
Scaling Opponent Shaping to High Dimensional Games
Akbir Khan∗

University College London
akbir.khan.13@ucl.ac.uk

Timon Willi∗
University of Oxford

timon.willi@eng.ox.ac.uk

Newton Kwan∗
University College London

Andrea Tacchetti
Deepmind

Chris Lu
University of Oxford

Edward Grefenstette
University College London

Tim Rocktäschel
University College London

Jakob Foerster
University of Oxford

ABSTRACT

In multi-agent settings with mixed incentives, methods developed
for zero-sum games have been shown to lead to detrimental out-
comes. To address this issue, opponent shaping (OS) methods ex-
plicitly learn to influence the learning dynamics of co-players and
empirically lead to improved individual and collective outcomes.
However, OSmethods have only been evaluated in low-dimensional
environments due to the challenges associated with estimating
higher-order derivatives or scaling model-free meta-learning. Al-
ternative methods that scale to more complex settings either con-
verge to undesirable solutions or rely on unrealistic assumptions
about the environment or co-players. In this paper, we successfully
scale an OS-based approach to general-sum games with temporally-
extended actions and long-time horizons for the first time. After
analysing the representations of the meta-state and history used by
previous algorithms, we propose a simplified version called Shaper.
We show empirically that Shaper leads to improved individual
and collective outcomes in a range of challenging settings from
literature. We further formalize a technique previously implicit in
the literature, and analyse its contribution to opponent shaping. We
show empirically that this technique is helpful for the functioning
of prior methods in certain environments. Lastly, we show that
previous environments, such as the CoinGame, are inadequate for
analysing temporally-extended general-sum interactions1.

KEYWORDS

Multi-Agent Reinforcement Learning, Opponent Shaping, General-
Sum Games

ACM Reference Format:

Akbir Khan, Timon Willi[1], Newton Kwan[1], Andrea Tacchetti, Chris Lu,
Edward Grefenstette, Tim Rocktäschel, and Jakob Foerster. 2024. Scaling
Opponent Shaping to High Dimensional Games. In Proc. of the 23rd Interna-
tional Conference on Autonomous Agents and Multiagent Systems (AAMAS
2024), Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 10 pages.

∗Equal Contribution.
1Blogpost available at sites.google.com/view/scale-os/

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

1 INTRODUCTION

From personal assistants and chat-bots to self-driving cars and
recommendation systems, the world of software is becoming in-
creasingly multi-agent as these systems are continuously learning
and interacting with each other in fully cooperative, fully competi-
tive, and general-sum settings.

In this paperwe investigate interacting, learning agents in general-
sum settings. In such settings, commonly-used RL methods devel-
oped for zero-sum games can lead to disastrous outcomes [6]. For
example, in real-world scenarios like pollution and international
arms races [7, 34], such agents would fail to realise that they’re
better off cooperating, even if it means they’re potentially worse
off than their co-players. Poor performance could also lead to being
extorted in social-dilemma-like scenarios [25, 28].

While multi-agent learning research has shown great success
in strictly competitive [5, 15, 33, 36] and fully cooperative set-
tings [11, 29], this success does not transfer to general-sum set-
tings [10, 23]: In competitive games, agents can learn Nash equilib-
rium strategies by iteratively best-responding to suitable mixtures
of past opponents. Similarly, best-responding to rational co-players
leads to the desirable equilibria in cooperative games (assuming
joint training). In contrast, many Nash equilibria coincide with
globally worst welfare outcomes in general-sum settings, rendering
the above learning paradigms ineffective. For example, in the iter-
ated prisoner’s dilemma [IPD, 2, 13], naive best-response dynamics
converge to unconditional mutual defection [10] rather than Nash
equilibria with higher social welfare.

It is important that general-sum learning methods scale to high-
dimensional settings, such as those with longer-time horizons,
larger state spaces and temporally-extended actions, as these en-
vironments are more akin to the real world. In matrix games, co-
operation and defection are clearly defined atomic actions, whilst
in more complex environments such as autonomous driving, co-
operation and defection are defined over sequences of actions (e.g.
a path towards a cooperative/defective location). Scalable meth-
ods [16, 19, 27, 40] that manage to avoid unconditional defection in
these settings rely heavily on reward shaping, which blurs the line
between the problem setting (“social dilemma”) and the method.

As an alternative approach, opponent shaping (OS) methods
recognise that the actions of any one agent influence their co-
player’s policy and seek to use this mechanism to their advantage
[10, 17, 22, 38]. However, many past OS methods require privileged

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1001

https://sites.google.com/view/scale-os/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

information to shape their opponents and are myopic since antici-
pating many steps is intractable. Model-Free Opponent Shaping [M-
FOS, 25] and The Good Shepherd [GS, 4] solve the issues above
by framing opponent shaping as a meta-learning problem, which
our method inherits and builds upon. However, M-FOS presents
only preliminary results on the higher-dimensional CoinGame [21]
benchmark, and GS none at all.

To scale OS agents to higher-dimensional benchmarks, we sys-
tematically evaluate the architectural components of the M-FOS
and GS algorithms. We identify two forms of memory—history
and context. History captures intra-episode information and con-
text inter-episode information. We find empirically that both are
necessary to achieve shaping. M-FOS captures both types of mem-
ory (though not completely), whereas GS does not. However, we
identify a bottleneck in the M-FOS method, as M-FOS requires two
separate policies to capture context and history, where only one
is necessary. Using this finding, we propose a new method, called
Shaper, removing the unnecessary bottleneck from M-FOS.

Beyond these memory components, we uncover another element
used implicitly in prior work but never formally introduced or
analysed: averaging across the batch of trajectories at each meta
step. This ensures that the hidden states of the opponent shaping
algorithm carry information from the entire batch, rather than
just a single batch dimension. We formalise this technique and
empirically investigate its importance. Our analysis shows that
while this technique improves previous methods like M-FOS in
certain environments, it is not essential for our proposed method,
Shaper, in typical environment settings. This highlights the value
of our formalisation and empirical analysis in understanding and
improving upon existing methods.

Shaper outperforms previous OSmethods in general-sum games
with long-time horizons and temporally-extended actions.We show-
case our performance on the “IPD in the Matrix” and “IMP in the
Matrix“ games, introduced by themelting pot suite [20]. These have
a 30x state-space than environments previously used to evaluate
OS and contain more complex interaction dynamics. Additionally,
we consider shaping on sequential matrix games with 100x longer
horizons than their previously used counterparts. We demonstrate
empirically that our simplification of M-FOS helps scalability, that
only evolutionary-based meta-learning is effective in these long-
horizon games, and that previous evaluation environments, such as
the CoinGame [21], are inadequate for analysing OS in temporally-
extended, general-sum interactions.

2 BACKGROUND

What is a Game? We formalise our environments as Partially
Observable Stochastic Games [32, POSG]. A POSG is given by the
tupleM = ⟨N ,A,O, 𝑆,T ,I,R, 𝛾⟩, where A, O, and 𝑆 denote the
action, observation, and state space, respectively. These parameters
can be distinct at every time step and also incorporated into the
transition function T : 𝑆 × A → Δ𝑆 , where A ≡ A𝑛 is the joint
action of all agents. Each agent draws individual observations ac-
cording to the observation function I : 𝑆 × 𝑁 → O and obtains
a reward according to their reward function R : 𝑆 × A × 𝑁 → R
where 𝑁 = {1, . . . , 𝑛}. POSGs represent general-sum games. The

Algorithm 1 Shaper Update: Given a POSGM, policies 𝜋𝜙𝑖 , 𝜋𝜙−𝑖
and their respective initial hidden states ℎ𝑖 , ℎ−𝑖 and a distribution
of initial co-players 𝜌𝜙 , this algorithm updates a meta-agent policy
𝜙𝑖 over 𝑇 trials consisting of 𝐸 episodes.

