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ABSTRACT
We investigate efficient ways for the incorporation of liquid democ-

racy into election settings inwhich voters submit cumulative ballots,

i.e., when each voter is assigned a virtual coin that she can then

distribute as she wishes among the available election options. In

particular, aiming at improving the quality of decision making, we

are interested in fine-grained liquid democracy, meaning that voters

are able to designate a partial coin to a set of election options and

delegate the decision on how to further split this partial coin among

those election options to another voter of her choice.

The fact that wewish such delegations to be transitive—combined

with our aim at fully respecting such delegations—means that incon-

sistencies and cycles can occur, thus we set to find computationally-

efficient ways of resolving voters’ delegations. To this end we de-

velop a theory based on fixed-point theorems and mathematical

programming techniques and we show that for various variants of

definitions regarding how to resolve such transitive delegations,

there is always a feasible resolution; and we identify under which

conditions such solutions are efficiently computable. For example,

we provide a parameterized algorithm whose running time depends

on a distance from triviality of a given instance.
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1 INTRODUCTION
Delegation-based methods attract attention regarding their use in

certain voting scenarios. In particular, in elections that use proxy
voting [24] each voter can choose whether to vote directly by cast-

ing her vote or to delegate her vote to a delegate of her choice (who

votes on her behalf). In liquid democracy [4] (LD, in short), such

This work is licensed under a Creative Commons Attribution

International 4.0 License.
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delegations are transitive. LD has attracted attention and popular-

ity partially due to the LiquidFeedback tool for deliberation and

voting [2] that allows for such transitive vote delegations and is in

use by the German Pirate Party as well as by other political parties

around the globe.

In a way, LD is a middle-ground between direct democracy

and representative democracy, as the voters who actively vote—

sometimes referred to as gurus [31]—act as ad-hoc representatives.
To the voters, LD offers more expressiveness and flexibility, and

several generalizations of LD have been proposed that push these

aspects even further: e.g., Gölz et al. [18] suggested to let vot-

ers delegate their vote to several delegates; Colley et al. [14] sug-
gested to use general logical directives when specifying delegates;

Brill et al. [7] considered voters that delegate to a ranked list of

delegates; and Christoff and Grossi [12] consider per-issue binary

delegations.

1.1 Fine-Grained Liquid Democracy (FGLD)
We follow a specific enhancement of LD, namely fine-grained liquid
democracy (FGLD).1 Originally suggested by Brill and Talmon [8],

the general idea is to allow voters to delegate parts of their ballots
to different delegates, instead of delegating their ballots as a whole.

Specifically, Brill and Talmon [8] studied FGLD for ordinal elections,

in which each ballot is a linear order over a set of candidates (e.g.,

an ordinal election over the set of candidates 𝐶 = {𝑎, 𝑏, 𝑐} may

contain a voter voting 𝑎 > 𝑐 > 𝑏, meaning that the voter ranks

𝑎 as her best option, 𝑐 as her second option, and 𝑏 as her least-

preferred option). In this context, instead of allowing each voter

to either specify a linear order (i.e., vote directly) or delegate their

vote to a delegate of their choice, Brill and Talmon [8] suggested

the following: for each pair of candidates 𝑎, 𝑏, each voter is able to

either specify whether she prefers 𝑎 to 𝑏 or vice versa, or delegate

that decision to another voter of her choice. While indeed offering

greater voter flexibility, this ordinal FGLD scheme may result in

non-consistent ballots; e.g., consider a voter deciding 𝑎 > 𝑏 but

delegating the decision on {𝑏, 𝑐} to a voter who eventually decides

𝑏 > 𝑐 and also delegating the decision on {𝑎, 𝑐} to a voter who

eventually decides 𝑐 > 𝑎. The resulting ballot, i.e., 𝑎 > 𝑏, 𝑏 >

𝑐, 𝑐 > 𝑎, would be intransitive. Brill and Talmon [8] suggested

several algorithmic techniques to deal with such possible violations

1
Our term “fine-grained” is not related to “fine-grained complexity” which is a part

of the algorithms and computational complexity fields [27, 30] that, e.g., shows time

lower-bounds for problems solvable in polynomial time via fine-grained reductions.
Fine-grained complexity is also present in the computational social choice field [29].
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of ballot transitivity. Following [8], Jain et al. [20] studied FGLD

for knapsack ballots, in which the ballot of each voter is a subset

𝑄 of candidates from a given set of candidates, each candidate

has some cost, and there is a restriction that the total cost of the

candidates in 𝑄 shall respect some known upper bound (knapsack

ballots are useful for participatory budgeting [10, 17]). Again, the

main challenge of allowing such fine-grained delegations is that

ballots may end up being inconsistent—in the case of FGLD for

knapsack ballots, after following these delegations ballots may end

up violating the total cost upper bound.

At a high level, the basic issue that has to be resolved when

considering LD and its generalizations—e.g., FGLD—is that, on one

hand, we wish to resolve voters’ delegations transitively and in

a way that is as close as possible to voter intentions, but, on the

other hand, we have to satisfy certain structural constraints on the

admissible ballots that we arrive to: e.g., in Ordinal FGLD the set

of admissible ballots are those that are transitive; and in Knapsack

FGLD the set of admissible ballots are those that respect the global

budget limit. These structural constraints mean that it is not always

possible to follow voters’ delegations such that all voter ballots

correspond exactly to voter intentions (e.g., in Ordinal FGLD one

way to satisfy the constraints is by not considering some delegations

at all, thus not fully respecting all voters’ delegations). Note that

this is also the focus of work on smart voting [14], which is a further

generalization of LD to arbitrary voter directives.

Belowwe describe what wemean by FGLD for cumulative ballots

and, in particular, how we understand voter intentions as described

by their partial ballots and their delegations.

1.2 FGLD for Cumulative Ballots (CBs)
In this paper we study FGLD for cumulative ballots (CBs). A cumu-
lative ballot with respect to a set𝐶 of𝑚 candidates is a division of a

unit support among the𝑚 candidates (visually, a cumulative ballot

corresponds to a division of a virtual divisible coin among the can-

didates): e.g., a cumulative ballot with respect to a set 𝐶 = {𝑎, 𝑏, 𝑐}
may be represented by [0.4, 0.3, 0.3], meaning that the voter gives

support 0.4 to 𝑎, support 0.3 to 𝑏, and support 0.3 to 𝑐 . CBs are

used for different social choice settings [13], such as multi-winner

elections [23], participatory budgeting [28] and portioning [16].

From our viewpoint, CBs are especially fitting to FGLD as they are

inherently quite expressive. Furthermore, note that CBs generalize

approval ballots and, to a lesser extent, ordinal ballots.

Example 1. Consider a participatory budgeting instance with the
following set of projects: 𝑝1 is a proposal to renovate a public university
for $1𝑀 ; 𝑝2 is a proposal to build a school for $2𝑀 ; 𝑝3 is a proposal
to refurbish a birthing center for $3𝑀 ; and 𝑝4 is a proposal to open
a new hospital for $4𝑀 . With a standard cumulative ballot, a voter
may specify, say, a support of 0.1 to 𝑝1, 0.2 to 𝑝2, 0.3 to 𝑝3, and
0.4 to 𝑝4. With a fine-grained liquid democracy cumulative ballot,
however, a voter may specify, say, a support of 0.3 to the set {𝑝1, 𝑝2}
(of education-related projects) and the remainder support of 0.7 to
the set {𝑝3, 𝑝4} (of health-related projects), and delegate the decision
regarding the specific division of the 0.3 support between 𝑝1 and 𝑝2 to
some voter of her choice, as well as the decision regarding the specific
division of the 0.7 support between 𝑝3 and 𝑝4 to (possibly a different)
voter of her choice.

