could not have the same score. For
our construction we require a profile where 𝑎 and 𝑏 have the same
summed score which is arbitrarily larger than the score of any other
alternative. To do this, we first need that

there exists a profile ▷ such that 2 ≤ |𝐹𝑠 (▷) | < |𝐴|. (6)

Since 𝑠 is not trivial, there is some ▷′ such that for nonempty
𝑋 ⊊ 𝐴, it holds that 𝑠▷′ (𝑥) = 𝑠▷′ (𝑦) > 𝑠▷′ (𝑧) for all 𝑥,𝑦 ∈ 𝑋 ,
𝑧 ∈ 𝐴\𝑋 . If |𝑋 | > 1 for some such set 𝑋 , we have the required
profile of (6). So suppose that 𝑋 = {𝑥} for all relevant 𝑋 . Pick 𝑦
such that 𝑠▷′ (𝑦) ≥ 𝑠▷′ (𝑧) for all 𝑧 ≠ 𝑥 . It is true by neutrality that
𝑦 gets the unique highest score on ▷′(𝑥𝑦) and that in the profile
(▷′,▷′(𝑥𝑦) ), 𝑥 and 𝑦 must be joint winners with the same summed
score. So in this case we also have the required profile of (6).

Now, (6) provides a profile▷where some distinct 𝑥 and𝑦 are win-
ning and some 𝑧 is not winning. Let Ω be the set of all permutations
where 𝑥 and 𝑦 are fixed points. In the profile (𝜔 (▷), 𝜔 (▷(𝑥𝑦) ))𝜔 ∈Ω
the alternatives 𝑥 and 𝑦 are the unique winners. To see this, take
some alternative 𝑧 ≠ 𝑥,𝑦, and note that, by neutrality, for each
profile 𝜔 (▷), alternative 𝑥 gets score at least as high as the score
of 𝑧, and for some such profile 𝑥 gets strictly higher score than 𝑧;
the same applies for 𝜔 (▷(𝑥𝑦) ), so 𝑧 does not win; finally by neu-
trality 𝑥 cannot win without 𝑦 winning. Now permute 𝑎 with 𝑥
and 𝑏 with 𝑦. With enough copies of this profile we can create an
arbitrarily large gap between the score of 𝑎 and 𝑏 and the scores of
other alternatives. Note that permuting 𝑎 and 𝑏 does not change
this profile.

Let 𝑡 be the maximal difference between the score of two alter-
natives in ▷ and between the score of two alternatives in ▷(𝑎𝑏) .
Formally,

𝑡 = max
(
max
𝑥,𝑦∈𝐴

𝑠▷ (𝑥) − 𝑠▷ (𝑦), max
𝑥,𝑦∈𝐴

𝑠▷(𝑎𝑏) (𝑥) − 𝑠▷(𝑎𝑏) (𝑦)
)
.

There is a profile ▷′ where 𝑎 and 𝑏 get (the same) summed score at
least 2𝑡 + 1 greater than all the other alternatives and ▷′(𝑎𝑏) = ▷

′.
Let us add ▷ and ▷(𝑎𝑏) to ▷′. By construction, no alternative other
than 𝑎 and 𝑏 can have the maximal summed score. By neutrality,
both 𝑎 and 𝑏 must be winning. But if (1) did not hold, only one of
them would be winning. Thus part (1) of Lemma 1 must be satisfied.

The general procedure for part (2) of Lemma 1 is similar; though
we must also start with arbitrary 𝑐 ∈ 𝐴 \ {𝑎, 𝑏}. As before there
is a profile ▷ such that 𝐹𝑠 (▷) = {𝑎, 𝑏} and ▷(𝑎𝑏) = ▷. Define
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▷′ = (▷(𝑎𝑐) ,▷(𝑏𝑐) ), for which:

𝐹𝑠 (▷′) = {𝑐} and ▷′(𝑎𝑏) = ▷
′.

Note further that 𝑎 and 𝑏 receive the same score under ▷′. Next
define ▷′′ = (▷,▷(𝑎𝑐) ,▷(𝑏𝑐) ), for which:

𝐹𝑠 (▷′′) = {𝑎, 𝑏, 𝑐} and ▷′′(𝑎𝑏) = ▷
′′.

