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ABSTRACT
PointGoal navigation has seen significant recent interest and progress,
spurred on by the Habitat platform and associated challenge [21].
In this paper, we study PointGoal navigation under both a sample
budget (75 million frames) and a compute budget (1 GPU for 1 day).
We conduct an extensive set of experiments, cumulatively totaling
over 50,000 GPU-hours, that let us identify and discuss a number of
ostensibly minor but significant design choices – the advantage esti-
mation procedure (a key component in training), and visual encoder
architecture. Overall, these design choices lead to considerable and
consistent improvements. Under a sample budget, performance for
RGB-D agents improves 3 SPL on Gibson (4% relative improvement)
and 20 SPL on Matterport3D (43% relative improvement). Under a
compute budget, performance for RGB-D agents improves by 3 SPL
on Gibson (5% relative improvement) and 15 SPL on Matterport3D
(50% relative improvement). Our findings and recommendations
will serve to make the community’s experiments more efficient – to
reach 50 SPL with RGB-D on Matterport3D, they reduce the samples
needed by 3x and the training time 2x.
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1 INTRODUCTION
Galvanized by fast simulation platforms [15, 20, 21, 29], large rich
3D datasets [4, 25, 30], and the success of deep reinforcement learn-
ing [18, 24, 26], training virtual robots (embodied agents) in sim-
ulation has garnered considerable interest in recent years. Works
have developed a rich set of tasks, ranging from PointGoal navi-
gation [1], to grounded instruction following [2, 23] and question
answering [8, 11, 27].

In this rich space of tasks, PointGoal navigationwithGPS+Compass
has emerged as a test-bed problem due to its property of ‘easy to
get off the ground, but difficult to fully solve’. Specifically, Wijmans
et al. [28] show that good performance can be obtained with un-
der a week of GPU time but near-perfect performances currently
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Figure 1: PointGoal navigation [1]. An agent is initialized
in a novel environment (blue square) and task with naviga-
tion to a point specified relative to the start location (red
square) – e.g. (5, 2) means go 5 meters forward and 2 me-
ters right. It must do so from egocentric inputs – RGB-D and
GPS+Compass– and without a map.

requires half-a-year of GPU time. This property makes PointNav
an ideal test-bed for empirical studies as it provides ample dy-
namic range – we can be confident that improves are statically
significant as the difference in performance is large. Moreover still,
findings and improvements in PointNav with GPS+Compass trans-
late to improved performance on other tasks (PointNav without
GPS+Compass [9, 19], ObjectGoal navigation [3, 6], RoomGoal
navigation [17]) and to navigation by real robots [14]. The model
architecture developed in Chaplot et al. [5] has directly lead im-
provements on ObjectNav [6], ImageNav [7], and PointNav without
GPS+Compass [19].

Given this interest, we present a systematic analysis of what
matters and what what doesn’t matter for learning PointNav with
GPS+Compass. We identify and discuss a number of ostensibly
minor but significant design choices – the advantage estimation
procedure (a keep component in training) and visual encoder archi-
tecture – that have large impacts on agent performance.

We examine these differences in two contexts, i) sample efficiency,
and ii) compute efficiency. To study sample efficiency, we train all
agent variants for a fixed number of samples – 75 million steps,
a high but feasible number of samples [5, 10, 21, 22, 31]. To study
compute efficiency, we ask a subtly different but important question:
How far can we get with 1 GPU for 1 day? We instead train for
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Table 1: Results on PointNav at 75 million. Performance on Gibson and Matterport3D validation sets (validation used to re-
duce exposure to test). Checkpoint selection done by validation SPL for each run independently. We find ResNet18 improves
performance and normalized advantage either harms performance or has no effect. Mean and 95% CI from 5 runs.

SimpleCNN ResNet18
Gibson Matterport3D Gibson Matterport3D

# Sensors Norm Adv. Success ↑ SPL ↑ Success ↑ SPL ↑ Success ↑ SPL ↑ Success ↑ SPL ↑
1

RGB
✓ 14.2±24.97 11.2±19.56 00.0±0.00 00.0±0.00 79.3±1.57 68.0±1.26 53.1±2.03 40.1±0.86

2 - 78.5±2.20 63.2±1.76 55.1±3.28 37.6±1.77 81.8±2.14 68.4±1.38 50.8±1.46 37.9±1.40
3

RGB-D
✓ 85.1±1.29 77.4±1.32 55.5±31.39 45.9±26.00 87.4±0.75 80.5±0.77 78.8±1.02 66.7±1.07

4 - 87.3±1.39 78.0±0.79 75.2±2.56 60.9±1.82 88.6±0.80 80.3±0.36 78.3±0.98 64.7±1.05
5

Depth
✓ 88.6±1.67 81.9±0.93 78.3±0.29 65.9±0.50 91.8±1.35 83.9±0.58 81.8±1.17 69.3±1.49

6 - 93.1±0.59 84.4±0.44 80.1±1.42 66.5±1.14 93.0±0.57 84.2±0.55 80.5±1.79 66.9±0.97

a fixed amount of computation – i.e. comparisons at a different
sample budget but the same computation budget.

