
Minimizing State Exploration While Searching Graphs with
Unknown Obstacles

Daniel Koyfman
Ben-Gurion University

Beer Sheva, Israel
koyfdan@post.bgu.ac.il

Shahaf S. Shperberg
Ben-Gurion University

Beer Sheva, Israel
shperbsh@bgu.ac.il

Dor Atzmon
Bar-Ilan University
Ramat Gan, Israel

dor.atzmon@biu.ac.il

Ariel Felner
Ben-Gurion University

Beer Sheva, Israel
felner@bgu.ac.il

ABSTRACT
We address the challenge of finding a shortest path in a graph with
unknown obstacles where the exploration cost to detect whether a
state is free or blocked is very high (e.g., due to sensor activation
for obstacle detection). The main objective is to solve the problem
while minimizing the number of explorations. To achieve this, we
propose MXA∗, a novel heuristic search algorithm based on A∗. The
key innovation in MXA∗ lies in modifying the heuristic calculation
to avoid obstacles that have already been revealed. Furthermore,
this paper makes a noteworthy contribution by introducing the
concept of a dynamic heuristic. In contrast to the conventional static
heuristic, a dynamic heuristic leverages information that emerges
during the search process and adapts its estimations accordingly.
By employing a dynamic heuristic, we suggest enhancements to
MXA∗ based on real-time information obtained from both the open
and closed lists. We demonstrate empirically that MXA∗ finds the
shortest path while significantly reducing the number of explored
states compared to traditional A∗. The code is available at https:
//github.com/bernuly1/MXA-Star.

KEYWORDS
A*, Minimizing Exploration, Unknown Obstacles

ACM Reference Format:
Daniel Koyfman, Shahaf S. Shperberg, Dor Atzmon, and Ariel Felner. 2024.
Minimizing State Exploration While Searching Graphs with Unknown Ob-
stacles. In Proc. of the 23rd International Conference on Autonomous Agents

and Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10,

2024, IFAAMAS, 9 pages.

1 INTRODUCTION
The well-known A∗ algorithm [6] optimally solves the shortest path
problem by executing a best-first search, guided by a heuristic that
estimates the cost to the goal. In this paper, we focus on finding a
shortest path in a special type of graphs, denoted as graphs with un-
known obstacles (GUO). In GUO, the structure of the graph is known,

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,

Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

but some states might be blocked. For example, some junctions in a
roadmap might be closed due to weather conditions, construction,
or accidents. Similarly, some servers/switches/hubs may be unavail-
able when routing files over a network. Another example is grids
(of different dimensions and connectivity) where the size of the
grid is known, but it is not known which cells are free and which
are blocked. Naturally, all incident edges of a blocked state are also
blocked and can all be removed from the graph for our search task.
We assume that the status of a state (blocked/free) remains fixed
for the entire duration of the search and the execution.

Identifying whether a state is free or blocked in a GUO requires
an exploration operation, which may come with a cost. For instance,
exploring a location using sensors in robotic navigation might be
expensive or time-consuming. Additionally, exploration is costly
when privacy needs to be preserved, i.e., when an adversary can
detect exploration operators. We thus differentiate between an
exploration, a real-world, possibly very costly, operation, and an
expansion, a computational operation done in the CPU and only
incurs time overhead. Usually, analysis on A∗ does not differen-
tiate between exploration and expansion, and treats exploration
as part of the expansion processes (i.e., when a node is expanded,
all neighboring states are generated and explored). Therefore, A∗

aims to speed up the search by minimizing the number of node
expansions. By contrast, this paper aims to find the shortest path
while minimizing the number of explorations, even at the price
of increasing the number of node expansions. Note that when the
exploration operator is very costly (time-consuming) compared to
the time of the expansion operator, then reducing the number of
explorations is a better way to minimize the CPU time to find a
solution than reducing the number of expansions (as done by A∗).

In the first part of the paper, we introduce Minimize Exploration

𝐴∗ (MXA∗), a two-level search algorithm capable of searching any
GUO. The high level of MXA∗ runs A∗ to find an optimal path from
𝑠𝑡𝑎𝑟𝑡 to 𝑔𝑜𝑎𝑙 . Once it reaches a state for the first time, it explores it.
Thus, information about which states are free andwhich are blocked
is continuously being collected. The low level calculates a heuristic
for the high level by finding the shortest path to𝑔𝑜𝑎𝑙 on the currently
known graph, bypassing known blocked states while assuming that
all states that are yet unexplored are free. The resulting heuristic
is more informed than classic heuristics, which assume that all
states are free. Our low-level heuristic reduces the number of nodes
expanded by the high-level A∗ and, as a result, reduces the number

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1038

https://github.com/bernuly1/MXA-Star
https://github.com/bernuly1/MXA-Star
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

of explorations. Naturally, the tradeoff is a large number of low-
level expansions. Experimental results show that MXA∗ reduces the
number of explorations by up to an order of magnitude compared
to plain A∗ on a number of common benchmark domains.

The second part of our paper introduces the new notion of a
dynamic heuristic. Felner et al. [3] showed that, for calculating a
heuristic, A∗ can avoid paths to 𝑔𝑜𝑎𝑙 that pass through the Closed
list, and still return optimal solutions. Thus, a heuristic within A∗

may treat states in Closed as blocked. We extend this result also to
include some of the Open list. Furthermore, we introduce a unifying
view defining and analyzing the notion of a dynamic heuristic. The
idea of dynamic heuristics is general and holds potential for broad
applicability. In this paper, as a first step towards using a dynamic
heuristic, we exploit this idea by incorporating a dynamic heuristic
into the low-level search of MXA∗. Our experimental results show
that our improved low level significantly reduces the number of
expansions at the low level.