Suppose that (2) does not hold. Suppose in particular6 that

𝑠▷ (𝑐) − 𝑠▷ (𝑏) > 𝑠▷(𝑎𝑏) (𝑐) − 𝑠▷(𝑎𝑏) (𝑎).

Roughly speaking, 𝑐 performs “better” against 𝑏 under ▷ than 𝑐
performs against 𝑎 under ▷(𝑎𝑏) . For an integer 𝑘 , write 𝑘.▷ for
𝑘 copies of ▷ and 𝑘.▷ for 𝑘 copies of ▷. We can choose suitable
integers 𝑗 , 𝑘 , ℓ , and𝑚 such that

• 𝐹𝑠 ( 𝑗 .▷, 𝑘 .▷, 𝑙 .▷′,𝑚.▷′′) = 𝑐 , but also
• under ( 𝑗 .▷(𝑎𝑏) , 𝑘 .▷, 𝑙 .▷′,𝑚.▷′′) the score of 𝑎 is greater than
the score of 𝑐 .

But ( 𝑗 .▷, 𝑘 .▷, 𝑙 .▷′,𝑚.▷′′)(𝑎𝑏) = ( 𝑗 .▷(𝑎𝑏) , 𝑘 .▷, 𝑙 .▷′,𝑚.▷′′), which
contradicts neutrality. □

4 MANIPULATION: DEFINITIONS AND
CHARACTERISATIONS

In this section we describe the two main facets of manipulation:
when it is profitable, and how it can be performed. We then provide
necessary and sufficient conditions for positional scoring rules to
be immune to manipulation.

4.1 When is it profitable to manipulate?
A preference ▷𝑖 indicates which single alternatives are preferred to
other single alternatives by agent 𝑖 . But our voting rules output sets
of alternatives. Thus, we need to determine when agent 𝑖 wants
to manipulate from a set 𝑋 to a set 𝑌 , for 𝑋,𝑌 ⊆ 𝐴. As a starting
point, we assume that if 𝑎 ▷𝑖 𝑏, then agent 𝑖 will prefer {𝑎} to {𝑏}.

Definition 1. Given a preference ▷, the𝑚-extension is a binary
relation ▷𝑚 over sets of alternatives such that

𝑋 ▷𝑚 𝑌 if and only if 𝑋 = {𝑥}, 𝑌 = {𝑦}, and 𝑥 ▷ 𝑦.

A minimal requirement of non-manipulability would be that no
agent can change the outcome to a better one according to the
𝑚-extension of their preference.

There is a broad literature concerning more elaborate extensions
of preferences from singletons to preferences over sets of objects
(Barberà et al. [1] provide a survey).7 Our intended interpretation
of extensions is directly connected to the notion of manipulation.
We define a large extension that does not represent the preferences
of some particular agent, but rather the possible preferences that
someone might conceivably have. The idea is that if some new
alternative is preferred to some old alternative, an agent may desire
to manipulate from the old to the new.

6The case of the inverse strict inequality is symmetric.
7Typically, extensions aim to describe the induced preferences over sets of objects,

given various assumptions about the agent’s psychology (e.g., being risk-adverse or
risk-loving) and about how the alternative sets will actually be consumed (e.g., a
random alternative must be used or all alternatives must be used).

Definition 2. Given a preference ▷, the ℓ-extension is a binary
relation ▷ℓ over sets of alternatives such that

𝑋 ▷ℓ 𝑌 if and only if there exist 𝑥 ∈ 𝑋 and 𝑦 ∈ 𝑌 such
that 𝑥 ▷ 𝑦 and {𝑥,𝑦} ⊈ 𝑋 ∩ 𝑌 .

Note that the binary relation given by the ℓ-extension may not be
acyclic; it may even contain symmetries. Preventing all manipula-
tions of the ℓ-extension would constitute a strong positive result.

Example 2. Suppose that there are three agents with sincere pref-
erences as follows.
𝑎 𝑏

𝑑𝑐 𝑒

𝑎 𝑏

𝑑𝑐 𝑒

𝑎 𝑏

𝑑𝑐 𝑒

The summed domination scores are then:
a b c d e
1 5 4 4 4

The left agent can make {𝑎, 𝑐, 𝑑, 𝑒} winning. This is a possible ma-
nipulation according to the ℓ-extension because {𝑎, 𝑐, 𝑑, 𝑒} ▷ℓ {𝑏}.
Note that {𝑏} ▷ℓ {𝑎, 𝑐, 𝑑, 𝑒} as well.