Generally speaking, we wish to allow voters to delegate parts of

their cumulative ballots to other voters of their choice, so that they

could concentrate on the “high-level” decisions (such as the division

of the unit support between the education-related projects and the

health-related projects in Example 1) but delegate the “low-level”

decisions further. But how should such fine-grained delegations be

understood? Consider the following continuation of Example 1.

Example 2. Say that the voter of Example 1 delegates the decision
on how to divide the 0.3 between 𝑝1 and 𝑝2 to some voter who assigns
0.2 support to 𝑝1 and 0.4 support to 𝑝2; how shall the support of 0.3
be divided then? Intuitively, we wish to split the 0.3 support propor-
tionally to how the delegate splits her support between 𝑝1 and 𝑝2. In
this example, this means to assign support 0.1 to 𝑝1 and 0.2 to 𝑝2, as
[0.1, 0.2] exactly preserves the support ratio of [0.2, 0.4].

Indeed, throughout the paper we concentrate on resolving fine-

grained cumulative delegations in a way that would be as close

as possible to such a proportional (i.e., ratio-preserving) way as

described in Example 2. Defining such proportionality formally

turns out to not be a straightforward task, mainly because of the

possibility of cyclic delegations together with the possibility of

delegates assigning 0 support to some candidates. Cyclic delegations

have been a classical problem in LD, however zero-support is a new
issue arising when a delegate does not support any of the delegated

candidates; in the classical model when a whole ballot is delegated

this cannot happen for cumulative ballots. We provide a general

solution by applying a global default allocation of a delegate’s

budget, e.g., an even-split allocation, or by a more involved usage

of per-voter, per-delegation default votes requested for the zero-

support situation. Thus, in Section 2, after providing the needed

notation and formally defining our setting, we describe four natural

definitions of such proportionality.

1.3 Usability and Applicability
It may seem that using such FGLD model as we consider here

is too demanding for voters to engage with. We agree that the

mathematics and the increased flexibility it offers to voters do come

at a potential increase in cognitive efforts required to interact with a

system that allows such voting. We, however, wish to stress several

points in this context:

• First, in a user interface that supports our model of FGLD

for CBs there could be the possibility of using simple coarse-

grained LD (i.e., voting directly or delegating the full ballot)

for voters who wish so; and only the opt-in possibility of

voters to use the full expressive power of FGLD.

• Second, we think that a user interface can be designed for

FGLD for CBs in a way that is quite self-explanatory and

useful for most voters. In the full version of the paper [22]

we describe a workflow of casting votes in FGLD for CBs.

In particular, we illustrate a possible draft design for such a

user interface.

• Third, we wish to highlight a different point of view on

our work: viewing each project as its own “issue”, what

our solution offers is actually the bundling of several issues

together, thus allowing voters to delegate bundles of issues

in a way that may be easier than the standard per-issue

approach of LD [12].
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1.4 Technical Overview
Before we dive into our formal treatment, we provide a high-level

description of our technical approach, via the following example.

Consider an instance 𝐼 of FGLD for CBs and imagine a solution

𝑆 that resolves all voters’ delegations. Now, consider some voter 𝑣 .

If, in 𝑆 , the delegations of 𝑣 are all resolved in an exact proportional

way (such as in Example 2), then, in a way, the intentions of 𝑣 are

fully respected; put differently, 𝑣 should be “happy”. If, however,

this is not the case, then, if had the ability to do so, 𝑣 would wish

to change her ballot to be more proportional.

The above discussion suggests a game-theoretic point of view on

our setting. Taking this perspective, we observe that the existence

of a “perfect” solution (i.e., that satisfies proportionality exactly for

all voters) is equivalent to the existence of a Nash-equilibrium in

this game. Slightly more concretely, we consider the “best-response”

function of each voter: this function, given a solution (such as 𝑆

above), assigns for a voter 𝑣 their best-response ballot to 𝑆 (i.e., if

𝑣 ’s ballot is not optimal for 𝑣 with respect to some 𝑆 , then the best-

response function would return some other ballot that is optimal

for 𝑣). We then concentrate on these best-response functions and

recall that a Nash-equilibrium corresponds to a solution that is a

fixed point for those best-response functions (i.e. all voters do not

wish to change their ballots, which means that the best-response

functions, at this particular point, return their input for all voters).

Following our formulation of such games and the relation to

fixed points we then utilize the theory of fixed points and articulate

certain sufficient conditions that, whenever they are satisfied by

our best-response functions, guarantee the existence of solutions.

Furthermore, a deep result from logic [26] (see Proposition 5) im-

plies a parameterized algorithm with respect to the instance size

(Theorem 7). This allows us to provide a parameterized algorithm

(Theorem 8) with respect to the size of the largest strongly connected
delegation component (see Subsection 4.1 for a definition) which is a

measure of distance from triviality [5, 19] of a given instance, where

a trivial instance is one with no delegation cycles, since it can be

easily solved by processing the delegation graph in its topological

order.

While we focus on a specific definition of proportionality that is

relevant for the setting of FGLD for CBs, our techniques are rather

general, thus in Section 5 we discuss wide generalizations of our

setting in which our theorems regarding existence and tractability

hold as well.

Paper structure. In Section 2 we provide some useful notation

and formally describe the general setting of FGLD for CBs. Then,

in Section 3, we describe our notions of proportionality for that

setting and argue that our fourth definition elegantly overcomes

the drawbacks of the other definitions. In Section 4 we discuss the

existence, structure, and computability of solutions for our four

notions of proportionality. In Section 5 we discuss generalizations

of our setting.

2 FORMAL MODEL
We begin with definitions of some useful notation. For a natural

number 𝑛, we denote the set {1, 2, . . . , 𝑛} by [𝑛]. Typically we use

bold font to denote a vector (or a matrix), e.g.,𝒚 or 𝒙 . By convention
we use subscripts in order to point out a specific value in a vector

(or a matrix), and write this vector in regular font, e.g., 𝑦𝑣 = 𝑦 (𝑣)
and 𝑥𝑣,𝑐 = 𝑥 (𝑣, 𝑐). For a vector of real numbers 𝒚 ∈ R𝑛 by ∥𝒚∥1
we denote ℓ1-norm of 𝒚, i.e., ∥𝒚∥1 =

∑
𝑖∈[𝑛] 𝑦 (𝑖); and by ∥𝒚∥∞ we

denote ℓ∞-norm of 𝒚, i.e., ∥𝒚∥∞ = max𝑖∈[𝑛] 𝑦 (𝑖). Additionally, for
𝒙 ∈ R𝑛 and 𝐴 ⊆ [𝑛] we use the shorthand 𝒙𝐴 for the subvector

with indices 𝐴, i.e., |𝒙𝐴 | = |𝐴| and ∀𝑖∈𝐴 𝑥𝐴 (𝑖) = 𝑥 (𝑖). By 0𝑛 ∈ Z𝑛
we denote a vector of zeros of length 𝑛. When writing 𝒚 = 0 we

use the notation 0 for a vector of zeros of appropriate length, i.e.,
the length of 𝒚.

An election with cumulative ballots consists of a set of𝑚 can-

didates 𝐶 = {𝑐1, . . . , 𝑐𝑚} and a set of 𝑛 voters 𝑉 = {𝑣1, . . . , 𝑣𝑛}
such that voter 𝑣𝑖 corresponds to a cumulative ballot that is rep-

resented as a vector 𝒗𝑖 = [𝑣𝑖 (𝑐1), . . . , 𝑣𝑖 (𝑐𝑚)], with 𝑣𝑖 (𝑐 𝑗 ) ≥ 0 and∑
𝑐∈𝐶 𝑣𝑖 (𝑐) = 1, such that 𝑣𝑖 (𝑐) is the fractional support 𝑣𝑖 gives

to 𝑐 .