2 DEFINITIONS AND BACKGROUND
A graph with unknown obstacles (GUO) 𝐺 = (𝑉 , 𝐸, 𝑐, EXP) consists
of a set of states𝑉 (or vertices), a set of (directed) edges 𝐸 ⊆ 𝑉 ×𝑉 ,
a cost function 𝑐 (𝑒) for traversing an edge 𝑒 ∈ 𝐸 (𝑐 : 𝐸 → R+), and
an exploration function EXP : 𝑉 → {𝑓 𝑟𝑒𝑒, 𝑏𝑙𝑜𝑐𝑘𝑒𝑑}. State 𝑠2 ∈ 𝑉

is a neighbor of state 𝑠1 ∈ 𝑉 if (𝑠1, 𝑠2) ∈ 𝐸. A neighboring function
𝑁 (𝑠) receives a state 𝑠 and returns all its neighbors. Each state in
𝑉 is either free or blocked, and we assume that the status of states
remains fixed for the entire duration of the search and the execution.
Whether a state is free or blocked is not given as input. Instead, the
exploration function EXP receives a state and returns whether it is
free or blocked. Naturally, if a state is blocked, then all its incident
edges are also blocked. A state that EXP has yet been executed on
it is referred to as unknown.

The input to a GUO-pathfinding problem consists of a GUO
𝐺 = (𝑉 , 𝐸, 𝑐, EXP), a start state 𝑠𝑡𝑎𝑟𝑡 ∈ 𝑉 , a goal state 𝑔𝑜𝑎𝑙 ∈ 𝑉 , and
a heuristic function ℎ : 𝑉 → R+. A valid path between two states
𝑠1 and 𝑠2 is a sequence of neighboring free states that starts with 𝑠1
and ends with 𝑠2. A path’s cost is the sum of the costs of its edges.
𝑑 (𝑠1, 𝑠2) denotes the cost of the shortest valid path between 𝑠1 and 𝑠2.
The heuristic functionℎ(𝑠) estimates𝑑 (𝑠, 𝑔𝑜𝑎𝑙) for any given state 𝑠 .
A solution to the problem is a shortest valid path between 𝑠𝑡𝑎𝑟𝑡 and
𝑔𝑜𝑎𝑙 , whose cost 𝑑 (𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙) is denoted by 𝐶∗. The problem we
solve in the paper is the minimize exploration shortest-path problem

(MXSP), where the input is a GUO-pathfinding problem, and the
task is to find a shortest valid path while minimizing the number
of explore operations (i.e., calls to EXP).

Some works have previously investigated methods for pathfind-
ing in unknown environments. Zelinsky [18] and Foux et al. [5]
suggested planning a robot’s path using known information and
dynamically replanning when obstacles are encountered during
execution. To enhance the local information collected by robots
during execution, Chou et al. [1] proposed performing a remote
look-ahead verification to acquire additional data while the ro-
bot progresses. For the case of planning paths for multiple agents,
Shofer et al. [14] computed a plan graph to capture all possible
locations of unknown obstacles in advance, before execution. In
addition to the unknown environment, other studies assumed that

the environment is dynamic and changes over time while the agent
moves [10, 12, 19]. This is in contrast to our current paper; we
assume a static environment, where paths are calculated offline.
Moreover, the aim of our paper is to minimize exploration, while
the primary aim of all the aforementioned works is to minimize
other objectives.

The minimization of state exploration has also been studied,
although in a context distinct from ours. Physical-A* (PHA*) [4]
focuses on finding the shortest path, considering that a physical
agent must physically reach each state to explore it. Additionally,
Stern et al. [16] searched for a k-Clique in unknown graphs. In that
scenario, each exploration operation reveals the neighbors of a state
and incurs a specific cost. The primary objective was to discover
a k-Clique while minimizing exploration. Although these works
share the goal of minimizing exploration, neither of them directly
applies to our specific problem.

3 SOLVING MXSP WITH A∗

The A∗ algorithm [6] solves the standard pathfinding problem. Here,
we adapt A∗ to fit the GUO-pathfinding problem. The pseudocode
is given in Algorithm 1. Lines 9-13 and 28-29 should be omitted;
they will be later introduced when describing MXA∗. A∗ maintains
two sets of nodes Open and Closed, as well as the set Blocked
containing all states revealed as blocked. Each node 𝑛 in the search
is composed of a state 𝑠 (𝑛.𝑠), a 𝑔-value (𝑔(𝑛)), an 𝑓 -value (𝑓 (𝑛)),
and a back pointer 𝑝 (𝑛.𝑝) to its predecessor. The 𝑔-value is the
cost of reaching state 𝑠 from 𝑠𝑡𝑎𝑟𝑡 , and 𝑓 (𝑛) = 𝑔(𝑛) + ℎ(𝑛.𝑠). A
heuristic function ℎ is admissible if it is a lower bound of the cost
of the shortest path (ℎ(𝑠) ≤ 𝑑 (𝑠, 𝑔𝑜𝑎𝑙) for any state 𝑠). Given an
admissible ℎ, A∗ is guaranteed to return an optimal solution [6]. ℎ
is consistent if ℎ(𝑔𝑜𝑎𝑙) = 0 and ℎ(𝑠1) −ℎ(𝑠2) ≤ 𝑑 (𝑠1, 𝑠2) for any two
states 𝑠1 and 𝑠2.

Assuming that 𝑠𝑡𝑎𝑟𝑡 is free, A∗ initializes Open with a 𝑟𝑜𝑜𝑡 node
(𝑟𝑜𝑜𝑡 .𝑠 = 𝑠𝑡𝑎𝑟𝑡) (Lines 2-4) and iteratively extracts from Open
node 𝑛 with the lowest 𝑓 -value, denoted 𝑓𝑚𝑖𝑛 (Lines 5-6). Then,
A∗ performs a goal test on 𝑛 (Lines 7-8). If 𝑛.𝑠 is not a goal, 𝑛 is
expanded: each unexplored (unknown) neighbor 𝑠′ of𝑛.𝑠 is explored
(by applying EXP , Line 18). If 𝑠′ is blocked, it is added to Blocked
(Lines 19-20). Otherwise, a node 𝑛′ (𝑛′ .𝑠 = 𝑠′) is created (Lines
21-22). A∗ performs duplicate detection, keeping only the node with
the smallest 𝑔-value for a given state (Lines 23-26). If 𝑛′ is not a
duplication, its 𝑓 -value is calculated (Line 27), and 𝑛′ is inserted
into Open (Line 30). Note that a path from 𝑠𝑡𝑎𝑟𝑡 to 𝑔𝑜𝑎𝑙 can be
constructed by following the back pointers from each node to its
predecessor in the search tree.