.
Require: M, 𝜙𝑖 , 𝜌𝜙 , 𝐸,𝑇

1: for 𝑡 = 0 to 𝑇 do

2: Initialise trial reward 𝐽 = 0
3: Initialise meta-agent hidden state ℎ𝑖 = 0

4: Sample co-players 𝜙−𝑖 ∼ 𝜌𝜙
5: for 𝑒 = 0 to 𝐸 do

6: Initialise co-players’ ℎ−𝑖 = 0

7: 𝐽𝑖 , 𝐽−𝑖 , ℎ′𝑖 , ℎ
′
−𝑖 =M(𝜙𝑖 , 𝜙−𝑖 , ℎ𝑖 , ℎ−𝑖)

8: Update 𝜙−𝑖 according to co-players’ update rule.
9: ℎ𝑖 ← ℎ′

𝑖

10: 𝐽 ← 𝐽 + 𝐽𝑖
11: end for

12: Update 𝜙𝑖 with respect to 𝐽
13: end for

single-player case, 𝑁 = {1}, of POSGs are Partially Observable
Markov Decision Processes (POMDPs).

What is Shaping? Shaping is acting to manipulate the co-
player’s learning dynamics (and subsequent behaviour) [10], where
co-players are any other participants in the game. Newer shaping
methods frame shaping as a meta-learning problem [4, 17, 25]. We
next present themeta-learning problem setting presented byM-FOS
since our work is a simplified case of the M-FOS framework.

What is M-FOS? Conceptually, M-FOS separates the task of
shaping (the meta-game) from the task of playing the game. Specifi-
cally, themeta-game is formulated as a POMDP ⟨A,O,S,T ,I,R, 𝛾⟩
over an underlying general-sum game, represented by a POSG
M, where the overline indicates the single-agent version of the
elements defined for POSGs. In the “shaping” POMDP, the meta-
state S contains the policies of all players in the underlying POSG:
𝑠𝑒 =

(
𝜙𝑒−1
𝑖

, 𝜙𝑒−1
−𝑖

)
∈ S, where 𝑒 indexes the episodes and (𝑖,−𝑖) in-

dex all agents. The meta-observation is all observations of the previ-
ous episode in the underlying game, i.e., 𝑜𝑒 = (𝑜𝑒−1

0 , 𝑜𝑒−1
1 , ..., 𝑜𝑒−1

𝐾
),

where 𝐾 is the length of an episode. The meta-action space A con-
sists of the policy parameterisation of the inner agent 𝑖 (in practice
a vector conditioning the policy), i.e., 𝑎𝑒 = 𝜙𝑒𝑖 .

M-FOS training works as follows. The meta-agent trains over
a sequence of 𝑇 trials (denoted “meta-episodes” in the original
paper). Each trial contains 𝐸 episodes. At the end of each episode 𝑒
within a trial 𝑡 , conditioned on both agent’s policies, the co-players
update their parameters with respect to the expected episodic return
𝐽𝑒−𝑖 = E

[∑𝐾
𝑘=0 𝛾

𝑘𝑟𝑘−𝑖 (𝜙
𝑒
𝑖
, 𝜙𝑒−𝑖)

]
, where𝐾 is the length of an episode.

For example, if the co-players were Naive Learners, i.e., agents not
accounting for the learning dynamics of the co-player, with learning
rate 𝛼 , the update is: 𝜙𝑒+1

𝑗
= 𝜙𝑒

𝑗
+ 𝛼∇𝜙𝑒

𝑗
𝐽𝑒
𝑗
, for 𝑗 ∈ −𝑖 .

In contrast to the co-player’s update, the meta-agent learns
an update function for the parameters of their inner agent, i.e.,
𝑎𝑒 = 𝜙

𝑒
𝑖
∼ 𝜋𝜃 (· | 𝑜𝑒), where 𝜃 is the parameters of the meta-agent.

The meta-agent optimises the meta-return 𝐽 =
∑𝐸
𝑒=0 𝐽

𝑒
𝑖
(summed

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1002

over all episodes) at the end of a trial 𝑡 using any model-free optimi-
sation technique, e.g., PPO [31] or Evolution Strategies [ES, 30]. The
meta-agent and the inner agent are usually represented as recurrent
neural networks, such as LSTMs [14]. The meta-game setup allows
the meta-agent to observe the results of the co-player’s learning
dynamics, enabling it to learn to shape. Though not formalized or
discussed in detail in the paper, the originalM-FOS averages across
a batch of trajectories at each update step to ensure access to all
information necessary for shaping. In Section 3, we introduce a
formal definition of averaging across the batch and investigate its
role for shaping. While published concurrently, the Good Shep-
herd [4] is a simplified version of M-FOS, in which the meta-agent
and underlying agent are collapsed into a single agent without
memory that only updates after each trial. The agent is represented
by a feedforward neural network and has no memory. However, as
GS was evaluated on infinitely iterated matrix games, where the
state usually represents a one-step history, we consider GS to have
one-step history.

Where have current shaping algorithms been evaluated?

BothM-FOS and GS evaluate their shaping on infinitely-iterated
matrix games. While this is a fruitful playground to discover com-
plex strategies, such as tit-for-tat, infinitely-iterated matrix games
do not contain temporally-extended actions or high dimensional
state spaces. For example, in matrix games, cooperation simply con-
sists of playing the “cooperation” action. However, in the real world,
cooperation requires a repeated commitment to a cooperative strat-
egy (where it is often unclear whether a given atomic action is
cooperative). The CoinGame [21] supposedly addresses this short-
coming by incorporating IPD-like game dynamics into a gridworld.
M-FOS presents very preliminary results on the CoinGame with no
detailed analysis of the emerging strategies. However, as we show
in Section 4 the CoinGame suffers from pathologies that enable
shaping with simple strategies.

3 SHAPER: A SCALABLE OS METHOD

To introduce our method, we first analyse the role of memory in
meta-learning-based OS. Memory is important because it enables
a meta-agent to adapt its meta-policy within a trial since it only
updates parameters after a trial.

If the meta-agent cannot adapt their policy within a trial, a co-
player could simply learn the best-response to the meta-agent’s
policy. For example, in Rock-Paper-Scissors, the meta-agent would
be forced to play the fully mixed strategy, as any deviation from it
will be taken advantage of by the co-player. Instead a meta-agent
with memory can adapt to the co-player’s best response within a
trial and potentially achieve a better meta-return, which we show in
Section 5. Thus, memory is important if a meta-agent is to perform
well in all general-sum games.