4.2 How can manipulation be performed?
We have described when we consider an outcome as more desirable
for a manipulator; we still need to determine who the manipulators
are, and how they can attempt to achieve this outcome.

Classic studies of manipulation consider a single agent acting
alone. However, many applications of preference aggregation to the
Internet require a broader definition of manipulative acts. A user
can now easily create and handle several identities (all sharing the
same truthful preference).8 Our model allows for an—arbitrarily
large—group of agents with identical preferences to manipulate.9

Definition 3. Consider a voting rule 𝐹 , an extension ★, a subset
of agents 𝐼 ⊆ 𝑁 with the preference ▷, and a profile

▷ = (▷1, . . . ,▷𝑛) = (▷, . . . ,▷︸   ︷︷   ︸
𝑘

,▷−𝐼 ) ∈ D𝑛 .

Without loss of generality, suppose that 𝐼 = {1, . . . , 𝑘}. A★-manipu-
lation of 𝐹 by 𝐼 is possible if there exists some vector of preferences
(▷′1, . . . ,▷

′
𝑘
) ∈ D𝑛 such that 𝐹 (▷′1, . . . ,▷

′
𝑘
,▷−𝐼 ) ▷★ 𝐹 (▷).

The rule 𝐹 is manipulable if a manipulation is possible by some
group 𝐼 ⊆ 𝑁 , for some 𝑁 , and immune to manipulation otherwise.

Definition 3 tells us who can manipulate. It does not tell us in
what manner. We can sum up the three types of misrepresentation
discussed in the introduction with reference to the following typical
commitment of sworn testimony: that one tells the truth, the whole
truth, and nothing but the truth. This can be decomposed into three
parts, each prohibiting a different type of manipulation.

Definition 4. Consider a ★-manipulation of 𝐹 by 𝐼 , as in Defini-
tion 3. Such a manipulation is by
flipping if ▷𝑖\▷′𝑖 = {(𝑥,𝑦) : (𝑦, 𝑥) ∈ ▷′

𝑖
\▷𝑖 } for all 𝑖 ∈ 𝐼 ;

omission if ▷′
𝑖
⊆ ▷𝑖 for all 𝑖 ∈ 𝐼 ; or

8This is related to false-name manipulation [28] and so-called Sybil attacks [9].
9Besides its practical significance, allowing for group-manipulation gives stronger

sufficient conditions for preventing manipulation. In the other direction, we only
require at most two agents for the necessity proofs, and the second agent may be
considered as a somewhat technical requirement in order to break ties.
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addition if ▷𝑖 ⊆ ▷′𝑖 for all 𝑖 ∈ 𝐼 .
We can also naturally define manipulation by combinations of the
above. For instance, a manipulation is by a combination of addi-
tion and omission if the agents add some pairwise preferences and
possibly omit some others. We say that two preferences ▷ and ▷′
conform to a certain (combination of) manipulation type(s) if ▷
and ▷′ satisfy the corresponding relations of Definition 4.

4.3 Necessary and sufficient conditions for
immunity to manipulation

If scoring rules have certain forms, then they can be immune to
manipulation even for the very large extension ℓ (Theorem 2). This
follows from our sufficient conditions (which, as we will see, are not
always easy to satisfy). In the other direction, we present necessary
conditions for a rule to be immune to manipulation at least for
the small extension𝑚, thus establishing vital boundaries for non-
manipulability (Theorem 3). Lemma 2 is critical for these results.

Lemma 2. If a positional scoring function 𝑠 is not trivial, then for
all positive numbers 𝑡 > 0 and all alternatives 𝑥 and 𝑦, there exists a
profile ▷ such that for all 𝑧 ≠ 𝑥,𝑦,∑

𝑖∈𝑁
𝑠▷𝑖 (𝑥) =

∑
𝑖∈𝑁

𝑠▷𝑖 (𝑦) > 𝑡 +
∑
𝑖∈𝑁

𝑠▷𝑖 (𝑧) .