Our model of FGLD for an election with cumulative ballots

is that each voter 𝑣 partitions 𝐶 into a family of non-empty and

disjoint subsets (also called bundles) 𝑆𝑣,1, . . . , 𝑆𝑣, |S𝑣 | ⊆ 𝐶 , where

S𝑣 = {𝑆𝑣,1, . . . , 𝑆𝑣, |S𝑣 |} so
Ï
𝑆 ∈S𝑣

𝑆 = 𝐶; and, for each 𝑆 ∈ S𝑣 in
their partition, sets a delegate 𝛿 (𝑣, 𝑆) ∈ 𝑉 . We call 𝑏𝑣,𝑆 ≥ 0 the bud-
get for a bundle 𝑆 , and we require that

∑
𝑆 ∈S𝑣

𝑏𝑣,𝑆 = 1. Moreover,

we require that, if 𝛿 (𝑣, 𝑆) = 𝑣 , then |𝑆 | = 1, which expresses the

self-delegation scenario where voter 𝑣 makes a direct choice about

the candidate from 𝑆 . Further, without loss of generality, we can

require that, if 𝑏𝑣,𝑆 = 0 then 𝛿 (𝑣, 𝑆) = 𝑣 (so also |𝑆 | = 1).

Given such a description of the delegations, it is natural to seek a

solution
2 𝒙 ∈ R𝑉×𝐶 = R𝑛𝑚 that satisfies the following conditions:

(1) For each 𝑣 ∈ 𝑉 , the vote 𝒙𝑣 is a cumulative ballot of weight 1,

i.e., ∥𝒙𝑣 ∥1 = 1; and

(2) for each 𝑣 ∈ 𝑉 and 𝑆 ∈ S𝑣 , the vote 𝒙𝑣 respects the budgets,
i.e., ∥𝒙𝑣,𝑆 ∥1 = 𝑏𝑣,𝑆 .

A vector 𝒙 that satisfies these conditions is referred to as a solution.
Next, the fact that voter 𝑣 delegates a bundle 𝑆 ⊆ 𝐶 to a delegate

𝛿 (𝑣, 𝑆) means that she wants her solution to relate to the solution

of 𝛿 (𝑣, 𝑆) in some way.

3 NOTIONS OF PROPORTIONALITY
There are many ways of relating the solution of voter 𝑣 to the

solution of 𝛿 (𝑣, 𝑆). Next we consider four notions of proportionality
that showcase different behaviors that can occur.

To explain these notions, we need some further definitions. A

best-response function 𝑓 : R𝑛𝑚 → R𝑛𝑚 describes, for each voter,

what is their desired solution, given some solution 𝒙 . That is, given
a solution 𝒙 , the voter 𝑣 would be perfectly satisfied if their vote

was (𝑓 (𝒙))𝑣 (we simplify the notation by using 𝑓 (𝒙)𝑣 := (𝑓 (𝒙))𝑣 ).
Using this function, we can define the regret of the voter 𝑣 as

∥ 𝑓 (𝒙)𝑣 −𝒙𝑣 ∥1, which quantifies the difference between her current

solution and her desired solution. It is possible that, with respect

to a solution 𝒙 , a voter 𝑣 would be perfectly satisfied with not just

one but a number of solutions; in that case, 𝑓 (𝒙)𝑣 would be a set,

and 𝑓 would be a set-valued function (also called a correspondence).
We are ready to describe a few specific notions of proportionality

using this pattern.

2
Hereinafter we use R𝑛𝑚 as a representation for R𝑉×𝐶

; this will be useful for some

algebraic operations.
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3.1 Exact Proportionality (EP)
A voter 𝑣 is perfectly satisfied with respect to a solution 𝒙 and

a bundle 𝑆 if either ∥𝒙𝛿 (𝑣,𝑆),𝑆 ∥1 > 0 (that is, their delegate gives

positive support to 𝑆) and the ratios of 𝒙𝑣,𝑆 exactly match the

ratios of 𝒙𝛿 (𝑣,𝑆),𝑆 , or in the case when ∥𝒙𝛿 (𝑣,𝑆),𝑆 ∥1 = 0 the voter

is always perfectly satisfied. Thus, 𝑓 is a correspondence with

𝑓 (𝒙)𝑣,𝑆 = (𝒙𝛿 (𝑣,𝑆),𝑆/∥𝒙𝛿 (𝑣,𝑆),𝑆 ∥1) · 𝑏 (𝑣, 𝑆) if 𝒙𝛿 (𝑣,𝑆),𝑆 ≠ 0, and
𝑓 (𝒙)𝑣,𝑆 is any non-negative vector of length |𝑆 | and weight 𝑏 (𝑣, 𝑆)
otherwise.

Themain problematic aspect of (EP) is the following: zero-support
of the delegate (i.e. 𝒙𝛿 (𝑣,𝑆),𝑆 = 0) is an issue for the delegation and,

in (EP), it is resolved in an arbitrary way allowing any split of the

budget 𝑏 (𝑣, 𝑆) into candidates in 𝑆 . We can see this in the following

example.

Example 3. Let 𝑉 = {𝑣,𝑢} and 𝐶 = {𝑐1, 𝑐2, 𝑐3}. Voter 𝑣 delegates
𝑆 = {𝑐1, 𝑐2} with budget 1 to 𝑢 (hence 𝑥𝑣,{𝑐3 } = 0). If voter 𝑢 defines
its cumulative ballot as 𝒖 = [0.001, 0, 0.999], then the only solution
under (EP) for 𝑣 is [1, 0, 0]. On the other hand, if𝑢 will change its ballot
slightly by just moving 0.001 support from 𝑐1 to 𝑐3, then 𝒖 = [0, 0, 1]
and 𝑣 can split its budget arbitrarily among 𝑐1 and 𝑐2. Therefore, any
𝒙𝑣 = [𝑎, 1 − 𝑎, 0] for 𝑎 ∈ [0, 1] is solution for 𝑣 , in particular, [0, 1, 0]
is feasible for 𝒙𝑣 ; this is completely different than the only solution
before 𝑢 slightly changed its ballot.

Example 3 indeed also highlights that the solution is not robust

to small changes in the input; robustness is an important property

in other social choice context as well [6].

3.2 Exact Proportionality with Thresholds
(EP-T)

The behavior of (EP) in the case of zero-support may be seen as far

too arbitrary (as in Example 3). Moreover, it might seem unnatural

that, in (EP), the voter 𝑣 only stops demanding an exactly propor-

tional solution when her delegate’s support for 𝑆 drops down to

exactly 0. Indeed, it may be better to consider that she loses her

confidence in her delegate below the confidence threshold 𝜖𝑣,𝑆 > 0

and then she uses her default vote.

To define such notion of proportionality we require more infor-

mation from each voter 𝑣 , i.e., for every bundle 𝑆 ∈ S𝑣 we require a
weight 𝑤𝑣,𝑆 > 0 (expressing the voter’s confidence in the delegate),

and a default vote 𝒅𝑣,𝑆 ∈ R |𝑆 |≥0 such that ∥𝒅𝑣,𝑆 ∥1 = 𝑏𝑣,𝑆 (which

can be used when the delegate supports 𝑆 too weakly). One natu-

ral example of a default vote is an even-split which is defined as

𝑑𝑣,𝑆 (𝑐) = 𝑏𝑣,𝑆/|𝑆 | for every 𝑐 ∈ 𝑆 . For example, in our user interface

draft in [22], the option of manipulating the default vote is hidden

from the user for the sake of simplicity, and the even split solution

is used for all voters.