The main disadvantage of A∗ when running on a GUO is that
it uses a static heuristic, which remains constant throughout the
search and does not exploit dynamic information about the graph.
For example, assuming that all states are free, the best such heuristic
is the perfect heuristic, which is the exact cost to 𝑔𝑜𝑎𝑙 assuming all
states are free. This heuristic can be calculated (1) in a preprocessing
phase that stores the all-pairs shortest-path data, or (2) lazily on
the fly. This is similar to the Manhattan Distance heuristic in 4-
connected grids. Next, we present the MXA∗ algorithm, which is
built on A∗ but improves the heuristic by repeatedly calculating

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1039

Algorithm 1: A∗ (MXA∗) in GUO
1 Main(𝑖𝑛𝑠𝑡𝑎𝑛𝑐𝑒 = ⟨𝐺 = (𝑉 , 𝐸, 𝑐, EXP), 𝑠𝑡𝑎𝑟𝑡, 𝑔𝑜𝑎𝑙, ℎ⟩)
2 Init Open, Closed, Blocked
3 Init 𝑟𝑜𝑜𝑡 ; 𝑟𝑜𝑜𝑡 .𝑠 = 𝑠𝑡𝑎𝑟𝑡 ; 𝑟𝑜𝑜𝑡 .𝑝 =NIL; 𝑔(𝑟𝑜𝑜𝑡) = 0
4 Insert 𝑟𝑜𝑜𝑡 into Open
5 while Open is not empty do
6 Extract 𝑛 from Open // lowest 𝑓 (𝑛)
7 if 𝑛.𝑠 = 𝑔𝑜𝑎𝑙 then
8 return 𝑛

9 ℎ𝐷 (𝑛.𝑠) = Low-Level
(𝑉 , 𝐸, 𝑐, 𝑛, 𝑔𝑜𝑎𝑙, ℎ,Open,Closed, Blocked)

10 if 𝑔(𝑛) + ℎ𝐷 (𝑛.𝑠) > 𝑓𝑚𝑖𝑛 then
11 𝑓 (𝑛) = 𝑔(𝑛) + ℎ𝐷 (𝑛.𝑠)
12 Insert 𝑛 into Open
13 continue
14 Insert 𝑛 into Closed
15 foreach 𝑠′ ∈ 𝑁 (𝑛.𝑠) do
16 if 𝑠′ ∈ Blocked then
17 continue
18 if EXP (𝑠′) = 𝑏𝑙𝑜𝑐𝑘𝑒𝑑 then
19 Insert 𝑠′ into Blocked
20 continue
21 Init 𝑛′; 𝑛′ .𝑠 = 𝑠′; 𝑛′ .𝑝 = 𝑛

22 𝑔(𝑛′) = 𝑔(𝑛) + 𝑐 ((𝑛.𝑠, 𝑛′ .𝑠))
23 if ∃𝑛′′ ∈ Open ∪ Closed s.t. 𝑛′′ .𝑠 = 𝑠′ then
24 if 𝑔(𝑛′′) ≤ 𝑔(𝑛′) then
25 continue
26 Remove 𝑛′′ from Open and/or Closed
27 𝑓 (𝑛′) = 𝑔(𝑛′) + ℎ(𝑠′)
28 ℎ𝐷 (𝑠′) = Low-Level

(𝑉 , 𝐸, 𝑐, 𝑛′, 𝑔𝑜𝑎𝑙, ℎ,Open,Closed, Blocked)
29 𝑓 (𝑛′) = 𝑔(𝑛′) + ℎ𝐷 (𝑠′)
30 Insert 𝑛′ into Open

31 return NO SOLUTION

the shortest path to the goal while exploiting information on newly
discovered blocked states.

4 MINIMIZE EXPLORATION A∗ (MXA∗)
MXA∗ is a two-level algorithm. Its high level (presented in Algo-
rithm 1) is similar to A∗ described above, which activates the EXP
operator on the GUO, but MXA∗ also includes lines 9-13 and 28-29.
After a node 𝑛′, corresponding to state 𝑠′, is generated, the low-
level search is called to calculate a dynamic heuristic value for 𝑠′,
ℎ𝐷 (𝑠′) (Line 28; we explain lines 9-13 later), and the 𝑓 -value of
𝑛′ is recalculated with respect to ℎ𝐷 (𝑠′). The low-level search ex-
ploits the most updated knowledge on blocked states and performs
a search strictly in memory to calculate a more informed heuristic.
Let 𝑛 be a newly created node in the high level. The low level is
invoked to find the shortest path from 𝑛.𝑠 to 𝑔𝑜𝑎𝑙 that does not
traverse through any state in Blocked. The cost of this path is

Algorithm 2: Low Level of MXA∗ + CO
1 Low-Level(𝑉 , 𝐸, 𝑐, 𝑛, ℎ, 𝑔𝑜𝑎𝑙,Open,Closed, Blocked)
2 Init Open𝑙 , Closed𝑙
3 Init 𝑟𝑜𝑜𝑡𝑙 ; 𝑟𝑜𝑜𝑡𝑙 .𝑠 = 𝑛.𝑠; 𝑔𝑙 (𝑟𝑜𝑜𝑡𝑙) = 0
4 Insert 𝑟𝑜𝑜𝑡𝑙 into Open𝑙
5 while Open𝑙 is not empty do
6 Extract 𝑛𝑙 from Open𝑙 // lowest 𝑓𝑙 (𝑛𝑙)
7 if 𝑛𝑙 .𝑠 = 𝑔𝑜𝑎𝑙 then
8 return 𝑔𝑙 (𝑛𝑙)
9 Insert 𝑛𝑙 into Closed𝑙