We define two forms of memory: context and history. Let us de-
fine history as a trajectory of a (partial) episode 𝑒 ,𝜏𝑒 =

(
𝑜0
𝑒 , 𝑎

0
𝑒 , 𝑟

0
𝑒 , ..., 𝑟

𝐾
𝑒

)
,

and context as a trajectory of a (partial) trial t, 𝜏𝑡 = (𝜏0, ..., 𝜏𝐸). His-
tory captures the dynamics within an episode and is crucial for im-
plementing policies such as TFT that reward/punish the co-player
based on past actions. In contrast, context captures the learning dy-
namics of the co-player as it contains the co-player’s policy changes
over many parameter updates. Context is important for shaping

when the co-players update dynamics are non-stationary across a
trial or need to be inferred from the changing policy itself across
different episodes. It allows the shaper to adapt its inner policy to,
e.g., a change of the co-player’s learning rate or implicitely infer
their objective function.

Using the above definitions, we express the policies as the fol-
lowing: M-FOS : 𝑎 ∼ 𝜋𝜙 (· | 𝜏𝑒 , 𝜋𝜃 (𝑜𝑒)) and GS : 𝑎 ∼ 𝜋𝜙 (· | 𝑜𝑡𝑒).
M-FOS captures one-step context via the memory of the meta-agent,
and history via the memory of the inner agent but requires two
agents to do so. In contrast, GS captures one-step history (if given
by environment) but does not require a separate inner agent.

We propose Shaper, an algorithm requiring only one agent to
capture context and history. This is accomplished via an RNN that
retains its hidden state over episodes and only resets after each trial

Shaper: 𝑎 ∼ 𝜋𝜙 (· | 𝜏𝑒 , 𝜏𝑡) (1)

Compared to GS, Shaper has access to history and context by
adding memory to the architecture and retaining the hidden state over
the episodes. Compared to M-FOS, Shaper only requires sampling
from one action space. To contrast Shaper toM-FOS in more detail,
we refer to Appendix.

Shaper is trained as follows. Given a POSGM, at the start of a
trial, co-players 𝜙−𝑖 ∼ 𝜌𝜙 are sampled, where 𝜌𝜙 is the respective
sampling distribution. Shaper’s parameters 𝜙𝑖 and hidden state ℎ𝑖
are randomly initialised. During an episode of length𝐾 , agents take
their actions, 𝑎𝑘

𝑖
∼ 𝜋𝜙𝑖 (· | 𝑜𝑘𝑖 , ℎ

𝑘
𝑖
). At each time step in the episode,

the hidden state of the meta-agent is updated: ℎ𝑘+1
𝑖

= 𝑓 (𝑜𝑘
𝑖
, ℎ𝑘
𝑖
). On

receiving actions, the POSG returns rewards 𝑟𝑘
𝑖
, new observations

𝑜𝑘+1
𝑖

and a done flag 𝑑 , indicating if an episode has ended.
When an inner episode terminates, the updated co-player 𝜙𝑒+1−𝑖

and the meta-agent’s hidden state ℎ𝐾
𝑖
are passed to the next episode.

This process is repeated over 𝐸 episodes in a trial. When a trial
terminates, the meta-agent’s policy is updated, maximising total
trial reward, 𝐽 =

∑𝐸
𝑒 𝐽

𝑒
𝑖
. This leads to the following objective,

max
𝜙𝑖
E𝜌 (𝜙),𝜌 (M)

[
𝐽
]
. (2)

In practice, the co-players optimise their parameters using some
form of gradient descent, which typically involves batching the
episodal trajectories. Assume 𝜙𝑒−𝑖 = 𝐺 (𝜙𝑒−1

−𝑖 ,𝝉𝑒−1) is some co-
player’s update function 𝐺 : R𝑃 × R𝐵×𝑇 → R𝑃 , where P is the
number of parameters of𝜙−𝑖 , 𝐵 is the batch size, i.e., number of envi-
ronments for parallel training, and 𝑇 is the length of the trajectory.
Shaper then interacts with a co-player over a batch of environ-
ments, i.e., a𝑘

𝑖
∼ 𝜋𝜙𝑖 (· | o𝑘𝑖 ,h

𝑘
𝑖), where a𝑘𝑖 ∈ R

𝐵×𝐴 , o𝑘
𝑖
∈ R𝐵×𝑂 ,

and h𝑘𝑖 ∈ R𝐵×𝐻 , and 𝐴,𝑂 , and 𝐻 are the action-, observation-, and
hidden-state-size respectively.

Shaper needs to account for the batched updates of the co-player
because opponent shaping requires all the information determining
the learning update of the co-player. For example, imagine Shaper
plays with a co-player across a batch of environments with different
reward functions. While the co-player updates its parameters based
on a diverse set of trajectories from many reward functions, each of
Shaper’s hidden states only observes the trajectory of its respective
reward function. Intuitively, if the reward functions are very diverse,
the update derived from the whole batch would significantly differ

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1003

Table 1: Converged reward per episode (meta-agent, co-player) for agents trained with Naive Learners. We report reward per

episode for better interpretability. Mean and standard deviation reported across 100 seeds.

CoinGame IPD in the Matrix IMP in the Matrix

Shaper 4.63 ± 0.66, −3.35 ± 0.67 22.44 ± 1.12, 21.49 ± 0.67 0.14 ± 0.06, −0.14 ± 0.06
M-FOS (ES) 3.13 ± 0.40, 2.27 ± 0.38 15.49 ± 1.28, 23.88 ± 0.93 0.11 ± 0.07, −0.11 ± 0.07
M-FOS (RL) 0.94 ± 0.68, −0.23 ± 0.52 7.42 ± 0.21, 7.28 ± 0.15 0.04 ± 0.00, −0.04 ± 0.00
GS 5.44 ± 0.61, −4.17 ± 0.48 16.16 ± 1.33, 24.35 ± 0.83 0.00 ± 0.00, 0.00 ± 0.00
PT-NL 0.70 ± 0.58, −0.3 ± 0.47 6.33 ± 0.33, 6.96 ± 0.31 −0.17 ± 0.10, 0.17 ± 0.10
CT-NL 0.47 ± 0.83, 0.26 ± 0.30 5.56 ± 0.02, 5.56 ± 0.02 −0.10 ± 0.06, 0.10 ± 0.06

from the update estimated from a single environment trajectory, as
observed by the hidden state. We thus define the batched context as
a trajectory of a batched (partial) trial 𝝉𝑡 = (𝝉0, ...,𝝉𝐸).

Shaper: 𝑎 ∼ 𝜋𝜙 (· | 𝝉𝒆,𝝉𝑡)

This insight leads to the consequence that Shaper needs to consoli-
date information across its batch of hidden states, at least at every
co-player update. To address this issue, Shaper averages over its
hidden states across the batch at each step, combined with a skip
connection to ensure “situational” awareness of the hidden state’s
respective environment (see Appendix).

h
𝑘+1
𝑖 = 𝜆

(
1
𝐵

𝐵∑︁
𝑙=0

ℎ𝑘
𝑖,𝑙

)
+ (1 − 𝜆)h𝑘𝑖 (3)

h
𝑘+1
𝑖 = 𝑓 (𝑜𝑘𝑖 ,h

𝑘+1
𝑖) (4)

This approach ensures that Shaper effectively shapes its co-players
while accounting for the diverse set of trajectories that inform their
gradient updates, captured by the following meta-return function
with the expectation over the batched gradient update of the co-
player:

𝐽ES = E𝜖∼N(0,𝐼𝑑)

[
E𝜏∼𝜋𝜙𝑖+𝜖𝜎 ;𝜙𝑒

−𝑖∼𝐺 (𝜙𝑒−1
−𝑖 ,𝝉𝑒−1)

×
[
E𝜏𝑒∼𝜋𝜙𝑒−𝑖

[
Σ𝐾
𝑘=0𝛾

𝑘𝑟𝑘 (𝜙𝑒−𝑖 , 𝜙𝑖 + 𝜖𝜎)
]]] (5)

4 EXPERIMENTS

Here we present the test environments and our evaluation protocol
for Shaper. We also explain our ablation experiments helping us
evaluate the role of memory in OS.