In (EP-T) we define a threshold 𝜖𝑣,𝑆 = 1/𝑤𝑣,𝑆 such that, if

∥𝒙𝛿 (𝑣,𝑆),𝑆 ∥1 ≥ 𝜖𝑣,𝑆 , then we demand exact proportionality as in

(EP), but if ∥𝒙𝛿 (𝑣,𝑆),𝑆 ∥1 < 𝜖𝑣,𝑆 , then we demand that 𝒙𝑣,𝑆 = 𝒅𝑣,𝑆 ,
that is, 𝑣 ’s action is her default vote.

Unfortunately, it may happen that there is no solution under

(EP-T). We present a small instance with no solution in Example 4.

The underlying reason for this non-existence is the discontinuity

of the best-response function at 𝜖𝑣,𝑆 . We formulate and prove this

fact formally in Proposition 1.

Example 4. Wedefine 2 voters {𝑣,𝑢} and 4 candidates {𝑐1, 𝑐2, 𝑐3, 𝑐4}.
Table 1 shows the delegations data.

Table 1: Delegations defined by voters 𝑣 (top table) and𝑢 (bot-
tom table) in Example 4.

𝑆 𝒅𝑣,𝑆 𝑏𝑣,𝑆 𝛿 (𝑣, 𝑆) 𝜖𝑣,𝑆
𝑆1 = {𝑐1, 𝑐2} [0.5, 0] 0.5 𝑢 0.8

𝑆2 = {𝑐3, 𝑐4} [0.5, 0] 0.5 𝑢 0.8

𝑆 𝒅𝑢,𝑆 𝑏𝑢,𝑆 𝛿 (𝑢, 𝑆) 𝜖𝑢,𝑆
𝑆3 = {𝑐1, 𝑐4} [0, 0.5] 0.5 𝑣 0.7

𝑆4 = {𝑐2, 𝑐3} [0, 0.5] 0.5 𝑣 0.4

Proposition 1. Under (EP-T), there are instances that do not admit
a solution.

Proof. We analyze an instance from Example 4. Let us assume,

by contradiction, that there is a solution 𝒙 under (EP-T).We consider

two cases: either 𝑥𝑣,𝑐1 + 𝑥𝑣,𝑐4 ≥ 0.7 or 𝑥𝑣,𝑐1 + 𝑥𝑣,𝑐4 < 0.7.

In the case 𝑥𝑣,𝑐1 + 𝑥𝑣,𝑐4 ≥ 0.7 we know that 𝑢 on 𝑆3 splits budget

0.5 into 𝑐1 and 𝑐4 proportionally to 𝑥𝑣,𝑐1 and 𝑥𝑣,𝑐4 . Additionally,

we know that 𝑥𝑣,𝑐2 + 𝑥𝑣,𝑐3 ≤ 0.3 < 0.4 = 𝜖𝑢,𝑆4 hence 𝑢 has to use

its default vote on 𝑆4, i.e., 𝑥𝑢,𝑐2 = 0 and 𝑥𝑢,𝑐3 = 0.5. Further, we

know that 𝑥𝑢,𝑐1 + 𝑥𝑢,𝑐4 = 𝑏𝑢,𝑆3 = 0.5 so 𝑥𝑢,𝑐1 ≤ 0.5. Therefore,

𝑥𝑢,𝑐1 +𝑥𝑢,𝑐2 ≤ 0.5 < 0.8 = 𝜖𝑣,𝑆1 so 𝑣 has to use its default vote on 𝑆1,

i.e., 𝑥𝑣,𝑐1 = 0.5 and 𝑥𝑣,𝑐2 = 0. It means also that 𝑥𝑣,𝑐4 ≤ 0.5 and from

this and the fact that 𝑢 on 𝑆3 splits budget 0.5 proportionally we

obtain 𝑥𝑢,𝑐4 ≤ 0.25. Hence, we have 𝑥𝑢,𝑐3+𝑥𝑢,𝑐4 ≤ 0.75 < 0.8 = 𝜖𝑣,𝑆2
so 𝑣 on 𝑆2 has to use its default vote: 𝑥𝑣,𝑐3 = 0.5 and 𝑥𝑣,𝑐4 = 0. But

this gives 𝑥𝑣,𝑐1 + 𝑥𝑣,𝑐4 = 0.5 which is in contradiction with the

assumption 𝑥𝑣,𝑐1 + 𝑥𝑣,𝑐4 ≥ 0.7.

Let us consider the other case, i.e., 𝑥𝑣,𝑐1 + 𝑥𝑣,𝑐4 < 0.7. First of all,

we know that 𝑢 has to use its default vote on 𝑆3, i.e., 𝑥𝑢,𝑐1 = 0 and

𝑥𝑢,𝑐4 = 0.5. It follows that 𝑥𝑢,𝑐1 + 𝑥𝑢,𝑐2 ≤ 0.5 < 0.8 = 𝜖𝑣,𝑆1 hence

𝑣 has to use its default vote on 𝑆1 so 𝑥𝑣,𝑐1 = 0.5 and 𝑥𝑣,𝑐2 = 0. We

have two subcases: either 𝑥𝑣,𝑐2 + 𝑥𝑣,𝑐3 ≥ 0.4 or 𝑥𝑣,𝑐2 + 𝑥𝑣,𝑐3 < 0.4.

• when 𝑥𝑣,𝑐2 +𝑥𝑣,𝑐3 ≥ 0.4 then𝑢 splits budget 0.5 on 𝑆4 propor-

tionally to 𝑥𝑣,𝑐2 and 𝑥𝑣,𝑐3 , but 𝑥𝑣,𝑐2 = 0 so we have 𝑥𝑢,𝑐2 = 0

and 𝑥𝑢,𝑐3 = 0.5.

• when 𝑥𝑣,𝑐2 + 𝑥𝑣,𝑐3 < 0.4 then 𝑢 has to use its default vote on

𝑆4, so 𝑥𝑢,𝑐2 = 0 and 𝑥𝑢,𝑐3 = 0.5.

Notice that in both subcases we have to have 𝑥𝑢,𝑐2 = 0 and 𝑥𝑢,𝑐3 =

0.5. It follows that 𝑥𝑢,𝑐3 + 𝑥𝑢,𝑐4 = 1 ≥ 0.8 = 𝜖𝑣,𝑆2 so 𝑣 wants

to split budget 0.5 among 𝑐3 and 𝑐4 proportionally to 𝑥𝑢,𝑐3 and

𝑥𝑢,𝑐4 which are equal, hence 𝑥𝑣,𝑐3 = 𝑥𝑣,𝑐4 = 0.25. But this gives

𝑥𝑣,𝑐1 + 𝑥𝑣,𝑐4 = 0.75 which is in contradiction with the assumption

𝑥𝑣,𝑐1 + 𝑥𝑣,𝑐4 < 0.7. This finishes the proof. □

3.3 Exact Proportionality with Thresholds,
Interpolated (EP-TI)

In (EP-T), there is a sharp “loss of confidence” in 𝑣 ’s delegate at

the threshold 𝜖𝑣,𝑆 . This causes that there might be no solution

at all for (EP-T) instance (as in Example 4). It may be better to

require exact proportionality as long as ∥𝒙𝛿 (𝑣,𝑆),𝑆 ∥1 ≥ 𝜖𝑣,𝑆 , but then
gradually transition to 𝑣 ’s default vote 𝒅𝑣,𝑆 instead of switching to
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it abruptly. Formally, we define 𝑓 (𝒙)𝑣,𝑆 = (𝒙𝛿 (𝑣,𝑆),𝑆/∥𝒙𝛿 (𝑣,𝑆),𝑆 ∥1) ·
𝑏𝑣,𝑆 if ∥𝒙𝛿 (𝑣,𝑆),𝑆 ∥1 ≥ 𝜖𝑣,𝑆 , otherwise