10 foreach 𝑠′ ∈ 𝑁 (𝑛𝑙 .𝑠) do
11 if 𝑠′ ∈ Blocked then
12 continue
13 Init 𝑛′

𝑙
; 𝑛′

𝑙
.𝑠 = 𝑠′

14 𝑔𝑙 (𝑛′𝑙) = 𝑔𝑙 (𝑛𝑙) + 𝑐 ((𝑛𝑙 .𝑠, 𝑛′𝑙 .𝑠))
15 if ∃𝑛′′

𝑙
∈ Open𝑙 ∪ Closed𝑙 s.t. 𝑛

′′
𝑙
.𝑠 = 𝑠′ then

16 if 𝑔𝑙 (𝑛′′𝑙) ≤ 𝑔𝑙 (𝑛′𝑙) then
17 continue
18 Remove 𝑛′′

𝑙
from Open𝑙 and/or Closed𝑙

19 if ∃𝑛′′ ∈ Closed s.t. 𝑛′′ .𝑠 = 𝑠′ then
20 continue
21 if ∃𝑛′′ ∈ Open s.t. 𝑛′′ .𝑠 = 𝑠′ then
22 if 𝑔(𝑛′′) ≤ 𝑔(𝑛) + 𝑔𝑙 (𝑛′𝑙) then
23 continue

24 𝑓𝑙 (𝑛′𝑙) = 𝑔𝑙 (𝑛′𝑙) + ℎ(𝑛
′
𝑙
.𝑠)

25 Insert 𝑛′
𝑙
into Open𝑙

26 return ∞

returned to the high level as ℎ𝐷 (𝑠). Thus, the low-level searches an
abstract graph where states that were already explored are treated
as free or as blocked according to the outcome of their EXP action.
Additionally, we make the free-space assumption [11] and treat all
unknown states as free. The cost of the path returned by the low
level is clearly a lower bound on the shortest valid path, as the
returned path may include blocked states (currently unknown and
treated as free by the low level). Also, it is clearly more informed
than any static heuristic used by A∗, which assumes that all states
are free.

The low-level search is presented in Algorithm 2. Lines 19-23
should be omitted; we will revisit them when discussing MXA∗

improvements. To differentiate the low-level search from the high-
level one, we represent a node in the low-level search’s abstract
graph as 𝑛𝑙 (with subscript 𝑙). Its 𝑔-value (distance of 𝑛𝑙 from the
high-level node 𝑛 from which the low-level search commences) and
𝑓 -value are 𝑔𝑙 and 𝑓𝑙 , respectively. Lists Open𝑙 and Closed𝑙 track
the low-level search process. During the low-level search, nodes
are not created for states 𝑠′ that were already revealed as blocked
in the high level (Lines 11-12).

Example. Figure 1 illustrates a problem instance, in which states
𝐵 and 𝐸 are blocked while all other states are free. Additionally, a ta-
ble provides the progression of both A∗ and MXA∗ on this instance,

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1040

𝐸

𝒔𝒕𝒂𝒓𝒕

𝐴

𝐵

𝐶

𝒈𝒐𝒂𝒍

𝐷

41

1 1

1 1
1

41

State h value f value

start 2 2

A 3 4

B 1 2

C 2 3

D 2 3

ℎ=1

ℎ=4

ℎ=2 ℎ=2

A* Open Expand

start (2) start

C (3), A (5) C

D (4), A(5) D

A(5), goal (6) A

goal (5) goal

UA* Open Expand

start (2) start

A (5), C (6) A

goal (5), C (6) goalℎ=2 ℎ=0

ℎ=12

10

Expand Explore Open (𝑓)

A∗

𝑠𝑡𝑎𝑟𝑡 𝐴, 𝐵, 𝐶 , 𝐸 𝐶 (3), 𝐴 (5)
𝐶 𝐷 𝐷 (4), 𝐴 (5)
𝐷 𝐴 (5), 𝑔𝑜𝑎𝑙 (6)
𝐴 𝑔𝑜𝑎𝑙 (5)

𝑔𝑜𝑎𝑙

MXA∗
𝑠𝑡𝑎𝑟𝑡 𝐴, 𝐵, 𝐶 , 𝐸 𝐴 (5), 𝐶 (6)
𝐴 𝑔𝑜𝑎𝑙 (5), 𝐶 (6)

𝑔𝑜𝑎𝑙

Figure 1: Example of A∗ and MXA∗ executions.

with each row signifying the expansion of a state. For simplicity, we
refer to states and their nodes using similar notations. When 𝑠𝑡𝑎𝑟𝑡
is expanded, 𝐴, 𝐵,𝐶 and 𝐸 are explored but only 𝐴 and𝐶 are added
to Open due to 𝐵 and 𝐸 being blocked. A∗ proceeds to expand𝐶 and
explore𝐷 , leading to its expansion. Only then, it moves to expand𝐴
and finds the shortest path. In contrast, MXA∗, upon identifying 𝐵
and 𝐸 as blocked, invokes the low-level search on𝐶 . It capitalizes on
the knowledge of 𝐵 being blocked while assuming 𝐷 is unblocked
(without explicit exploration). This strategy uncovers a path via 𝐷
to 𝑔𝑜𝑎𝑙 , resulting in 𝑓 (𝐶) = 6. Subsequently, the high level expands
𝐴 (𝑓 (𝐴) = 5) and finds the shortest valid path. Notably, MXA∗’s
high-level search avoids exploring 𝐷 (and expanding 𝐶), exploring
fewer states than A∗.