The Prisoner’s Dilemma is a well-known and widely studied
general-sum game illustrating that two self-interested agents do not
cooperate even if it is globally optimal. The players either cooperate
(C) or defect (D) and receive a payoff (see Appendix). In the iterated
prisoner’s dilemma (IPD), the agents repeatedly play the prisoner’s
dilemma and observe the previous action of both players. Past
research used the infinite IPD in their experiments [4, 10, 23, 25,
38]. In the infinite version, the exact value function and gradients
thereof are calculated directly from the policy weights [10]; In our
work, we consider the finitely iterated PD (f-IPD), where we cannot
calculate the exact value function and have to rely on sample-based
approaches such as RL and ES.

Iterated Matching Pennies (IMP) is an iterated matrix game
like the IPD. The players choose heads (H) or tails (T) and receive a
payoff according to both players’ choices. In contrast to the IPD, a
general-sum game, IMP is a zero-sum game. In the IMP one player
gets +1 for playing the same action as the other player, while the
other player is rewarded for playing a different action. Thus, the
only equilibrium strategy for each one-memory agent is to play a
random policy, resulting in an expected joint payoff of (0,0). Only
with intra-episode memory can a meta-agent observe a co-player’s
current policy and thus shape it.

CoinGame is a multi-agent gridworld environment that simu-
lates social dilemmas (like the IPD) with high-dimensional states
and multi-step actions [21]. Two players, blue and orange, move
around a wrap-around grid and pick up blue and orange coloured
coins. When a player picks up a coin of any colour, this player
receives a reward of +1. When a player picks up a coin of the co-
player’s colour, the co-player receives a reward of −2. Whenever
a coin gets picked up, a new coin of the same colour appears in a
random location on the grid at the next time step. If both agents
reach a coin simultaneously, then both agents pick up that coin (the
coin is duplicated). When both players pick up coins without regard
to colour, the expected reward is 0. In contrast to matrix games,
the CoinGame requires learning from high-dimensional states with
multi-step actions.

* in the Matrix extends matrix games to gridworld environ-
ments [35], where * is any normal-form game. For visual descrip-
tions, see Appendix. Agents collect two types of resources into their
inventory: Cooperate and Defect coins. Once an agent has collected
any coin, the agent’s colour changes, representing that the agent
is “ready” for interaction. Agents can fire an ‘interact’ beam to an
area in front of them. If an agent’s interact beam catches a “ready”
agent, both receive rewards equivalent to playing a matrix game *,
where their inventory represents their policy. For example, when
agent 1’s inventory is 1 Cooperate coin and 3 Defect coins, agent 1’s
probability to cooperate is 25%. For all details, see the Appendix.

* in the Matrix introduces a series of novel complexities for shap-
ing over the CoinGame and finite matrix games. The environment
is substantially more demanding than the previous games—it is
partially observable, has complex interactions, and much longer
time horizons. For shaping, partial observability makes temporally-
extended actions harder to estimate. Shapers are also incentivised
to speed up co-players learning, as the environment only allows in-
teractions after both agents have picked up a coin. We explore two

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1004

(a) (b) (c) (d)

Figure 1: Evaluation results over a single trial (with co-player) compromising over 100 seeds for the CoinGame. (a) Reward, (b)

Shaper’s frequency of picking up its own colour coin, (c) state visitation, and (d) the number of coins picked up per episode.

Shaper successfully elicits exploitation with a co-player with a high state visitation for DC and strong competency.

Figure 2: Render of the IPDitM games, a multi-step,

gridworld-based general-sum game. Agents with restricted

visibility and orientation traverse a grid picking up either

Defect or Cooperate coins. (left) shows an initial state of the

game before either agent has a coin. Once agents pick up a

coin, their appearance changes, and they can interact. (right)

shows the orange agent having collected a coin and the blue

agent firing their interact beam.

specific implementations of the game: “IPD in the Matrix” (IPDitM)
and “IMP in the Matrix” (IMPitM).

For our baseline comparisons, we compare Shaper against
multiple baselines: Naive Learners (NLs), variants of M-FOS, andGS.
A NL does not explicitly account for the learning of the co-player
across different episodes. In all of our experiments, the co-player is
a NL. We train meta-agents until convergence in their respective
environments. Then, we evaluate the performance of fixed meta-
agents against new co-player (NL) initialisation 𝜙−𝑖 . Additional
implementation details and hyperparameters for each game are
provided in the Appendix.2

In finite matrix games, our NL is parameterised as a tabular pol-
icy trained using PPO. In the gridworld environments, the NL is
parameterised by a recurrent neural network and trained using
PPO. Furthermore, in gridworlds, we compare to both M-FOS op-
timised with PPO and by ES. For GS, we only use ES, consistent
with the original paper. We compare the performance of Shaper
to two different types of NL pairs: The first type, co-training NL
(CT-NL), two NLs are initialised randomly and trained together
2The codebase is open-source [37].

using independent learning. This shows that avoiding uncondi-
tional defection is a challenge in the first place. The second type,
pre-trained NL (PT-NL) instead takes an agent from a fully trained
CT-NL pair and uses it as a naive shaper baseline, i.e., trains a NL
as a best response to the fixed final policy. This ensures that the
performance of Shaper is not simply due to breaking the learn-
ing dynamics of the co-player, e.g., because the fully trained NL
deprives a randomly initialised agent of all rewards. Specific details
are provided in Appendix. Next, for our ablations, we consider
three challenges:

Context Challenge: During a trial, after 𝑘 episodes, the co-
player stops updating their parameters. When they stop updating,
the shaper’s optimal behaviour is to exploit the co-player’s fixed
policy (effectively stop shaping). We evaluate in the IPD and choose
𝑘 = 2. This challenge tests if shapers: 1) identify the sudden change
in a co-player’s learning dynamics, and 2) deploy a more suitable ex-
ploitative policy. We hypothesise that shapers without context can-
not identify the change. We evaluate Shaper and compare against
GS to understand the importance of context for shaping.

History Challenge: We reset the hidden state of Shaper be-
tween episodes, removing its ability to use context to shape (Shaper
w/o context). We evaluate in IMP, and agents must infer the co-
player’s current policy using only history. Finally, we evaluate
Shaperwithin IMP environment over short and long episode lengths
(2 and 100, respectively) to limit the relative strength of history.

Average Challenge: We also analyse the role of averaging
across the batch in matrix games by comparing the performance
difference of both MFOS and Shaper with and without averaging.

5 RESULTS

Shaping in Finite Matrix Games:We evaluate Shaper,M-FOS
and GS on finite matrix games, i.e., long-time-horizon variants of
the infinite matrix games used in prior work.We recreate previously
reported extortion behaviour in a more challenging setting [25].