Proof. Take two arbitrary alternatives 𝑥,𝑦 ∈ 𝐴. For a non-trivial
scoring function 𝑠 there is a preference▷ for which we can order the
alternatives using indices 𝑗 ∈ {1, . . . , |𝐴|} such that 𝑠 (𝑎 𝑗 ) ≥ 𝑠 (𝑎 𝑗+1)
and 𝑠 (𝑎1) > 𝑠 (𝑎 |𝐴 |). Consider a permutation of this preference
where 𝑥 is placed in the position of 𝑎1, 𝑦 is placed in the position
of 𝑎2, some 𝑧 ≠ 𝑥,𝑦 is placed in the position of 𝑎3, etc. Now it-
eratively create new preferences which swap the positions of 𝑥
and 𝑦 and cycle through the positions of the other alternatives:
After 2 |𝐴| − 4 iterations this results in a collection of preferences
for which 𝑥 is in the position of 𝑎1 exactly |𝐴| − 2 times and in the
position of 𝑎2 exactly |𝐴| − 2 times; where 𝑦 is in those positions
exactly as often as 𝑥 ; and where, for each 𝑗 = {3, . . . , |𝐴|}, every
other alternative is in the position 𝑎 𝑗 exactly twice. Obviously 𝑥
and 𝑦 have the same summed score for these preferences. Similarly,
all other alternatives have the same summed scores as each other.
The inequalities over the scores of ordered alternatives imply that
the summed score of 𝑥 , and that of 𝑦, is some value 𝛿 > 0 larger
than the summed score of any other alternative. The required pro-
file is created by taking 1+⌈𝑡/𝛿⌉ copies of the 2 |𝐴|−4 preferences.□

Given two preferences ▷ and ▷′ and alternatives 𝑥,𝑦 ∈ 𝐴, let us
define the following inequality, intuitively stating that the difference
between the scores of 𝑥 and 𝑦 in ▷′ is not strictly larger than in ▷:

𝑠▷ (𝑥) − 𝑠▷ (𝑦) ≥ 𝑠▷′ (𝑥) − 𝑠▷′ (𝑦) . (7)

Theorem 2. The rule 𝐹𝑠 , induced by the positional scoring function 𝑠 ,
is immune to ℓ-manipulation by a specific (combination of) type(s)
if inequality (7) holds for all ▷,▷′ ∈ D and all 𝑥,𝑦 ∈ 𝐴 such that ▷
and ▷′ conform to the given type(s) and 𝑥 ▷ 𝑦.

Proof. Aiming for a contradiction, suppose that the condition of the
statement holds, but 𝐹𝑠 is ℓ-manipulable by the given type(s). This
means that there exist 𝑋,𝑌 ⊆ 𝐴 such that

𝑋 = 𝐹 (▷−𝐼 ,▷′1, . . . ,▷
′
𝑘
) ▷ℓ 𝐹 (▷−𝐼 ,▷, . . . ,▷) = 𝑌

for some subset 𝐼 = {1, . . . , 𝑘} ⊆ 𝑁 of a group 𝑁 and untruthful
preferences ▷′

𝑗
such that ▷ and ▷′

𝑗
conform to the given type(s) for

all 𝑗 ∈ {1, . . . , 𝑘}. Then, by Definition 2, there are 𝑥 ∈ 𝑋 and 𝑦 ∈
𝑌 such that 𝑥 ▷ 𝑦 and {𝑥,𝑦} ⊈ 𝑋 ∩ 𝑌 . We focus on the case where
𝑥 ∉ 𝑌 , since the case where 𝑦 ∉ 𝑋 is analogous. Because 𝑦 ∈ 𝑌 , by
the definition of the scoring rule we have that∑

𝑖∈𝐼
𝑠▷ (𝑥) +

∑
𝑖∈𝑁 \𝐼

𝑠▷𝑖 (𝑥) <
∑
𝑖∈𝐼

𝑠▷ (𝑦) +
∑

𝑖∈𝑁 \𝐼
𝑠▷𝑖 (𝑦) .

Then, 𝑥 ∈ 𝑋 implies that∑
𝑖∈𝐼

𝑠▷′
𝑖
(𝑥) +

∑
𝑖∈𝑁 \𝐼

𝑠▷𝑖 (𝑥) ≥
∑
𝑖∈𝐼

𝑠▷′
𝑖
(𝑦) +

∑
𝑖∈𝑁 \𝐼

𝑠▷𝑖 (𝑦) .