Recalculating the Heuristic. As the high-level search progresses,
new states are revealed as blocked and are inserted into Blocked.
Therefore, when a node is selected for expansion by the algorithm,
its ℎ-value may not be up-to-date with the Blocked list (when
its ℎ-value was calculated, Blocked contained fewer states). To
remedy this, when a node 𝑛 is chosen for expansion by the high
level, we perform another low-level search and re-calculate ℎ𝐷 (𝑛.𝑠).
If 𝑔(𝑛) +ℎ𝐷 (𝑛.𝑠) > 𝑓𝑚𝑖𝑛 , we insert 𝑛 back to Open. This procedure
is shown in Lines 9-13 of Algorithm 1. This is akin to Lazy A∗ [7]
where a more-informed heuristic is calculated before expansion.
Importantly, this re-calculation of the heuristic is not relevant to
A∗ as its heuristic is static throughout the search.

4.1 Lazy Exploration (LE)
When A∗ and MXA∗ expand a node, they immediately explore
all its yet unexplored neighbors and insert nodes into Open only
if the states of the nodes are free. However, this exploration can
be delayed. To do so, we first treat the neighboring states of an
expanded node as free. Nodes for these states (filteredwith duplicate

𝒔𝒕𝒂𝒓𝒕 𝒈𝒐𝒂𝒍𝒔𝒕𝒂𝒓𝒕 𝒈𝒐𝒂𝒍𝒔𝒕𝒂𝒓𝒕 𝒈𝒐𝒂𝒍

(a) A*
(7,934)

(b) MXA* with tb1

(4,512)

(c) MXA* with tb2

(1,940)

Figure 2: A∗ and MXA∗ with two tie-breaking rules.

detection) are immediately inserted into Open. Then, when a node
is chosen to be expanded, we execute EXP on its state and discard it
if it turns out to be blocked. We call this approach Lazy Exploration

(LE). In the example of Figure 1, node 𝐸 has a 𝑔-value of 10. Without
LE, A∗ and MXA∗ explore it immediately and discard it because
it is blocked. A∗+LE as well as MXA∗+LE add it to Open but will
never explore it.

4.2 The Impact of a Tie-Breaking Rule
When multiple nodes in Open have 𝑓 = 𝑓𝑚𝑖𝑛 , then A∗ uses a tie-
breaking rule to determine which of these nodes to expand. The
tie-breaking rule only influences which nodes will be expanded
among the nodes with 𝑓 = 𝐶∗ because any node with 𝑓 < 𝐶∗ must
be expanded, regardless of the tie-breaking rule [2]. In MXA∗, a
tie-breaking rule has a more profound impact. Assume two nodes
𝑛 and𝑚 where 𝑓 (𝑛) = 𝑓 (𝑚) = 𝑓𝑚𝑖𝑛 . If 𝑛 is chosen for expansion,
𝑛.𝑠 might be revealed as blocked, increasing ℎ𝐷 (𝑚.𝑠). Thus, 𝑓 (𝑚)
might potentially raise above 𝐶∗, causing it never to be expanded.

Figure 2 illustrates the execution of A∗ and MXA∗+LE on a 4-
connected grid while employing two distinct tie-breaking rules, tb1
and tb2, both prioritize nodes with higher 𝑔-values. Between nodes
with identical 𝑓 - and 𝑔-values, tb1 resolves ties arbitrarily, while
tb2 goes a step further by resolving ties based on their respective
distances from 𝑔𝑜𝑎𝑙 along the 𝑥 and 𝑦 dimensions. Let Δ𝑋 (𝑛) =

|𝑛.𝑥 − 𝑔𝑜𝑎𝑙 .𝑥 | and Δ𝑌 (𝑛) = |𝑛.𝑦 − 𝑔𝑜𝑎𝑙 .𝑦 |. When two nodes, 𝑛1
and 𝑛2, share the same 𝑓 - and 𝑔-values, tb2 favors the node with a
more balanced spatial distribution between these dimensions, as
determined by min𝑛∈𝑛1,𝑛2 (|Δ𝑋 (𝑛) − Δ𝑌 (𝑛) |).

In the figure, the purple region contains all expanded nodes 𝑛
with 𝑓 (𝑛) < 𝐶∗, the red region shows all nodes 𝑛 expanded with
𝑓 (𝑛) = 𝐶∗, and the green region presents generated nodes that
remained unexpanded. A∗ (Figure 2(a)) explored the exact set of
states using tb1 and tb2, a total of 7,934 states. In fact, the maximal
difference in state explorations between any two tie-breaking strate-
gies of A∗ on this example is 200 (= 2.5% variance in the overall
number of explorations). By contrast, MXA∗+LE with tb1, shown
in Figure 2(b), explored a total of 4,512 states, while MXA∗+LE with
tb2, depicted in Figure 2(c), explored a total of 1,940, a difference of
2,572 states (=57% variation in the overall number of explorations).
Evidently, the choice of tie-breaking policy is more significant for
MXA∗+LE than for A∗. We found that tb2 is not always superior to

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1041

Game Maze Random

Room City

Figure 3: Grid maps.

A∗ A∗+LE MXA∗ MXA∗+LE

4

Game 9,094 8,766 4,143 3,602
Maze 17,790 17,727 11,458 10,347

Random 12,355 11,560 4,695 3,330
Room 20,318 19,443 6,516 5,195
City 17,569 16,661 4,133 3,151

8

Game 7,759 7,366 4,128 3,536
Maze 9,023 8,949 6,197 5,616

Random 8,981 8,047 5,585 3,447
Room 13,128 12,509 6,347 5,111
City 20,129 19,033 7,453 6,149

Table 1: Average number of explorations for A∗ and MXA∗,
without and with LE, on 4-connected and 8-connected maps.

tb1 or other tie-breaking policies. Nonetheless, on average tb2 sig-
nificantly outperformed tb1 on representative experiments. Thus,
we used tb2 for both A∗ and MXA∗ in our empirical study below.