𝑓 (𝒙)𝑣,𝑆 =
𝒙𝛿 (𝑣,𝑆),𝑆 + (𝜖𝑣,𝑆 − ∥𝒙𝛿 (𝑣,𝑆),𝑆 ∥1) · 𝒅𝑣,𝑆
∥𝒙𝛿 (𝑣,𝑆),𝑆 + (𝜖𝑣,𝑆 − ∥𝒙𝛿 (𝑣,𝑆),𝑆 ∥1) ·𝒅𝑣,𝑆 ∥1

· 𝑏𝑣,𝑆 . (1)

This expression goes from the delegate’s solution to 𝑣 ’s default vote

as the delegate’s support goes from 𝜖𝑣,𝑆 to zero. Hence, 𝑓 (𝒙)𝑣,𝑆 is

continuous which may be a desired property. A solution under (EP-

TI) for an instance from Example 4 is: 𝒙∗𝑣 = [0.5, 0.0, 0.423, 0.077],
𝒙∗𝑢 = [0.39154, 0.0, 0.5, 0.10846]. Calculations are presented in the

full version of the paper [22].

Because of continuity of 𝑓 (𝒙)𝑣,𝑆 under (EP-TI), this proportion-

ality notion may be seen reasonable, however, the fact that the de-

rivative of 𝑓 (𝒙)𝑣,𝑆 at 𝜖𝑣,𝑆 is not continuous causes “sharp” changes

when changing a vote slightly—it can be noticed in the following

example.

Example 5. Let 𝑉 = {𝑣,𝑢}, 𝐶 = {𝑐1, 𝑐2, 𝑐3}, and let 𝑣 delegate
𝑆 = {𝑐1, 𝑐2} with budget 1 to𝑢 by defining its weight to be𝑤𝑣,𝑆 = 100

(high confidence). The default vote for this delegation is 𝒅𝑣,𝑆 = [0, 1].
If voter 𝑢 define its cumulative ballot as 𝒖 = [0.015, 0, 0.985], then the
only solution under (EP-TI) for 𝑣 is [1, 0, 0]; indeed, we have 𝜖𝑣,𝑆 = 0.01

and ∥𝒙𝑢,𝑆 ∥1 = 0.015, so in such a case 𝑣 keeps a support ratio of
𝒖𝑆 = [0.015, 0]. Next, we analyze how small changes to 𝒖 may change
the solution.

• If𝑢 slightly changes its ballot by moving a support of𝛾 = 0.005

from 𝑐1 to 𝑐3, then 𝒖 = [0.01, 0, 0.99] and the only solution
under (EP-TI) for 𝑣 has not be changed, i.e., it is [1, 0, 0].

• On the other hand, if 𝑢 changes its ballot by moving a support
of 2𝛾 from 𝑐1 to 𝑐3, then 𝒖 = [0.005, 0, 0.995], and the only
solution under (EP-TI) for 𝑣 uses interpolation and it is now
[0.5, 0.5, 0]. Indeed, we have

𝑓 (𝒙)𝑣,𝑆
(1)

=
𝒙𝑢,𝑆 + (𝜖𝑣,𝑆 − ∥𝒙𝑢,𝑆 ∥1) · 𝒅𝑣,𝑆
∥𝒙𝑢,𝑆 + (𝜖𝑣,𝑆 − ∥𝒙𝑢,𝑆 ∥1) · 𝒅𝑣,𝑆 ∥1

· 𝑏𝑣,𝑆

=
[0.005, 0] + (0.01 − 0.005) · [0, 1]

∥ [0.005, 0] + (0.01 − 0.005) · [0, 1] ∥1
· 1

=
[0.005, 0.005]

∥ [0.005, 0.005] ∥1
= [0.5, 0.5] .

All in all, a change of 𝛾 does not alter a solution, but a change of
2𝛾 alters it significantly.

3.4 Weighted Convex Combinations (WCC)
To avoid the behaviour of (EP-TI), as demonstrated in Example 5,

we consider the following: the solution 𝑣 is always a combination of

her default vote 𝒅𝑣,𝑆 with her delegate’s solution 𝒙𝛿 (𝑣,𝑆),𝑆 , and her

confidence in 𝛿 (𝑣, 𝑆) is expressed by taking her delegate’s solution

with weight𝑤𝑣,𝑆 . That is, the desired solution is exactly 𝒅𝑣,𝑆 +𝑤𝑣,𝑆 ·
𝒙𝛿 (𝑣,𝑆),𝑆 scaled appropriately to sum up to 𝑏𝑣,𝑆 , that is,

𝑓 (𝒙)𝑣,𝑆 =
𝒅𝑣,𝑆 +𝑤𝑣,𝑆 · 𝒙𝛿 (𝑣,𝑆),𝑆
∥𝒅𝑣,𝑆 +𝑤𝑣,𝑆 · 𝒙𝛿 (𝑣,𝑆),𝑆 ∥1

· 𝑏𝑣,𝑆 . (2)

Observe that this means that, if the weight is fixed, then the influ-

ence of the delegate decreases as their support decreases, and with

the support of the delegate fixed, their influence increases as the

weight𝑤𝑣,𝑆 increases.

Below we apply the (WCC) proportionality notion to the in-

stance from Example 5. First of all, the initial solution (when 𝒖 =

[0.015, 0, 0.985]) for 𝑣 is different—it is [0.6, 0.4, 0]—because:

𝑓 (𝒙)𝑣,𝑆
(2)

=
𝒅𝑣,𝑆 +𝑤𝑣,𝑆 · 𝒙𝑢,𝑆
∥𝒅𝑣,𝑆 +𝑤𝑣,𝑆 · 𝒙𝑢,𝑆 ∥1

· 𝑏𝑣,𝑆

=
[0, 1] + 100 · [0.015, 0]

∥ [0, 1] + 100 · [0.015, 0] ∥1
· 1 = [0.6, 0.4] .

Note that the default vote has a strong impact on this solution

because the support of 𝑢 for 𝑆 is small. Let us further analyze two

changes of 𝑢’s vote, as in Example 5:

• If𝑢 changes its ballot to [0.01, 0, 0.99], then the only solution

under (WCC) for 𝑣 is [0.5, 0.5, 0].
• If 𝑢 changes its ballot to [0.005, 0, 0.995], then the only solu-

tion under (WCC) for 𝑣 is [ 1
3
, 2
3
, 0].

Note that the solution changes more smoothly in the case of (WCC)

than in (EP-TI).

4 EXISTENCE AND STRUCTURE OF
SOLUTIONS

To discuss the existence and structure of solutions and the com-

plexity of computing them, we need to introduce some notions

from fixed-point theory. Given a function 𝑓 : R𝑁 → R𝑁 , a point
𝒙 ∈ R𝑁 is called a fixed-point of 𝑓 if 𝑓 (𝒙) = 𝒙 . The next result is of
fundamental importance:

Proposition 2 (Brouwer’s theorem [9]). Let 𝑓 be a continuous
function from a compact convex set 𝐾 to itself. Then 𝑓 has a fixed-
point.

We say that a correspondence 𝑓 : 𝐾 → 2
𝐾
has a closed graph

if the set {(𝒙,𝒚) ∈ 𝐾 × 𝐾 | 𝒚 ∈ 𝑓 (𝒙)} is closed. A fixed-point of a

correspondence 𝑓 is a point 𝒙 such that 𝒙 ∈ 𝑓 (𝒙).