Specifically, we contend that when that when training in simula-
tion compute efficiency should be an equally important objective.
For instance, an agent architecture or training regime that increases
the number of samples required 2-fold but decreases the compute
required 6-fold would be desirable when training in simulation.
On the other hand, an architecture or training regime that reduces
the number of samples required 2-fold but increases the compute
required 6-fold would not be desirable.

As a concrete example, consider auxiliary tasks. These methods
are known to improve sample efficiency but do so at the cost of
increased computation. If an auxiliary task either requires a large
decoder (such as when predicting in pixel space), it may increase the
computational cost more than it improves sample efficiency, leading
to overall slower training time. While such a trade-off is worthwhile
when training in reality, it isn’t when training in simulation.

Under these two objectives, we conduct an extensive set of exper-
iments, cumulatively totalling over 50,000 GPU hours. These design
choices lead to considerable and consistent improvements. Under a
fixed sample budget, performance for RGB-D agents improves over
the Habitat baselines by 3 SPL on Gibson (8% relative improvement)
and 20 SPL on Matterport3D (43% relative improvement). Under a
fixed compute budget (1 GPU-day), performance for RGB-D agents
improves by 3 SPL on Gibson (5% relative improvement) and 15
SPL on Matterport3D (50% relative improvement).

2 RESULTS ON A SAMPLE BUDGET
In this section we discuss our results when considering sample effi-
ciency. Tab. 1 shows our results. The rows show the 6 different agent
settings studied – {RGB, RGB-D, Depth }×{normalized advantage, un-
normalized advantage}. The columns show the 4 different settings
each agent is trained under – {Gibson, Matterport3D} ×{SimpleCNN,
ResNet18}. We focus our analysis on the setting with normalized ad-
vantage initially (as this is the standard practice) and then focus on
results without normalized advantage. We refer to changes in per-
formance as {+,-}X/{+,-}Y SPL to indicate an {increase, decrease} of X
SPL on Gibson and a {increase, decrease} of Y SPL on Matterport3D.

ResNet18 improves performance. The largest visible difference
between Savva et al. [21] and Wijmans et al. [28] is the choice of
visual encoder. Savva et al. [21] use a simple 3-layer CNN that has its
origins in Atari experiments [16] and contains none of the features
of modern CNNs – e.g. no skip-connections [12] nor normalization
layers [13]. Due to the visual complexity of Gibson and Matterport,
a better CNN improves performance considerably – +57/+40 SPL
for RGB (row 1)1, +3/+21 SPL for RGB-D (row 3), and +2/+4 SPL for
Depth (row 5). As we transition from RGB to RGB-D to Depth, the
improvements due to ResNet18 decrease, indicating that Depth is
already a highly conducive for PointNav with GPS+Compass.
The gap between RGB-D and Depth closes. One intriguing trend
of Savva et al. [21] is the difference in performance between the
RGB-D and Depth agents, particularly on Matterport3D (gap of 20
SPL, row 3 vs. 5). The RGB-D agent could clearly do better if it
simply ignored RGB but fails to do so. We find that given a better
visual encoder, this gap closes considerably, to 3 SPL (row 6 vs. 10,
right). Specifically, the RGB-D performance on Matterport3D with
ResNet18 is 66 SPL, while the performance with Depth is 69 SPL.
Normalized advantage harms performance (for SimpleCNN).
We find that normalized advantage harms performance for Sim-
pleCNN in almost all cases and never improves performance –
+54/+38 SPL for RGB (row 2 vs. 1), +0/+15 SPL for RGB-D (4 vs. 3),
and +2/+0 SPL for Depth (6 vs. 5). For ResNet18, normalized ad-
vantage neither harms nor improves the performance of the best
checkpoint by a statically significant margin. For both, normalized
advantage introduces instability – i.e. agent performance will spu-
riously collapse before recovering shortly. Despite its prevalence,
we find clear evidence that this method is harmful.
In the extended version – available in the auxiliary material
or arxiv.org/abs/2012.06117 – we discuss our results on a compute
budget, examine generality of our findings, and provide a conjecture
for why normalizing advantage harms performance.2

1We comment on the divergence with SimpleCNN in the supplement.
2EW is supported in part by an ARCS fellowship. The Georgia Tech effort was sup-
ported in part by NSF, AFRL, DARPA, ONR YIPs, ARO PECASE. The views and
conclusions contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either expressed or
implied, of the U.S. Government, or any sponsor.
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