It follows that∑
𝑖∈𝐼

(𝑠▷𝑖 (𝑥) − 𝑠▷𝑖 (𝑦)) <
∑
𝑖∈𝐼

(𝑠▷′
𝑖
(𝑥) − 𝑠▷′

𝑖
(𝑦))

which contradicts our hypothesis. □

We continue by providing our necessary conditions.

Theorem 3. If the rule 𝐹𝑠 , induced by the positional scoring func-
tion 𝑠 , is immune to𝑚-manipulation by a specific (combination of)
type(s), then inequality (7) holds for all ▷,▷′ ∈ D and 𝑥,𝑦 ∈ 𝐴 such
that ▷ and ▷′ conform to the given type(s) and 𝑥 ▷ 𝑦.

Proof.We prove the contrapositive. Suppose there exist ▷, ▷′, 𝑥 , and
𝑦 as in the statement that satisfy 𝑠▷ (𝑥) − 𝑠▷ (𝑦) < 𝑠▷′ (𝑥) − 𝑠▷′ (𝑦) .
This implies that the scoring function is not trivial.

Consider the following profile with four agents:

▷′ = (▷,▷,▷(𝑥𝑦) ,▷′(𝑥𝑦) ).

From the inequality and because 𝑠 is positional, 𝑦 must have a
higher score than 𝑥 in the profile ▷′. However, if the first two
agents change their preference to ▷′, then 𝑥 has a higher score
than 𝑦. We can write this profile as ▷′′ = (▷′,▷′,▷(𝑥𝑦) ,▷′(𝑥𝑦) ).

Let 𝑡 = max
𝑧∈𝐴

∑
𝑖∈𝑁

𝑠▷𝑖 (𝑧) −
∑
𝑖∈𝑁

𝑠▷𝑖 (𝑦),

and 𝑡 ′ = max
𝑧∈𝐴

∑
𝑖∈𝑁

𝑠▷′
𝑖
(𝑧) −

∑
𝑖∈𝑁

𝑠▷′
𝑖
(𝑥).

We use Lemma 2 to create a profile ▷′′′ in which the scores of 𝑥
and 𝑦 are equal and greater than the score of any other alternative
by at least the value max(𝑡, 𝑡 ′).

The profile that the manipulation happens from is (▷′,▷′′′), for
which 𝑦 is winning; the profile that the manipulation happens to is
(▷′′,▷′′′), for which 𝑥 is winning. □

Theorems 2 and 3 imply a characterisation result.

Corollary 1. The rule 𝐹𝑠 , induced by the positional scoring function 𝑠 ,
is immune to𝑚-manipulation by a specific (combination of) type(s)
if and only if inequality (7) holds for all ▷,▷′ ∈ D and all 𝑥,𝑦 ∈ 𝐴
such that ▷ and ▷′ conform to the given type and 𝑥 ▷ 𝑦.

The above characterisation result facilitates the detection ofwhether
a particular positional scoring rule is immune to manipulation, fo-
cusing on pairs of preferences instead of full preference profiles.
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5 MANIPULATION BY COMBINED TYPES
In this section we study whether it is actually possible for a non-
trivial positional scoring rule to prevent combined types of ma-
nipulation. The answer we obtain is largely negative, but is also
contingent to each particular manipulation type.

Our first remark concerns the combined type of addition and
flipping, and is promising. The stepwise-scoring rule satisfies the
condition of Theorem 2, instantiated for preferences ▷ and ▷′ that
conform to flipping: Take two such preferences ▷ and ▷′ and two
alternatives 𝑎 and 𝑏 such that 𝑎 ▷ 𝑏. If 𝑏 ▷′ 𝑎, then by definition
of stepwise scoring, the difference between the scores of 𝑎 and 𝑏
cannot increase—in the best case it will remain the same, in the
worst case it will decrease. If 𝑎▷′𝑏, then the relevant difference will
remain exactly the same. Analogous reasoning applies for addition,
and straightforwardly for the combination of addition and flipping,
leading to Proposition 2.

Proposition 2. There exists a non-trivial scoring rule that is immune
to ℓ-manipulation by the combination of addition and flipping.

However, an impossibility regarding immunity to manipulation
by the combination of omission and flipping (Theorem 4 below) is
implied by Lemmas 4 and 5. Lemma 3 is needed for the proof of
the latter (and follows from Theorem 3 instantiated for omission,
together with the fact that all positional scoring functions assign
to all alternatives in the totally empty preference the same score).