Proposition 3 (Kakutani’s theorem [21]). Let 𝐾 be a non-empty,
compact, and convex subset of R𝑁 , and let 𝑓 have a closed graph
and 𝑓 (𝒙) be non-empty and convex for all 𝒙 ∈ 𝐾 . Then 𝑓 has a
fixed-point.

We will use these theorems to show the existence of solutions.

But, before it, we discuss how to compute solutions. First, notice

that complexity classes such as P and NP are of no use when a solu-

tion is guaranteed to exist. Thus, we are interested in the hierarchy

of classes below and including TFNP (Total Function Nondeter-

ministic Polynomial), which is the class of function problems that

are guaranteed to have an answer and this answer can be checked

in polynomial time. PPAD is a subclass of TFNP which is known

to be complete for Brouwer fixed-points, meaning there is a func-

tion 𝑓 satisfying the conditions of Brouwer’s theorem, such that

any problem in PPAD can be reduced to finding a fixed-point of

𝑓 . No polynomial-time algorithm for a PPAD-complete problem is

believed to exist. Before we can state the current state of the art,

we have to introduce yet another notion. Even when a fixed-point

𝒙 is guaranteed to exist, it might not be rational. Thus, it is com-

mon to turn to discussing approximate fixed-points. A point 𝒙 is

an 𝜖-weak approximate fixed-point if ∥𝒙 − 𝑓 (𝒙)∥∞ ≤ 𝜖 . It is an

𝜖-strong approximate fixed-point if it is at distance at most 𝜖 from

some fixed-point 𝒙∗. Most results, as well as our treatment, focus
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on weak-approximations. The currently best result about finding

Brouwer weak-approximate fixed-points is the following:

Proposition 4 (Chen and Deng [11]). An 𝜖-weak approximate
fixed-point of an𝑀-Lipschitz continuous function 𝑓 : R𝑁 → R𝑁 can
be found through 𝑂 ((1/𝜖 ·𝑀)𝑁−1) queries to 𝑓 and this is tight.

𝑀 is intuitively an upper bound on the first derivatives of 𝑓 . This

kind of complexity is essentially a polynomial-time approximation

scheme in fixed dimension 𝑁 , but exponential in 𝑁 otherwise.

As we will see, sometimes the proportionality conditions we

use can be described with quadratic or other types of constraints,

so results from mathematical programming become relevant. A

quadratically constrained quadratic program (QCQP) is a collection
of quadratic constraints 𝑔𝑖 (𝒙) ≤ 0 and a quadratic objective func-

tion 𝑔0 (𝒙) to be minimized over all 𝒙 ∈ R𝑁 . The decision problem

of the existential theory of the reals is to find a solution 𝒙 of a for-

mula 𝜑 (𝒙) that is a quantifier-free formula involving equalities and

inequalities of real polynomials. The following effective theorem

was proved by Renegar [26]:

Proposition 5 (Renegar [26]). An 𝜖-strong approximation 𝒙𝜖
of a satisfying assignment 𝒙 ∈ R𝑁 of a quantifier-free formula
𝜑 (𝒙) involving 𝑃 polynomial inequalities of maximum degree 𝐷 and
with coefficients of total encoding length 𝐿 can be found in time
max{𝐿, log(1/𝜖)} · polylog(𝐿) (𝑃𝐷)𝑂 (𝑁 ) .

Finally, a simple heuristic to search for a fixed-point is the

simple iteration heuristic, which constructs a sequence of points

𝒙0, 𝒙1, . . . by taking 𝒙0 an arbitrary initial point from the set 𝐾 ,

and then setting 𝒙𝑖 = 𝑓 (𝒙𝑖−1). This procedure converges to a

fixed-point if the function 𝑓 is a contraction, which means that

there is a non-negative constant 𝑞 < 1 such that for every 𝒙 ∈ 𝐾 ,
∥ 𝑓 (𝒙) − 𝑓 (𝑓 (𝒙))∥ ≤ 𝑞 · ∥𝒙 − 𝑓 (𝒙)∥ under some norm; this is Ba-

nach’s fixed-point theorem [1]. (Essentially, the proof follows as the

distance between iterations decreases geometrically with the coef-

ficient 𝑞.) There are many other heuristics for finding fixed-points,

usually in the guise of “zero-finding” or “root-finding” heuristics,

because finding 𝒙 such that 𝑓 (𝒙) = 𝒙 can equivalently be seen as

finding a zero of the function𝑔(𝒙) = 𝑓 (𝒙)−𝒙 or𝑔(𝒙) = ∥ 𝑓 (𝒙)−𝒙 ∥1,
for example.

We are now ready to see what these results say about our four

notions of proportionality.

Exact Proportionality (EP): One can verify that 𝑓 is a corre-

spondence satisfying the conditions of Kakutani’s theorem, thus,

a solution is always guaranteed to exist. However, because 𝑓 is a

correspondence and not a function, it is unclear how to define the

simple iteration procedure or apply other zero-finding heuristics.

The problem can be defined as a QCQP as follows.

Observation 6. If a voter 𝑣 delegates 𝑆 ∈ S𝑣 to 𝑢 and 𝑏𝑣,𝑆 > 0,
then proportionality under (EP) is equivalent to

∀𝑐1, 𝑐2 ∈ 𝑆
(
𝑢 (𝑐2) ≠ 0 =⇒ 𝑣 (𝑐1)

𝑣 (𝑐2)
=
𝑢 (𝑐1)
𝑢 (𝑐2)

)
.

From this we can derive a quadratic constraint: 𝑣 (𝑐1) · 𝑢 (𝑐2) =
𝑢 (𝑐1) ·𝑣 (𝑐2). Notice that the constraint behaves precisely as required
also in the case when 𝑢 assigns zero support to 𝑆 , because both

sides of the equality will be zero and thus all possible values are

permissible for 𝑣 (𝑐1) and 𝑣 (𝑐2). A quadratic program that models

the problem consists of the following variables and constraints.

• Definition of the variables: for every voter 𝑣 ∈ 𝑉 and can-

didate 𝑐 ∈ 𝐶 we define a variable 𝑥𝑣,𝑐 ∈ [0, 1] that is the
fractional support 𝑣 gives to 𝑐 .

• Constraint for cumulative ballots: we fix that every voter

𝑣 ∈ 𝑉 splits budget 1 to the candidates,∑
𝑐∈𝐶 𝑥𝑣,𝑐 = 1 . (3)

• Delegation budget: voter 𝑣 ∈ 𝑉 has to split budget 𝑏𝑣,𝑆
among candidates in 𝑆 ∈ S𝑣 ,∑

𝑐∈𝑆 𝑥𝑣,𝑐 = 𝑏𝑣,𝑆 . (4)

• (EP) constraint for every delegation of 𝑆 ∈ S𝑣 by a voter

𝑣 ∈ 𝑉 (due to Observation 6):

𝑥𝑣,𝑐1 · 𝑥𝛿 (𝑣,𝑆),𝑐2 = 𝑥𝛿 (𝑣,𝑆),𝑐1 · 𝑥𝑣,𝑐2 ∀𝑐1, 𝑐2 ∈ 𝑆 . (5)

Thus, one can utilize the theorem of Renegar as we describe in

Subsection 4.1.
3

Exact Proportionality with Thresholds (EP-T). We have al-

ready shown in Proposition 1 that solutions might not exist. Notice

that (EP-T) does not fit the conditions of Brouwer’s theorem as 𝑓 is

not continuous. The lesson here is to be cautious when considering

discontinuous best-response functions; while discontinuity does

not immediately imply non-existence of solutions, it opens the door

to it.