Insight 1: Shaper shapes the best in long-horizon iterated

matrix games. We inspect the converged reward for each shap-
ing algorithm against a PPO agent in the IPD (see the Appendix).
Here, Shaper shapes its co-player more effectively than the base-
lines, achieving an average return of -0.13 per episode. All shaping
baselines reach extortion-like policies.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1005

(a) (b) (c)

Figure 3: Evaluation results over a single trial (with co-player) compromising over 100 seeds for the IPDitM. (a) Mean reward

per timestep, (b) mean ratio of picking up cooperate coins per soft-reset, (c) total number of coins picked up per soft-reset. The

independent learner is shown to contrast what learning without a meta-agent would look like.

Table 2: Converged reward per step (meta-agent, co-player)

for agents against Naive Learners in finite matrix games.

Shaper shapes co-players to exploitative equilibria. Mean

and standard deviation over 20 randomised co-players.

IPD IMP

Shaper -0.1 ± 0.02, -2.8 ± 0.05 0.9 ± 0.02, -0.9 ± 0.02

M-FOS -0.6 ± 0.14, -2.3 ± 0.14 0.8 ± 0.09, -0.8 ± 0.09

GS -1.0 ± 0.03, -1.3 ± 0.10 0.0 ± 0.01, 0.0 ± 0.01
CT-NL -2.0 ± 0.00, -2.0 ± 0.00 0.0 ± 0.00, 0.0 ± 0.00

Insight 2: Memory is important for shaping in the IMP.

In the IMP, Shaper exploits its opponent to achieve a score of
(0.9,−0.9) (see Table 2). As expected, GS cannot shape the opponent,
achieving a score close to the Nash equilibrium, (0.0, 0.0). With
only a single-step history, it is impossible to shape the opponent
because the opponent can switch to a random strategy between
episodes to achieve a score of at least 0. Thus memory is required to
find shaping strategies. We find thatM-FOS, an agent with memory,
shapes too. Next, we present our CoinGame results.

Insight 3: Knowing how to navigate the gridworld and pick

up coins is already enough to suppress co-player’s learning.

Towards the end of meta-training, newly initialised co-players have
to play against already competent meta-agents who have seen the
game many times. We found that in CoinGame, it was sufficient for
the meta-agents to pick up all coins before the co-player could reach
them to hinder training. Therefore, we suggest checking that the
co-player learns against pre-trained Naive Learners. This mitigates
behaviours that prohibit the co-players from learning at all. We
found that changing from a global to an egocentric observation
space in the CoinGame helped co-players learn against pre-trained
agents. Examples of sanity tests are found in the Appendix.

Reiterating Insight 1, we findmeta-agents find extortion-like poli-
cies in the CoinGame. To better understand behaviour in CoinGame,
we extend the five states from the IPD (S, CC, CD, DC, DD) to in-
clude the start states (SS, SC, SD, CS, DS). At the start of an episode,
the state is SS until a player picks up a coin. To understand how

Shaper shapes, we inspect the probability of themeta-agent picking
up a coin of its own colour at the start, i.e., SC→ CC. For exam-
ple, suppose the meta-agent were to cooperate unconditionally in
the CoinGame. In that case, it only picks up coins of their own
colour no matter the state and would relate to a high probability of
cooperating over all states.

Figure 1b demonstrates how Shaper shapes its co-players effec-
tively already at the start. The difference between cooperating in
SC and SS (25%, 15% resp.) highlights how Shaper uses context to
evaluate the exploitability of its co-player. In SS, when both agents
have not picked up coins, Shaper probes for exploitability by not
cooperating. In SC, where the co-player has already shown they are
cooperative, Shaper also cooperates. Moreover, Figure 1c shows
that CS is visited more often than DS in early episodes (18%, 15%
resp.), indicating that Shaper is shaping the co-player to form a
preference for picking up their own colour. This preference is then
exploited by Shaper as indicated by the increasing visitation of DC.
The meta-agent’s probability of cooperating in DC converges to
25%, i.e., occasionally rewarding the co-player, as never cooperating
would probably make the co-player learn pure defection.

Insight 4: CoinGame is not suitable as a multi-step ac-

tion environment. We found GS produces comparable results
to Shaper. At first, this is surprising since GS is a feedforward
network and does not have access to the history (or, at most, one
step). Therefore it should not be able to retaliate against a defecting
agent since it has no memory of their past actions. However, a close
investigation of the problem setting shows that due to particular
environment dynamics, the current state is often indicative of past
actions. For example, seeing two agents and a coin on the same
square is a strong signal that one of the agents defected since this
situation only could have arisen when either all objects spawn on
the same square (occurs with a probability of 0.12% and only at the
beginning of an episode) or when both agents went for the same
coin and the coin respawned on top of them (see the Appendix).
This illustrates that CoinGame allows for simple shaping strate-
gies that do not require context or history, limiting its utility as a
benchmark to measure temporally-extended actions.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1006

(a) (b) (c)

Figure 4: Hardstop Challenge: Average reward per timestep over an evaluation trial for Shaper (a) and GS (b) against a Naive

Learner in the IPD. Here GS fails to generalise to a co-player that stops learning after an unknown number of timesteps (unseen

during training). (c) State Visitation through the evaluation shows Shaper responds to co-players frozen policy by moving into

either DD (the best response to a defective agent) or DC (the best response to a fully cooperative agent).

Table 3: Ablations highlighting the importance of context

and history for Shaping.We report converged reward per step

(meta-agent, co-player) for agents against Naive Learners.

Context Challenge: IPD
Shaper -0.8, -2.0
Shaper w/o Context -1.25, -1.75

History Challenge: IMP (Length=2)
Shaper 0.5, -0.5
Shaper w/o History 0.0, 0.0

History Challenge: IMP (Length=100)
Shaper 0.5, -0.5
Shaper w/o History 0.5, -0.5

We continue with our results for the * in the Matrix envi-
ronments. Motivated by Insight 3, we show that co-players learn
against pre-trained agents by the number of coins collected in the
Appendix.

Insight 5: Shaper outperforms other shaping methods in

the IPDitM by a considerable margin Shaper outperforms other
shaping methods in the IPDitM by a considerable margin (see Table
1), e.g., Shaper gets ∼ 22.44 points against NL, where M-FOS gets
∼ 15.49. Furthermore, Shaper finds a collectively better equilibrium
for both players over any other shaping method, e.g., in comparison
with M-FOS, Shaper achieves (∼ 22.44,∼ 21.49) and M-FOS gets
(∼ 15.49,∼ 23.88).

Insight 6: Shaping in IPDitM leads to collectively and indi-

vidually better outcomes. Table 1 (second column) shows that
shaping (Shaper, M-FOS, and GS) leads to collectively and individ-
ually better outcomes in IPDitM compared to PT-NL or CT-NL.