Lemma 3. If the rule 𝐹𝑠 , induced by the positional scoring function 𝑠 ,
is immune to𝑚-manipulation by omission, then 𝑠▷ (𝑥) ≥ 𝑠▷ (𝑦) for
all preferences ▷ and alternatives 𝑥,𝑦 with 𝑥 ▷ 𝑦.

Lemma 4. If the rule 𝐹𝑠 , induced by the non-trivial positional scoring
function 𝑠 , is immune to𝑚-manipulation by omission, then for all
complete preferences ▷ there exist 𝑥,𝑦 ∈ 𝐴 such that 𝑠▷ (𝑥) ≠ 𝑠▷ (𝑦).
Proof. Consider a positional scoring function 𝑠 and a rule 𝐹𝑠 immune
to 𝑚-manipulation by omission. In every empty preference, all
alternatives get the same score by 𝑠 (condition (∗)). Suppose that all
alternatives in every complete preference also get the same score
by 𝐹𝑠 (condition (∗∗)). We will show that all alternatives must have
the same score in every preference ▷, and thus 𝑠 must be trivial.

Consider an arbitrary preference ▷ and two alternatives 𝑥,𝑦
with 𝑥 ▷𝑦. Theorem 3 instantiated for omission and applied on (∗)
and (∗∗) implies that 𝑠▷ (𝑥) = 𝑠▷ (𝑦). Thus, all connected alterna-
tives will have the same score (condition(∗ ∗ ∗)).

But all alternatives 𝑥,𝑦 that are not connected must also be as-
signed with the same score: We can create two new preferences
by connecting 𝑥 and 𝑦 by (𝑖) an arrow from 𝑥 to 𝑦 and (𝑖𝑖) an
arrow from 𝑦 to 𝑥 . Theorem 3 instantiated for omission and applied
on (𝑖), (𝑖𝑖) and (∗ ∗ ∗) implies that the relevant scores must be the
same, and the proof is concluded. □

Lemma 5. If the rule 𝐹𝑠 , induced by the positional scoring function 𝑠 ,
is immune to𝑚-manipulation by the combination of omission and
flipping, then for all complete preferences ▷ and alternatives 𝑥,𝑦, it
holds that 𝑠▷ (𝑥) = 𝑠▷ (𝑦).
Proof.Consider an arbitrary complete preference▷ such that 𝑠▷ (𝑥) ≥
𝑠▷ (𝑦) whenever 𝑥 ▷𝑦 (this must be the case by Lemma 3, if the rule
𝐹𝑠 is immune to manipulation by omission).

For some ordering of the alternatives {𝑎1 . . . , 𝑎𝑚} = 𝐴, and with-
out drawing the transitive arrows for simplicity, the preference ▷
will be of the following form, where the scores assigned to the
alternatives are mentioned below them (for 𝛾 ∈ R):

𝑎1 𝑎2 𝑎3 . . . 𝑎𝑚

𝛾 𝛾 − 𝛿1 𝛾 − 𝛿1 − 𝛿2 . . . 𝛾 −∑𝑚−1
𝑖=1 𝛿𝑖

We know that 𝛿𝑖 ≥ 0, and will show that 𝛿𝑖 = 0, for all 1 ≤ 𝑖 ≤ 𝑚−1.
Consider flipping the preference between 𝑎1 and 𝑎2 as follows:

𝑎2 𝑎1 𝑎3 . . . 𝑎𝑚

𝛾 𝛾 − 𝛿1 𝛾 − 𝛿1 − 𝛿2 . . . 𝛾 −∑𝑚−1
𝑖=1 𝛿𝑖

Because the difference in scores between 𝑎2 and 𝑎3 cannot increase
(by Theorem 3 instantiated for flipping), we must have that 𝛿1 = 0.

Now flip the preference between 𝑎1 and 𝑎3:
𝑎2 𝑎3 𝑎1 . . . 𝑎𝑚

𝛾 𝛾 𝛾 − 𝛿2 . . . 𝛾 −∑𝑚−1
𝑖=2 𝛿𝑖

In order for the difference in scores between 𝑎2 and 𝑎1 to not in-
crease (again by Theorem 3), it must hold that 𝛿2 = 0.