4.3 Experiments: Comparing Explorations
We empirically compared the number of explorations performed by
A∗ and MXA∗, with and without lazy expansion (LE), on two do-
mains: 4-connected grids (with the Manhattan Distance heuristic),
and 8-connected grids (with the Octile Distance heuristic). We ex-
perimented on five grid domains, representing different topologies,
extracted from theMovingAI repository [17]: Game, Maze, Random,
Room, and City. A map from each domain is shown in Figure 3.
Overall, we generated over 36.5k problem instances across all five
domains featuring random 𝑠𝑡𝑎𝑟𝑡 and 𝑔𝑜𝑎𝑙 points.

Table 1 presents the average number of explorations for each
approach. The results show that MXA∗ consistently performed
fewer explorations than A∗. Additionally, enabling LE yielded a
reduction in exploration for both A∗ and MXA∗. Notably, in our
experiments, MXA∗+LE explored the fewest states, outperforming

Figure 4: Per-instance exploration ratio of A∗ / MXA∗+LE on
4-connected grids.

A∗ by a substantial margin ranging from 1.7 (mazes) to 5.6 (cities) in
4-connected grids and from 1.6 (mazes) to 3.3 (cities) in 8-connected
grids. Figure 4 shows per-instance outcomes on 4-connected grids
of the same maps and problem instances used in the above ex-
periment (Table 1). The 𝑦-axis, presented on a logarithmic scale,
shows the improvement factor between the states explored by A∗

and those explored by MXA∗+LE for each individual instance. The
instances are sorted in increasing order of the improvement factor.
The depicted results highlight that the reduction in state explo-
ration achieved by MXA∗+LE over A∗ is exponentially distributed
and varies from an improvement factor of close to 1 up to a stagger-
ing factor of up to 278. This variability shows that MXA∗+LE can
significantly enhance exploration in some scenarios while consis-
tently delivering improved performance across a broad spectrum
of instances.

5 DYNAMIC HEURISTIC FUNCTION
We now move to the second contribution of this paper, the dynamic

heuristic function notion. As discussed below, dynamic heuristics
offer wide-ranging applicability. We first provide a general defini-
tion of dynamic heuristic. However, in this paper, we are confined
to the context of our GUO problem and the MXA∗ algorithm and,
therefore, focus on using dynamic heuristics within this context. In
particular, until now, our primary aim was to reduce the number
of EXP actions; the CPU time was of lesser importance. To achieve
this, in Section 6, we exploit a dynamic heuristic to improve the
search time by reducing the number of expansions in the low-level
search.

A study titled The Closed List is an Obstacle Too [3] found that
states within the Closed list can be considered obstacles (blocked)
for calculating a heuristic. Thus, for a given node 𝑛, a heuristic
can assume that the shortest path from 𝑛.𝑠 to 𝑔𝑜𝑎𝑙 must not pass
via Closed states. This insight resulted in the BOXA∗ algorithm,
tailored for 4-connected grids, which builds a rectangle around
Closed states and computes a heuristic that bypasses this rectangle.
We extend this concept to encompass the Closed list and portions
of the Open list as obstacles during the low-level search. To achieve
this, we first generalize the notion of a static heuristic function to
a dynamic heuristic function that enables heuristic values to be
dynamically updated throughout the search and introduce useful

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1042

properties for such heuristics. Importantly, this broadened defini-
tion of heuristics is not confined to GUO-pathfinding; it offers a
valuable contribution with broader applicability, as we discuss in
Section 7. But, for our purposes, in Section 6 we leverage these def-
initions and properties to enhance the low-level search of MXA∗,
while assuring that these enhancements maintain the optimality of
the returned solutions.

5.1 Formalizing Dynamic Heuristic Functions
Wenext introduce and study dynamic heuristic functions that exploit
information (Denoted 𝐼) that became available during the search
to dynamically refine their estimations. Formally, let a dynamic
heuristic function be denoted as:

ℎ : 𝑉 × I → R+

where I represents space of available information (later, we will
define I in the context of MXA∗, w.r.t. the Blocked, Closed and
Open lists). Under this formulation, the ℎ-value of state 𝑠 is denoted
by ℎ(𝑠, 𝐼). Note that the conventional static heuristic definition is
a special case wherein only the first parameter (a state 𝑠 ∈ 𝑉) is
considered.

It is well known that A∗, when coupled with an admissible heuris-
tic, must return an optimal solution [2]. However, this is a sufficient
condition but not necessary. As defined by Karpas and Domshlak
[8], a heuristic function ℎ is called path admissible if there exists an
optimal path 𝑃 from 𝑠𝑡𝑎𝑟𝑡 to 𝑔𝑜𝑎𝑙 such that for every state 𝑠 ∈ 𝑃 ,
ℎ(𝑠) ≤ 𝑑 (𝑛.𝑠, 𝑔𝑜𝑎𝑙). A∗ is guaranteed to return an optimal solution
when given a path-admissible heuristic. For example, if there is
an optimal path with admissible heuristics, it is sufficient for A∗

to return it, even if all other states receive a heuristic value of ∞
(which is inadmissible).

When considering a dynamic heuristic, we can further relax
the path admissibility assumption while still guaranteeing optimal
solutions. Intuitively, the heuristic values of all states along an
optimal path do not need to be admissible at all times during the
search. Instead, as long as the next unexpanded node with a state in
some optimal path has an admissible heuristic, A∗ is still guaranteed
to return an optimal solution.

Definition 1 (PDA). A dynamic heuristic function ℎ is called

path dynamically-admissible (PDA) if there exists an optimal path

𝑃 = [𝑝0 = 𝑠𝑡𝑎𝑟𝑡, ..., 𝑝𝑛 = 𝑔𝑜𝑎𝑙] such that for every search information

𝐼 (i.e., at any given time during the search) there exists an index 𝑗

such that: i) for all 𝑖 ∈ {0, . . . , 𝑗 − 1} there exists a node 𝑛𝑖 ∈ Closed

for which 𝑛𝑖 .𝑠 = 𝑝𝑖 , ii) there exists 𝑛 𝑗 ∈ Open s.t. 𝑛 𝑗 .𝑠 = 𝑝 𝑗 , and iii)

ℎ(𝑝 𝑗 , 𝐼) ≤ 𝑑 (𝑝 𝑗 , 𝑔𝑜𝑎𝑙).