Insight 7: Shaper shapes by picking up almost all coins at

the beginning of a trial. The meta-agent picks up almost all coins
in the grid in the first 20 episodes (≈ 3.5, see Figure 3c), especially
Defect coins. This leaves only Cooperate coins for co-players. Inter-
acting with a more cooperative ratio, the co-player receives some
reward, reinforcing the co-player to play a cooperative ratio in the
future. Figure 3b shows the meta-agent and co-player converge to

collecting a large ratio of Cooperate coins (≈ (0.4, 0.6)), in contrast
to independent learners (≈ 0.1) (grey dashed line). Interestingly, a
(meta-agent, co-player) pair collects more coins (≈ (3.0, 2.0)) than
a pair of independent agents (≈ (1.5, 1.5)) - this is because the in-
dependent learners maximise their return under mutual defection
only by increasing interactions within an episode.

In the IMPitM, GS does not learn to shape, as expected from
Insight 2, whereas M-FOS and Shaper does. Shaper and M-FOS
achieve similar performances. (see Table 1).

Insight 8: Shaper empirically tends to find better shaping

policies than M-FOS in IPDitM. Shaper outperforms M-FOS in
Table 1, providing evidence that Shaper scales to more complex
policies. Shaper demonstrates shaping, as indicated by the final
rewards, which are significantly higher for both agents than M-FOS
IPDitM. We postulate that asM-FOS architecture is as expressive
as Shaper, its complexities and biases hinder ES’ ability to find
optimal solutions (for training training curves, see the Appendix.

In Table 4, we show that Shaper finds policies leading to im-
proved global welfare in cross-play with M-FOS and GS. In cross-
play, the shaping algorithms are trained against Naive Learners
and evaluated against each other. This experiment motivates that
Shaper’s inductive biases leads to finding more robust policies even
when evaluated out of distribution. Note that Shaper vs. Shaper
achieves similar scores as M-FOS vs M-FOS. However, Shaper
achieves better scores against M-FOS (7.32 ± 0.34, 5.08 ± 0.36) and
GS (28.61 ± 1.82, 20.23 ± 1.27). Also, note howGS achieves its highest
payoff when playing against Shaper.

In our ablations, we find that context is beneficial for shaping
in the IMP. In the “Context Challenge”, Shaper (-0.8) outperforms
Shaper w/o Context (-1.25) (see Table 3). For shaping to occur in
this challenge, we expect methods to change their strategy at 𝑒 = 2
episodes. Shaper demonstrates dynamic shaping by switching, yet
Shaper w/o Context’s policy does not adapt and does not exploit
the stop (see Fig. 4). This result provides evidence that context is
needed to shape.

In the “History Challenge”, when playing the IMP with a small
number of inner-episodes (𝑒 = 2), we expect meta-agents with-
out context to be unable to identify co-players’ current learning
and thus cannot shape. We find that Shaper shapes agents, whilst

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1007

(a) (b) (c) (d)

Figure 5: Reward per timestep throughout training for The “Average” challenge. Results are presented over matrix games for 5

seeds. In a) and b) we evaluate OS methods on IPD and in c) and d) we evaluate on IMP. We note that batching only helps M-FOS

in the IPD. This indicates batching is only useful in sufficiently diverse environments, relative to the OS method.

Table 4: Episodic reward for in a single evaluation trial

against different OS shaping methods in IPDitM. Neither

agent takes gradient updates, but thosewithmemory Shaper

and M-FOS use memory to change their policy during the

trial. Results are reported for the row player in each match.

We report mean and std over 5 seeds.

Shaper GS M-FOS

shaper 16.48 ± 0.88 28.61 ± 1.82 7.32 ± 0.34
gs 20.23 ± 1.27 0 ± 0 1.91 ± 0.27
m-fos 5.08 ± 0.36 1.35 ± 0.28 16.25 ± 0.95

Shaper w/o Context does not shape agents as indicated by better
rewards, 0.5 vs 0.0 (see Appendix). Interestingly, we also found
that with a longer inner-episode length (𝐸 = 100), Shaper w/o
Context uses history to shape its co-player (see Appendix). This
shows that history can encode co-players’ learning dynamics in
some environments.

In the “Average Challenge”, we find that averaging across the
batch only helps M-FOS in the IPD, as it improves convergence
speed. In all other scenarios, averaging across the batch did not
significantly improve performance (see Figure 5b). Shaping agents
must approximate, via observations, a co-players update rule. If
this update is batched (such as with stochastic gradient descent),
the batching mechanism should in theory provide a better estimate.
If the batching mechanism is not required, this suggests experience
in the update is not diverse. Comparing games, the diversity of
co-player behaviours within the IMP is much less than IPD. Within
the IPD, Shaper sees no improvement with the batch mechanism
compared to M-FOS (see Figure 5a - 5b). Here we postulate that
given M-FOS has a limited context (1-step), batching provides M-
FOS with greater context such that it can infer co-player learner.
Shaper does not require averaging as it captures more context via
its hidden than M-FOS does. This suggests that moving forward,
OS methods should consider Context, History and Batching, as
mechanisms for observing the experience / learning of co-players.

6 RELATEDWORK

Opponent Shaping methods explicitly account for their oppo-
nent’s learning. Just like Shaper, these approaches recognise that
the actions of any one agent influence their co-players policy and

seek to use this mechanism to their advantage [10, 12, 17, 22, 38, 41].
However, in contrast to Shaper, these approaches require privi-
leged information to shape their opponents. These models are also
myopic since anticipating many steps is intractable due to the diffi-
culty of estimating higher-order gradients. Balaguer et al. [4] and
Lu et al. [25] solve the issues above by framing opponent shaping
as a meta reinforcement learning problem, which allows them to
account for long-term shaping, where there is no need for higher-
order gradients.

Algorithms for Social Dilemmas often achieve desirable out-
comes in high-dimensional social dilemmas yet assume access to
hand-crafted notions of adherence [40], social influence [3, 16],
gifting [27] or social conventions [19]. While these approaches can
achieve desirable outcomes, they change the agent’s objectives and
alter the dynamics of the underlying game.

Multi-AgentMeta-Learningmethods have also shown success
in general-sum games with other learners [1, 18, 39]. Similar to
Shaper, they take inspiration from meta-RL - their approach is to
learn the optimal initial parameterisation for the meta-agent akin
to Model-Agnostic Meta Learning [9]. In contrast, Shaper uses an
approach similar to RL2 [8], which trains an RNN-based agent to
implement efficient learning for its next task. Finally, Shaper is
optimised using ES, which empirically performs better with long-
time horizons than policy-gradient methods [24–26].

7 CONCLUSION

When agents interact, the actions of each agent influence the re-
wards and observations of others and, through their learning, ulti-
mately affect their behaviour. Leveraging this connection is called
opponent shaping, and has received considerable attention recently.

This paper introduces Shaper, a shaping method suitable for
high-dimensional games. We are the first to scale shaping success-
fully to long-time horizon general-sum games with temporally-
extended actions, and we provide extensive performance analysis
in these settings. We formalise the concept of history and context
for shaping and analyse their respective roles empirically. Next,
we formalise the previously implicit concept of averaging across
the batch and show that it’s helpful for previous methods to learn.
Future work might investigate scenarios where averaging across
a batch is also necessary for Shaper. Finally, we identify a funda-
mental problem in the widely-used CoinGame.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1008

8 ETHICS STATEMENT*

Shaping can be used for good and bad. Empirically, shaping has lead
learning agents to find more prosocial solutions in mixed-incentive
settings. However, one can imagine scenarios where shaping is
used with a negative impact on society. Assuming that learning
agents will be deployed in the real world, e.g., online learning
self-driving cars, it is important we understand how such agents
interact. Early opponent shaping research has already shown that
two naive agents mutually defect in the iterated prisoner’s dilemma
and that opponent shaping leads to the more prosocial tit-for-tat
strategy. It is important that we develop these methods further,
investigate if they keep leading to more prosocial outcomes even
in more difficult environments and if not, what improvements can
we make such that they do. In our work, we show that in grid-
worlds with temporally-extended actions and long-time horizons,
opponent shaping tends to find more prosocial solutions than Naive
Learners. Investigating shaping is important to prevent misuse of
the paradigm. We are at the beginning of fundamental research in
shaping and a better understanding of the necessary components
to achieve shaping will help us to better control shaping agents.
Opponent Shaping is still in an early phase of development, and
practical implications are limited, so immediate negative societal
influence is unlikely.