We repeat this process, “moving” 𝑎1 towards the bottom of the
preference in steps, and obtaining 𝛿𝑖 = 0 for all 1 ≤ 𝑖 ≤ 𝑚. □

Theorem 4. Only the trivial positional scoring rule is immune to
𝑚-manipulation by the combination of omission and flipping.

Next, we directly prove an impossibility result regarding immunity
to manipulation by the combination of addition and omission.

Theorem 5. Only the trivial positional scoring rule is immune to
𝑚-manipulation by the combination of addition and omission.

Proof. Consider a rule 𝐹𝑠 , induced by a positional scoring func-
tion 𝑠 , that is immune to𝑚-manipulation both by addition and by
omission. We will prove that for any preference ▷, 𝑠▷ (𝑥) = 𝑠▷ (𝑦)
for all 𝑥,𝑦 ∈ 𝐴. If ▷ is empty, we are done. So suppose there is a
pair (𝑎, 𝑏) ∈ ▷. For each such pair (𝑥,𝑦) in ▷, define the (singleton)
preference ▷𝑥𝑦 = {(𝑥,𝑦)}. Theorem 3 for omission and for addition
implies that for all (𝑥,𝑦) in ▷,

𝑠▷ (𝑥) − 𝑠▷ (𝑦) = 𝑠▷𝑥𝑦 (𝑥) − 𝑠▷𝑥𝑦 (𝑦). (8)

Since the scoring rules we consider are positional, by Equation (8)
it will follow that for all (𝑥,𝑦), (𝑥 ′, 𝑦′) in ▷,

𝑠▷ (𝑥) − 𝑠▷ (𝑦) = 𝑠▷ (𝑥 ′) − 𝑠▷ (𝑦′). (9)

Consider two alternatives 𝑎 and 𝑏 such that 𝑎 ▷ 𝑏 and define the
preference ▷′ = {(𝑎, 𝑏), (𝑏, 𝑐), (𝑎, 𝑐)} for some 𝑐 ∈ 𝐴 \ {𝑎, 𝑏}. Again
by Theorem 3 for addition and omission, 𝑠▷𝑎𝑏 (𝑎) − 𝑠▷𝑎𝑏 (𝑏) =

𝑠▷′ (𝑎) − 𝑠▷′ (𝑏). By Equation (9) applied to the pairs (𝑎, 𝑏), (𝑏, 𝑐),
and (𝑎, 𝑐), it follows that 𝑠▷′ (𝑎) = 𝑠▷′ (𝑏) = 𝑠▷′ (𝑐).

We thus know that 𝑠▷ (𝑥) = 𝑠▷ (𝑦) whenever 𝑥 and 𝑦 are con-
nected. Suppose now that 𝑥 and 𝑦 belong to two different con-
nected components of ▷. Then, the preferences ▷′ = ▷ ∪ {(𝑥,𝑦)}
and ▷′′ = ▷ ∪ {(𝑦, 𝑥)} will be acyclic and thus well-defined. By
the same reasoning as above, we know that 𝑠▷′ (𝑥) = 𝑠▷′ (𝑦) and
𝑠▷′′ (𝑥) = 𝑠▷′′ (𝑦). Since ▷ ⊂ ▷′ and ▷ ⊂ ▷′′, it follows by Theo-
rem 3 for omission that 𝑠▷ (𝑥) − 𝑠▷ (𝑦) ≤ 𝑠▷′ (𝑥) − 𝑠▷′ (𝑦) = 0 and
that 𝑠▷ (𝑦) − 𝑠▷ (𝑥) ≤ 𝑠▷′′ (𝑦) − 𝑠▷′′ (𝑥) = 0. So, 𝑠▷ (𝑥) = 𝑠▷ (𝑦) and
we have concluded the proof. □
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Finally, note that Theorems 4 and 5 are strong in the sense that
their proofs do not require that specific manipulations employ both
omission and flipping (or addition and omission) at the same time.

6 MANIPULATION BY SINGLE TYPES
After having investigated manipulation by combined types and
obtained two important impossibility results in Section 5, we now
wonder whether specific types of manipulation (by addition, omis-
sion, or flipping) can at least be prevented by positional scoring
rules. We bring very good news. For every single manipulation type,
there exists some positional scoring rule immune to manipulation.