As mentioned above, this definition is more relaxed than the
original path admissibility, as it only requires that a single state
(𝑝 𝑗) on an optimal solution would have an admissible heuristic.
Nonetheless, we show that this relaxed definition is sufficient to
guarantee the optimality of solutions.

Theorem 1. A∗
is guaranteed to return an optimal solution when

given a PDA heuristic.

Proof. Assume by contradiction that A∗ terminated while re-
turning a non-optimal solution on a given problem instance with a
PDA heuristic. Thus, at the moment of termination, 𝑓𝑚𝑖𝑛 > 𝐶∗. By

definition of PDA, there exists a path 𝑃 = [𝑝0 = 𝑠𝑡𝑎𝑟𝑡, ..., 𝑝𝑛 = 𝑔𝑜𝑎𝑙]
and an index 𝑗 such that for all 𝑖 ∈ {0, . . . , 𝑗 − 1} there exists a node
𝑛𝑖 ∈ Closed s.t. 𝑛𝑖 .𝑠 = 𝑝𝑖 , and there exists a node 𝑛 𝑗 ∈ Open s.t.
𝑛 𝑗 .𝑠 = 𝑝 𝑗 and ℎ(𝑝 𝑗 , 𝐼) ≤ 𝑑 (𝑝 𝑗 , 𝑔𝑜𝑎𝑙). Since ∀𝑖 ∈ {0, . . . , 𝑗 − 1}∃𝑛𝑖 ∈
Closed s.t. 𝑛𝑖 .𝑠 = 𝑝𝑖 (i.e., the prefix of the path is in Closed), then
for 𝑛 𝑗 ∈ Open s.t. 𝑛 𝑗 .𝑠 = 𝑝 𝑗 we have 𝑔(𝑛 𝑗) = 𝑑 (𝑠𝑡𝑎𝑟𝑡, 𝑝 𝑗). Thus,
𝑓 (𝑛 𝑗) = 𝑑 (𝑠𝑡𝑎𝑟𝑡, 𝑝 𝑗) + ℎ(𝑝 𝑗 , 𝐼) ≤ 𝑑 (𝑠𝑡𝑎𝑟𝑡, 𝑝 𝑗) + 𝑑 (𝑝 𝑗 , 𝑔𝑜𝑎𝑙) = 𝐶∗.
Thus, there must always exist a node 𝑛 with 𝑓 (𝑛) ≤ 𝐶∗. This con-
tradicts the assumption that 𝑓𝑚𝑖𝑛 > 𝐶∗. □

6 USING A DYNAMIC HEURISTIC FOR GUO
We next exploit the notion of dynamic heuristics to further improve
the low-level search for MXA∗.

6.1 Improved Low-Level Search for MXA∗

As defined in Section 4, for high-level node 𝑛, the low-level of
MXA∗ finds a shortest path from 𝑛.𝑠 to 𝑔𝑜𝑎𝑙 while pruning away
(bypassing) Blocked states. The cost of that path was used as
a heuristic for the high-level node 𝑛. Given our new definitions,
this heuristic is dynamic as more states are added Blocked as the
search progresses. We now extend the low level of MXA∗ to prune
more low-level nodes based on the content of Closed and Open
(CO; Lines 19-23 in Algorithm 2). We then prove that the resulting
heuristic is a dynamic heuristic that has the PDA attribute and, thus,
MXA∗ with this heuristic returns the optimal solution.

Given a high-level node 𝑛, the new low-level searches for the
shortest path from 𝑛.𝑠 to 𝑔𝑜𝑎𝑙 . Let 𝑛′

𝑙
be a low-level node and 𝑛′′

be a high-level node sharing the same state (𝑛′
𝑙
.𝑠 = 𝑛′′ .𝑠). Node 𝑛′

𝑙
can be pruned (and treated as an obstacle) by the low-level search
if one of the following three conditions is met (where Blocked,
Closed and Open refer to the high level):

(i) 𝑛′
𝑙
.𝑠 ∈ Blocked (Lines 11-12 in Algorithm 2, the original con-

dition of MXA∗)
(ii) 𝑛′′ ∈ Closed (Lines 19-20)
(iii) 𝑛′′ ∈ Open and 𝑔(𝑛′′) ≤ 𝑔(𝑛) + 𝑔𝑙 (𝑛′𝑙) (Lines 21-23)

Condition (i) prunes Blocked states as was done in the basic
version of the low-level search described in Section 4. Condition
(ii) prunes high-level nodes with Closed states and treats them as
obstacles during the low-level search for computing the heuristic
for nodes 𝑛 in Open. Intuitively, if a Closed node 𝑛′′ has already
been expanded, the shortest path from 𝑠𝑡𝑎𝑟𝑡 to 𝑛′′ .𝑠 was found,
and a shorter path from 𝑠𝑡𝑎𝑟𝑡 to 𝑛′′ .𝑠 through 𝑛.𝑠 of node 𝑛 ∈
Open cannot exist. Condition (iii) considers two paths from 𝑠𝑡𝑎𝑟𝑡

to the high-level node 𝑛′′ ∈ Open. Intuitively, if there is a path 𝑃 ′′

from 𝑠𝑡𝑎𝑟𝑡 to 𝑛′′ .𝑠 , an alternative path 𝑃 from 𝑠𝑡𝑎𝑟𝑡 to 𝑛′′ .𝑠 (= 𝑛′
𝑙
.𝑠)

through 𝑛.𝑠 (note that 𝑔𝑙 (𝑛′𝑙) in condition (iii) refers to distance
from 𝑛, not from 𝑠𝑡𝑎𝑟𝑡) with the same or higher cost than 𝑃 ′′, then
𝑃 is redundant. Thus, 𝑛′