REFERENCES

[1] Maruan Al-Shedivat, Trapit Bansal, Yura Burda, Ilya Sutskever, Igor Mordatch,
and Pieter Abbeel. 2018. Continuous Adaptation via Meta-Learning in Nonsta-
tionary and Competitive Environments. In International Conference on Learning
Representations.

[2] Robert Axelrod and William D Hamilton. 1981. The evolution of cooperation.
science 211, 4489 (1981), 1390–1396.

[3] Anton Bakhtin, Noam Brown, Emily Dinan, Gabriele Farina, Colin Flaherty,
Daniel Fried, Andrew Goff, Jonathan Gray, Hengyuan Hu, Athul Paul Jacob,
Mojtaba Komeili, Karthik Konath, Minae Kwon, Adam Lerer, Mike Lewis, Alexan-
der H. Miller, Sasha Mitts, Adithya Renduchintala, Stephen Roller, Dirk Rowe,
Weiyan Shi, Joe Spisak, Alexander Wei, David Wu, Hugh Zhang, and Markus
Zijlstra. 2022. Human-level play in the game of Diplomacy by combining lan-
guage models with strategic reasoning. Science 378, 6624 (2022), 1067–1074.
https://doi.org/10.1126/science.ade9097

[4] Jan Balaguer, Raphael Koster, Christopher Summerfield, and Andrea Tacchetti.
2022. The Good Shepherd: An Oracle Agent for Mechanism Design. arXiv
preprint arXiv:2202.10135.

[5] Noam Brown and Tuomas Sandholm. 2017. Libratus: the superhuman AI for
no-limit poker. In Proceedings of the Twenty-Sixth International Joint Conference
on Artificial Intelligence.

[6] Allan Dafoe, Edward Hughes, Yoram Bachrach, Tantum Collins, Kevin R McKee,
Joel Z Leibo, Kate Larson, and Thore Graepel. 2021. Open Problems in Cooperative
AI. In Cooperative AI workshop.

[7] Robyn M Dawes. 1980. Social dilemmas. Annual review of psychology 31, 1 (1980),
169–193.

[8] Yan Duan, John Schulman, Xi Chen, Peter L. Bartlett, Ilya Sutskever, and Pieter
Abbeel. 2016. RL$ˆ2$: Fast Reinforcement Learning via Slow Reinforcement
Learning. arXiv preprint arXiv:1611.02779.

[9] Chelsea Finn, Pieter Abbeel, and Sergey Levine. 2017. Model-Agnostic Meta-
Learning for Fast Adaptation of Deep Networks. In International Conference on
Machine Learning (Proceedings of Machine Learning Research, Vol. 70). 1126–1135.

[10] Jakob Foerster, Richard Y Chen, Maruan Al-Shedivat, Shimon Whiteson, Pieter
Abbeel, and Igor Mordatch. 2018. Learning with Opponent-Learning Awareness.
In Proceedings of the 17th International Conference on Autonomous Agents and
MultiAgent Systems. 122–130.

[11] Jakob Foerster, Francis Song, Edward Hughes, Neil Burch, Iain Dunning, Shimon
Whiteson, Matthew Botvinick, and Michael Bowling. 2019. Bayesian action
decoder for deep multi-agent reinforcement learning. In International Conference
on Machine Learning. PMLR, 1942–1951.

[12] Kitty Fung, Qizhen Zhang, Chris Lu, Timon Willi, and Jakob Nicolaus Foerster.
2023. Analyzing the Sample Complexity of Model-Free Opponent Shaping. In
ICML Workshop on New Frontiers in Learning, Control, and Dynamical Systems.
https://openreview.net/forum?id=Dm2fbPpU6v

[13] Marc Harper, Vincent Knight, Martin Jones, Georgios Koutsovoulos, Nikoleta E.
Glynatsi, and Owen Campbell. 2017. Reinforcement learning produces dominant
strategies for the Iterated Prisoner’s Dilemma. PLOS ONE 12, 12 (2017), e0188046.

[14] Sepp Hochreiter and Jürgen Schmidhuber. 1997. Long Short-Term Memory.
Neural Comput. 9, 8 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735

[15] Max Jaderberg, Wojciech M. Czarnecki, Iain Dunning, Luke Marris, Guy Lever,
Antonio Garcia Castañeda, Charles Beattie, Neil C. Rabinowitz, Ari S. Mor-
cos, Avraham Ruderman, Nicolas Sonnerat, Tim Green, Louise Deason, Joel Z.
Leibo, David Silver, Demis Hassabis, Koray Kavukcuoglu, and Thore Graepel.
2019. Human-level performance in 3D multiplayer games with population-
based reinforcement learning. Science 364, 6443 (2019), 859–865. https:
//doi.org/10.1126/science.aau6249

[16] Natasha Jaques, Angeliki Lazaridou, Edward Hughes, Caglar Gulcehre, Pedro
Ortega, DJ Strouse, Joel Z Leibo, and Nando De Freitas. 2019. Social influence as
intrinsic motivation for multi-agent deep reinforcement learning. In International
conference on machine learning. PMLR, 3040–3049.

[17] Dong-Ki Kim, Miao Liu, Matthew Riemer, Chuangchuang Sun, Marwa Abdulhai,
Golnaz Habibi, Sebastian Lopez-Cot, Gerald Tesauro, and Jonathan P. How. 2021.
A Policy Gradient Algorithm for Learning to Learn in Multiagent Reinforcement
Learning. In International Conference onMachine Learning (Proceedings of Machine
Learning Research, Vol. 139). 5541–5550.

[18] Dong Ki Kim,Miao Liu, MatthewDRiemer, Chuangchuang Sun, Marwa Abdulhai,
Golnaz Habibi, Sebastian Lopez-Cot, Gerald Tesauro, and Jonathan How. 2021.
A policy gradient algorithm for learning to learn in multiagent reinforcement
learning. In International Conference on Machine Learning. PMLR, 5541–5550.

[19] Raphael Köster, Kevin RMcKee, Richard Everett, LauraWeidinger,William S Isaac,
Edward Hughes, Edgar A Duéñez-Guzmán, Thore Graepel, Matthew Botvinick,
and Joel Z Leibo. 2020. Model-free conventions in multi-agent reinforcement
learning with heterogeneous preferences. arXiv preprint arXiv:2010.09054 (2020).