Exact Proportionality with Thresholds, Interpolated (EP-
TI). Compared with (EP), 𝑓 is now a function, and we can see that

it satisfies the conditions of Brouwer’s theorem, so a fixed-point is

always guaranteed to exist. Moreover, we could now use the simple

iteration heuristic, as well as any of the zero-finding heuristics.

In Subsection 4.1 we show applications of Renegar’s algorithm in

solving (EP-TI).
4

Weighted Convex Combinations (WCC). Finally, for (WCC),

we again observe that the best-response function 𝑓 is continu-

ous and thus Brouwer’s theorem guarantees the existence of a

fixed-point. Moreover, 𝑓 is amenable to simple iteration and other

zero-finding heuristics, and it has continuous derivatives, which

can be exploited by many heuristics (unlike (EP-TI), which has dis-

continuous derivatives). We also note that (WCC) can be modeled

as a QCQP: for every voter 𝑣 ∈ 𝑉 and every delegation 𝑆 ∈ S𝑣 the
constraint (5) can be replaced by

𝑥𝑣,𝑐 · ∥𝒅𝑣,𝑆 +𝑤𝑣,𝑆 · 𝒙𝛿 (𝑣,𝑆),𝑆 ∥1
= 𝑏𝑣,𝑆 · (𝑑𝑣,𝑐 +𝑤𝑤,𝑆 · 𝑥𝛿 (𝑣,𝑆),𝑐 ) ∀𝑐 ∈ 𝑆 , (6)

which is quadratic in 𝒙 (note that the ∥ • ∥1 in the left hand side is

a linear expression in terms of 𝒙). This also implies that we can use

the algorithm of Renegar (see Subsection 4.1).

Additionally, in [22] we describe counterexamples construction

of certain algorithmically favorable structural properties for (WCC).

3
In practice, there are also many QCQP solvers such as IPopt, Knitro, Gurobi, or Baron,

that can be used to solve this problem.

4
It is also possible to use a QCQP formulation similar to that of (EP) augmented

with logical disjunctions that can be formulated using 0/1 variables, enforced as

𝑥 · (1 − 𝑥) = 0.
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4.1 Parameterized Algorithms
On the positive side, since the constraints on solutions satisfying

(EP), (EP-TI), and (WCC) can be formulated as logical connections

of polynomial inequalities, Proposition 5 can be used to derive the

following results.

Theorem 7. We can find an 𝜖-strong approximation of a solution
𝒙 ∈ R𝑛𝑚 of an instance of FGLD for CBs with 𝑛 voters and𝑚 candi-
dates satisfying any of proportionality notions (EP), (EP-TI), or (WCC)
in time polylog(𝒘, 𝒅, 1/𝜖) · (𝑛𝑚)𝑂 (𝑛𝑚) .

Proof. Our goal is to construct a formula 𝜑 (𝒙) describing a

solution 𝒙 , and then apply Renegar’s algorithm (Proposition 5). For

(EP), consider the QCQP given by constraints (3)–(5). A formula 𝜑

expressing that 𝒙 satisfies all of these constraints is simply their

conjunction, the number of constraints is bounded by 𝑂 (𝑛𝑚), the
largest degree is 2, and the largest coefficient is 1. For (EP-TI), we

can use an implication: if ∥𝒙𝛿 (𝑣,𝑆),𝑆 ∥1 ≥ 𝜖𝑣,𝑆 , then constraint (5)

must hold, otherwise a different quadratic constraint given by 𝑓

must hold. The number of constraints is again 𝑂 (𝑛𝑚), but now the

encoding length of coefficients depends on the largest weight𝑤𝑣,𝑆
and default vector 𝒅. This is no issue because the encoding length

anyway only enters the complexity of Proposition 5 polynomially.

For (WCC), simply consider the QCQP given by (3), (4), and (6). The

estimates are the same as for (EP-TI). □

In particular, Theorem 7 implies a polynomial-time algorithm

for instances of constant size. This may be seen as a critical lim-

itation, however, note that an instance of FGLD for CBs may be

kernelized and partitioned into strongly connected delegation com-
ponents (SCDCs), which can then be solved separately according to

their topological order where the final output can be constructed

by merging the solutions of the individual SCDCs. This way, the

non-polynomial dependence in the running time is with respect

to the size of the largest SCDC, which can be much smaller than

the original instance size 𝑛𝑚. Note also that the size of the largest

SCDC can be seen as a parameter that is essentially a distance from

a trivial instance [5, 19], which is one with no delegation cycles,

i.e., whose largest SCDC has size 1.

Let us state this result formally. The delegation graph has vertices
𝑉 ×𝐶 , each vertex representing a decision of a voter on a candidate.

The graph has a directed edge (𝑣, 𝑐1) → (𝑢, 𝑐2) if there exists 𝑆 ∈ S𝑣
such that 𝑐1, 𝑐2 ∈ 𝑆 and 𝛿 (𝑣, 𝑆) = 𝑢, encoding that a decision of voter
𝑣 on candidate 𝑐1 depends on a decision of voter 𝑢 on candidate

𝑐2. Note that there are directed edges from (𝑣, 𝑐1) to every (𝑢, 𝑐2)
such that 𝑐2 ∈ 𝑆 . A strongly connected delegation component is a
strongly connected component in the delegation graph. An SCDC

can be seen as a non-trivial part of the delegation graph: put the

SCDCs in their topological order, and notice that the variables 𝑥𝑣,𝑐
corresponding to vertices (𝑣, 𝑐) in an SCDC𝛾 can be evaluated if the
value is known for all variables 𝑥𝑢,𝑐′ from the SCDCs that follow 𝛾

in the topological order.

Thus, we go over the SCDCs in their reverse topological order

and, for each SCDC, solve the corresponding subinstance separately

using Theorem 7. In this way, we gradually obtain the values for

all the variables of the solution.

Let 𝑠 be the number of vertices in the largest SCDC. As each

subinstance corresponds to an SCDC, it can be solved in time

polylog(𝒘, 𝒅, 1/𝜖) · (𝑠)𝑂 (𝑠)
using Theorem 7 and there are at most

𝑛𝑚-many SCDCs, hence we obtain the following theorem.

Theorem 8. We can find an 𝜖-strong approximation of a solution
𝒙 ∈ R𝑛𝑚 of an instance of FGLD for CBs with 𝑛 voters and𝑚 candi-
dates satisfying any of (EP), (EP-TI), or (WCC) in time polylog(𝒘, 𝒅, 1/𝜖)·
𝑠𝑂 (𝑠) · poly(𝑛,𝑚), where 𝑠 is the number of vertices in largest SCDC.

5 GENERALIZATIONS
We will now show a major strength of our treatment: it can be

widely generalized. We start with stating under which conditions

a solution is guaranteed to exist. The following is essentially a

restatement of Brouwer’s theorem.

Theorem 9. Let 𝑛 be the number of voters and𝑚 the number of
candidates. For each 𝑖 ∈ [𝑛], let 𝐾𝑖 ⊆ R𝑚 be a convex and closed set
of possible votes of voter 𝑣𝑖 , and let 𝐾 = 𝐾1 ×𝐾2 × · · · ×𝐾𝑛 . For each
𝑖 ∈ [𝑛], let 𝑓𝑖 : 𝐾 → 𝐾𝑖 be the best-response function of a voter 𝑣𝑖 ,
that is, with respect to any 𝒙 ∈ 𝐾 , if voter 𝑣𝑖 chooses action 𝑓𝑖 (𝒙),
then their individual regret is 0.

If each 𝑓𝑖 is continuous, then there exists a fixed point 𝒙 ∈ 𝐾 , that
is, there exists, for each voter 𝑣𝑖 ∈ 𝑉 , an action 𝒙𝑣𝑖 , such that their
regret is 0.