First, recall that the stepwise-scoring rule prevents manipulation
by both addition and flipping (Proposition 2). So we immediately
know that the following results hold.10

Proposition 3. There exists a non-trivial positional scoring rule that
is immune to ℓ-manipulation by addition.

Proposition 4. There exists a non-trivial positional scoring rule that
is immune to ℓ-manipulation by flipping.

Note though that the stepwise-scoring rule must be manipulable
by omission (otherwise the impossibilities of Section 5 would fail).
Here is an example illustrating this:

Example 3. In the preference below, omitting the arrow from 𝑎

to 𝑑 increases the difference between the stepwise scores of 𝑎 and 𝑏.
a

b

c

d

Next, Proposition 5 holds because the cumulative-scoring rule sat-
isfies the condition of Theorem 2, instantiated for preferences ▷
and ▷′ that conform to omission: If 𝑎 is preferred to 𝑏 with respect
to a preference ▷, then by removing pairwise preferences from ▷
the cumulative score of 𝑎 will be reduced at least as much as the
cumulative score of 𝑏.

Proposition 5. There exists a non-trivial positional scoring rule that
is immune to ℓ-manipulation by omission.

But omission is the onlymanipulation type to which the cumulative-
scoring rule is immune:

Example 4. In the left preference below, we can increase the dif-
ference between the cumulative scores of 𝑎 and 𝑏 by adding an
arrow from 𝑎 to 𝑑 ; in the right preference, we can flip the arrow
connecting 𝑎 and 𝑏 to increase the difference between 𝑏 and 𝑐 .

a b c

d

a b c

d

Figure 2 graphically depicts our observations. Note that examples
for manipulation under the domination-scoring rule are easy to
find, but the existence of rules that are immune to manipulation by
flipping and not by addition remains a conjecture.

10We also find that the veto-scoring rule satisfies the condition of Theorem 2,
instantiated for preferences that conform to addition. Indeed, if 𝑎 ▷ 𝑏 for some alter-
natives 𝑎,𝑏, then the veto score of 𝑎 must be 1, the veto score of 𝑏 must be 0, and the
two scores will remain the same under every addition of pairwise preferences to ▷.
But veto scoring is manipulable by omission and by flipping.

Omission
Addition

Flipping

•

trivial

• veto

• stepwise•cumulative

•domination

Figure 2: The space of positional scoring rules, categorised
with respect to their immunity to manipulation by the dif-
ferent types of omission, addition, and flipping.

7 CONCLUSION
We have investigated the problem of strategic manipulation in
voting for settings where the truthful preferences of the agents may
be incomplete. Specifically, we have formalised the three ways in
which the agents may attempt to misrepresent their preferences—by
adding, omitting, or flipping pairwise comparisons.

In certain situations one may be more worried about one type of
manipulation than another. For instance, in crowdsourcing settings,
part of the mechanism designer’s problem is not only to get the
agents to tell the truth, but also to incentivise them to fully complete
the task. Lying by omission may deprive the system of important
data. On the other hand, in social situations, lying by omission
intuitively seems more acceptable than outright misrepresentation.
So, some manipulations may be considered tolerable, but this may
also lead to an inverse conclusion for a mechanism designer: If
concealing a fragment of their truth feels more acceptable to agents
in a particular decision-making scenario than creating a brand new
lie or completely twisting their preferences, it may be thought as
more important to protect against the more likely type of lie.

We have axiomatised the class of positional scoring rules for
incomplete preferences and have shown that immunity to manipu-
lation by a single type is always achieved by some such rule. This is
a very strong set of results, proven to hold not only for individual
manipulators, but also for groups of agents that may manipulate
simultaneously. Unfortunately, as far as combinations of types are
concerned, manipulation can be prevented only for addition and
flipping; all non-trivial positional scoring rules are susceptible to
manipulation by omission together with addition or flipping.

It remains an open question whether our impossibilities can be
circumvented outside the family of positional scoring rules, and how
those rules that are immune to manipulation can be characterised
axiomatically. Note also that in this paper we have been concerned
with a slightly different notion of an impossibility than the one
that is usually met in the literature and refers to the existence of
dictators; we have only excluded trivial scoring rules that always
output the whole set of alternatives. Clearly, there is room for
further research pertaining to our model.
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