[20] Joel Z. Leibo, Edgar A. Duéñez-Guzmán, Alexander Vezhnevets, John P. Agapiou,
Peter Sunehag, Raphael Koster, Jayd Matyas, Charlie Beattie, Igor Mordatch, and
Thore Graepel. 2021. Scalable Evaluation of Multi-Agent Reinforcement Learning
with Melting Pot. In Proceedings of the 38th International Conference on Machine
Learning (Proceedings of Machine Learning Research, Vol. 139). PMLR, 6187–6199.

[21] Adam Lerer and Alexander Peysakhovich. 2017. Maintaining cooperation in
complex social dilemmas using deep reinforcement learning. CoRR abs/1707.01068
(2017).

[22] Alistair Letcher, David Balduzzi, Sébastien Racanière, James Martens, Jakob N.
Foerster, Karl Tuyls, and Thore Graepel. 2019. Differentiable Game Mechanics. J.
Mach. Learn. Res. 20 (2019), 84:1–84:40.

[23] Alistair Letcher, Jakob N. Foerster, David Balduzzi, Tim Rocktäschel, and Shi-
mon Whiteson. 2019. Stable Opponent Shaping in Differentiable Games. In 7th
International Conference on Learning Representations.

[24] Chris Lu, Jakub Grudzien Kuba, Alistair Letcher, Luke Metz, Christian Schröder
de Witt, and Jakob N. Foerster. 2022. Discovered Policy Optimisation.
CoRR abs/2210.05639 (2022). https://doi.org/10.48550/arXiv.2210.05639
arXiv:2210.05639

[25] Christopher Lu, Timon Willi, Christian A Schroeder De Witt, and Jakob Foerster.
2022. Model-Free Opponent Shaping. In International Conference on Machine
Learning. PMLR, 14398–14411.

[26] Chris Lu, Timon Willi, Alistair Letcher, and Jakob Nicolaus Foerster. 2022. Ad-
versarial Cheap Talk. In Decision Awareness in Reinforcement Learning Workshop
at ICML 2022.

[27] Andrei Lupu and Doina Precup. 2020. Gifting in Multi-Agent Reinforcement
Learning. In Proceedings of the 19th International Conference on Autonomous
Agents and MultiAgent Systems (Auckland, New Zealand) (AAMAS ’20). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, Richland,
SC, 789–797.

[28] William H. Press and Freeman J. Dyson. 2012. Iterated Prisoner’s Dilemma
contains strategies that dominate any evolutionary opponent. Proceedings of the
National Academy of Sciences 109, 26 (2012), 10409–10413.

[29] Tabish Rashid, Mikayel Samvelyan, Christian Schroeder, Gregory Farquhar, Jakob
Foerster, and Shimon Whiteson. 2018. Qmix: Monotonic value function factori-
sation for deep multi-agent reinforcement learning. In International conference
on machine learning. PMLR, 4295–4304.

[30] Tim Salimans, Jonathan Ho, Xi Chen, and Ilya Sutskever. 2017. Evolution
Strategies as a Scalable Alternative to Reinforcement Learning. arXiv preprint
arXiv:1703.03864.

[31] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal Policy Optimization Algorithms. arXiv preprint arXiv:1707.06347.

[32] L. S. Shapley. 1953. Stochastic Games. Proceedings of the National Academy of
Sciences 39, 10 (1953), 1095–1100.

[33] David Silver, Aja Huang, Chris J. Maddison, Arthur Guez, Laurent Sifre, George
van den Driessche, Julian Schrittwieser, Ioannis Antonoglou, Vedavyas Pan-
neershelvam, Marc Lanctot, Sander Dieleman, Dominik Grewe, John Nham,
Nal Kalchbrenner, Ilya Sutskever, Timothy P. Lillicrap, Madeleine Leach, Koray
Kavukcuoglu, Thore Graepel, and Demis Hassabis. 2016. Mastering the game of
Go with deep neural networks and tree search. Nat. 529, 7587 (2016), 484–489.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1009

https://doi.org/10.1126/science.ade9097
https://openreview.net/forum?id=Dm2fbPpU6v
https://doi.org/10.1162/neco.1997.9.8.1735
https://doi.org/10.1126/science.aau6249
https://doi.org/10.1126/science.aau6249
https://doi.org/10.48550/arXiv.2210.05639
https://arxiv.org/abs/2210.05639

[34] Glenn H Snyder. 1971. " Prisoner’s Dilemma" and" Chicken" Models in Interna-
tional Politics. International Studies Quarterly 15, 1 (1971), 66–103.

[35] Alexander Vezhnevets, Yuhuai Wu, Maria Eckstein, Rémi Leblond, and Joel Z
Leibo. 2020. Options as responses: Grounding behavioural hierarchies in multi-
agent reinforcement learning. In International Conference on Machine Learning.
PMLR.

[36] Oriol Vinyals, Igor Babuschkin,WojciechM. Czarnecki, MichaëlMathieu, Andrew
Dudzik, Junyoung Chung, David H. Choi, Richard Powell, Timo Ewalds, Petko
Georgiev, Junhyuk Oh, Dan Horgan, Manuel Kroiss, Ivo Danihelka, Aja Huang,
Laurent Sifre, Trevor Cai, John P. Agapiou, Max Jaderberg, Alexander Sasha
Vezhnevets, Rémi Leblond, Tobias Pohlen, Valentin Dalibard, David Budden, Yury
Sulsky, James Molloy, Tom Le Paine, Çaglar Gülçehre, Ziyu Wang, Tobias Pfaff,
Yuhuai Wu, Roman Ring, Dani Yogatama, Dario Wünsch, Katrina McKinney,
Oliver Smith, Tom Schaul, Timothy P. Lillicrap, Koray Kavukcuoglu, Demis
Hassabis, Chris Apps, and David Silver. 2019. Grandmaster level in StarCraft II
using multi-agent reinforcement learning. Nat. 575, 7782 (2019), 350–354.

[37] Timon Willi, Akbir Khan, Newton Kwan, Mikayel Samvelyan, Chris Lu, and
Jakob Foerster. 2023. Pax: Multi-Agent Learning in JAX. https://github.com/ucl-
dark/pax.

[38] Timon Willi, Alistair Letcher, Johannes Treutlein, and Jakob N. Foerster. 2022.
COLA: Consistent Learning with Opponent-Learning Awareness. In Interna-
tional Conference on Machine Learning (Proceedings of Machine Learning Research,
Vol. 162). 23804–23831.

[39] Zhe Wu, Kai Li, Enmin Zhao, Hang Xu, Meng Zhang, Haobo Fu, Bo An, and
Junliang Xing. 2021. L2E: Learning to Exploit Your Opponent. arXiv preprint
arXiv:2102.09381.

[40] Yuyu Yuan, Ting Guo, Pengqian Zhao, and Hongpu Jiang. 2022. Adherence
Improves Cooperation in Sequential Social Dilemmas. Applied Sciences 12, 16
(2022), 8004.

[41] Stephen Zhao, Chris Lu, Roger Baker Grosse, and Jakob Nicolaus Foerster.
2022. Proximal Learning With Opponent-Learning Awareness. arXiv preprint
arXiv:2210.10125 (2022).

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1010

https://github.com/ucl-dark/pax
https://github.com/ucl-dark/pax

	Abstract
	1 Introduction
	2 Background
	3 Shaper: A Scalable OS Method
	4 Experiments
	5 Results
	6 Related Work
	7 Conclusion
	8 Ethics Statement*
	References