Proof. The function 𝑓 (𝒙) = (𝑓1 (𝒙), 𝑓2 (𝒙), . . . , 𝑓𝑛 (𝒙)) is con-

tinuous and the set 𝐾 is convex and closed. The existence of a

fixed-point follows from Proposition 2. □

Intuitively, the theorem above states that, if each voter 𝑣 has a

continuous best-response function 𝑓 and their regret is ∥ 𝑓𝑣 (𝒙) −
𝒙𝑣 ∥1, or equivalently, if their regret 𝑟𝑣 : 𝐾 → R≥0 is continuous
and they can unilaterally decrease it to 0, then a solution is always

guaranteed to exist. (One implication of the equivalence is easy; the

other direction follows by, given a regret function 𝑟𝑣 , defining, for

each 𝒙 ∈ 𝐾 , 𝑓𝑣 (𝒙) to be some action 𝒙𝑣 which decreases the regret

of 𝑣 to 0 with respect to 𝒙 .) Let us outline a few settings which can

be captured by Theorem 9.

(1) Proportionality per bundle. Each voter 𝑣 can specify for

each bundle 𝑆 whether they require (EP-TI) or (WCC) for

this delegation.

(2) (WCC) for subcommittees.A voter 𝑣 maywish to delegate

their decision to a committee of delegates: say that 𝑣 desig-

nates 𝑘 delegates 𝑣1, . . . , 𝑣𝑘 , each with a weight𝑤1, . . . ,𝑤𝑘 ,

and the best response of 𝑣 is to take 𝒅𝑣,𝑆 +
∑𝑘
𝑖=1𝑤𝑖 ·𝒙𝑣𝑖 ,𝑆 and

scale it to be of ℓ1-norm 𝑏𝑣,𝑆 .

(3) Large- vs small-scale decisions.We have focused on the

setting where the voter makes a “large-scale” decision of

how support should be split among bundles of candidates,

and delegates the “small-scale” decision within each bun-

dle. Theorem 9 captures also the setting where the voter

specifies support ratios within bundles (e.g., by specifying a

non-negative |𝑆 |-dimensional vector 𝒅𝑆 with ∥𝒅𝑆 ∥1 = 1 for

each bundle 𝑆), but delegates the decision of how to split the

total support among these bundles to a delegate 𝛿 (𝑣).
(4) Continuous confidence functions. In (WCC), a voter ex-

presses their confidence in a delegate through the weight
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𝑤𝑣,𝑆 . The influence of 𝛿 (𝑣, 𝑆) increases with 𝑤𝑣,𝑆 and de-

creases with ∥𝒙𝛿 (𝑣,𝑆),𝑆 ∥1. A voter may specify a less straight-

forward interaction. Imagine that there is a candidate 𝑐 which

𝑣 is strongly in favor of, and will trust a delegate 𝛿 (𝑣, 𝑆) to
the degree to which 𝛿 (𝑣, 𝑆) is also in favor of 𝑐 . As long as the
dependence of the confidence of 𝑣 in 𝛿 (𝑣, 𝑆) is continuous,
satisfying solutions are guaranteed by Theorem 9.

(5) Spatial voting. In spatial voting [15], a voter’s ballot is

some real 𝐷-dimensional vector. We may define FGLD in

this setting analogously to the previous point—the action of 𝑣

will be a combination of their default vote and the solution of

their delegate(s) to the degree of the (continuous) confidence

of 𝑣 in 𝛿 (𝑣, 𝑆).
Turning to tractability, we have the following meta-theorems.

Theorem 10. Let 𝑛,𝑚, and, for each 𝑖 ∈ [𝑛], 𝐾𝑖 and 𝑓𝑖 , be defined
as in Theorem 9. Then:

(1) If each 𝑓𝑖 is𝑀-Lipschitz continuous, then an 𝜖-weak approx-
imate fixed-point 𝒙 can be found through (1/𝜖 · 𝑀)𝑂 (𝑛𝑚)

queries to 𝑓 .
(2) If each 𝑓𝑖 is continuous and can be expressed by a quantifier

free formula 𝜑𝑖 (𝒙) with at most 𝑃 polynomials of maximum
degree 𝐷 and maximum coefficient encoding length 𝐿, then
an 𝜖-strong approximation of a solution can be found in time
polynomial in 𝐿, 𝑃, 𝐷 and log(1/𝜖), if 𝑛 and𝑚 are fixed con-
stants.

Proof. The theorem is a straightforward application of Propo-

sitions 4 and 5, respectively. □

6 DISCUSSION
We studied fine-grained liquid democracy for cumulative ballots,

and concentrated on how to resolve voters’ delegations transitively

in a way that is proportional. In the context of fine-grained liquid

democracy, our results allow for increasing voter expressiveness

and flexibility and thus advance the state of the art and what is

possible to do with liquid democracy. Our work does have some

limitations that naturally lead to the following directions for future

research.

First, we presented parameterized algorithms in Subsection 4.1

but actually we did not prove computational hardness of the prob-

lem. Indeed, ideally, one would prove, e.g., PPAD-hardness (see

our comments after Proposition 3). The best evidence for hard-

ness is a recent paper of Papadimitriou et al. [25], showing that

there are closely-related games which finding Nash equilibrium

is PPAD-hard. This seems like an intriguing but non-trivial open

question.

Second, note that in our work we concentrated on how to resolve

delegations, and not on how to aggregate voter preferences. Thus,

we do not consider issues of social welfare directly; that is, while the

increase of voter flexibility and expressiveness intuitively allow for

better quality of the collective decision, a natural future direction

is to complement our research with an investigation dealing with

the social welfare. Such a study may follow related work such as

that which was done for participatory budgeting [3]. Note that a

related issue that we do not consider, for similar reasons, is that

of strategic voting: this is so as, again, we are interested in the

resolution of voters’ delegations and not in the communal decision

to be made—studying strategic voting is indeed another natural

future research direction to investigate.

Third, our analysis demonstrates that the mathematics of FGLD

for CBs is non-trivial, in particular as different natural notions of

proportionality lead to different results and suffer from different

shortcomings. Correspondingly, a natural future research direction

may experiment with our proportionality notions and evaluate

them in practice as well as suggest different notions of proportion-

ality. Our work does provide some guidance towards a practical

implementation of our ideas, in particular, our analysis leads us to

conclude that WCC is the currently-best proportionality notion.

This is because: (1) it has stronger continuity properties than other

models (e.g., a continuous derivative), making it better-behaving

with respect to many heuristics; and (2) our QCQP formulation

can be easy to use in practice by applying quadratic programming

solvers (see the discussion in Section 4).

In a more general context, we view our theoretical treatment—

culminating in our meta-theorems—as an important result that

could be used for other settings (such as those briefly discussed in

Section 5) as well. In particular, our meta-theorems can be used in

social choice settings that are continuous in nature; a particularly

promising area is that of spatial voting [15].

Besides using our meta-theorems for such continuous social

choice settings, an interesting avenue for future research is to de-

velop analogous meta-theorems for discrete settings. This may be

possible using fixed-point theorems for discrete functions, and the

logic would be, similarly to the continuous setting, to view a given

social choice setting as a game, define appropriate regret functions

and apply discrete fixed-point theorems. Even if the conditions of

discrete fixed-point theorems could not be satisfied, one can con-

sider the analogue of a mixed Nash equilibrium, where a solution

would not be a single action but rather a distribution on player’s

actions. Such meta-theorems may be used also to revisit the setting

of Ordinal FGLD [8] and Knapsack FGLD [20].
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