𝑙
can be pruned during the low-level search

from 𝑛.
Example.We have already shown an example of the usage of

condition (i) in Section 4. Now, we present a similar example for
conditions (ii) and (iii). In Figure 5, after 𝑠𝑡𝑎𝑟𝑡 is expanded, two new
nodes, for states 𝐴 and 𝐶 are inserted into Open. When executing
the low-level search from node 𝐶 , paths that go through 𝑠𝑡𝑎𝑟𝑡 can
be pruned (condition (ii)). Moreover, paths that go through 𝐴 can

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1043

𝐵𝐶

𝐴

𝒔𝒕𝒂𝒓𝒕 𝒈𝒐𝒂𝒍

41

1 1

State h value f value

start 2 2

A 3 4

B 1 2

C 2 3

D 2 3ℎ=2

ℎ=4

A* Open Expand

start (2) start

C (3), A (5) C

D (4), A(5) D

A(5), goal (6) A

goal (5) goal

UA* Open Expand

start (2) start

A (5), C (6) A

goal (5), C (6) goal

ℎ=3 ℎ=0
1

1 ℎ=1

Figure 5: Example for Conditions (ii) and (iii).

be pruned as well (condition (iii)). Therefore, the low-level search
sets ℎ𝐷 (𝑛.𝑠) = ∞ for 𝑛.𝑠 = 𝐶 without expanding 𝑠𝑡𝑎𝑟𝑡 and 𝐴.

6.2 Optimality of MXA∗

We next prove that MXA∗ with the improved low-level search,
indeed returns optimal solutions. For this, we resort to the def-
initions from Section 5. The ℎ-value returned by the low-level
for a high-level node 𝑛 is the shortest path from 𝑛.𝑠 to 𝑔𝑜𝑎𝑙 on
an abstract graph, denoted as 𝑑𝑙 (𝑛.𝑠, 𝑔𝑜𝑎𝑙, B,C,O). 𝐵,𝐶 and 𝑂 rep-
resent the content of Blocked, Closed, and Open, respectively,
which dynamically change during high-level iterations. Conse-
quently, the abstract graph searched by the low-level dynamically
changes as more states are considered obstacles due to conditions
(i)-(iii). Thus, the heuristic estimations provided by the low-level
search for a state 𝑠 change across high-level iterations. As a re-
sult, the low-level search of MXA∗ can be represented as a dy-
namic heuristic that depends on Blocked, Closed, and Open,
i.e. 𝐼 = (Blocked,Closed,Open). Under this formulation, the
ℎ-value of state 𝑠 is denoted by ℎ(𝑠,Blocked,Closed,Open), or
ℎ(𝑠,B,C,O) for short.

Since the high-level search is actually A∗ that uses the values
returned by the low-level as a heuristic, it is sufficient to show that
ℎ(𝑠,B,C,O) is a PDA heuristic in order to ensure the optimality of
the solution returned by the high level (Theorem 1). We do this
next.

We begin by introducing a new property that is necessary to
prove for algorithms that their low-level search returns a PDA
heuristic. In order to prune low-level nodes using Open and Closed,
we need to ensure that once a node enters Closed, it is via the
optimal path and will thus never be reopened. Otherwise, a Closed
node𝑛 whose𝑔-value is not optimal cannot be treated as an obstacle
by the low-level because there might be a shorter path to it.

Definition 2 (OPTEX). Algorithms are said to have the opti-
mality expansion property (OPTEX) if once a node 𝑛 is expanded, it
holds that 𝑛 was discovered via an optimal path, i.e., ∀𝑛 ∈ Closed
it hold that 𝑔(𝑛) = 𝑑 (𝑠𝑡𝑎𝑟𝑡, 𝑛.𝑠).

When given a consistent heuristic, A∗ exhibits the OPTEX prop-
erty, as all nodes are expandedwith an optimal𝑔-value [2]. However,
this property can be attained even in situations where the heuristic
is inconsistent. In this context, we next prove that the high-level
search of MXA∗ possesses the OPTEX property (even though the
low-level search returns an inconsistent heuristic). Based on this ob-
servation, we will conclude that the low-level search within MXA∗

yields a PDA heuristic.

Theorem 2. The high-level search of MXA
∗
has the OPTEX prop-

erty when using the improved low-level search to obtain heuristics.

Proof. We prove the theorem by induction on the high-level
iterations. In the base case, Closed is empty, thus, the property
holds by vacuous truth. Assuming the property holds after the first
𝑘 − 1 iterations, we proceed to demonstrate its validity after the
𝑘-th iteration.

Assume by contradiction that a node 𝑛 was expanded in the 𝑘-th
iteration via a suboptimal path, i.e., 𝑔(𝑛) > 𝑑 (𝑠𝑡𝑎𝑟𝑡, 𝑛.𝑠). Let 𝑃 be an
optimal path from 𝑠𝑡𝑎𝑟𝑡 to 𝑛.𝑠 , where 𝑗 is the largest index in 𝑃 such
that 𝑝 𝑗 was expanded (a node 𝑛 𝑗 s.t. 𝑛 𝑗 .𝑠 = 𝑝 𝑗), excluding 𝑛. Conse-
quently, let node 𝑛 𝑗+1 ∈ Open where 𝑛 𝑗+1 .𝑠 = 𝑝 𝑗+1 and 𝑔(𝑛 𝑗+1) =
𝑑 (𝑠𝑡𝑎𝑟𝑡, 𝑝 𝑗+1). We assume w.l.o.g. that there is no node 𝑛𝑖 ≠ 𝑛

(𝑛𝑖 .𝑠 = 𝑝𝑖 ∈ 𝑃), where 𝑖 > 𝑗 + 1, such that 𝑛𝑖 ∈ Open and 𝑔(𝑛𝑖) ≤
𝑔(𝑛 𝑗+1) + 𝑑 (𝑝 𝑗+1, 𝑝𝑖); otherwise, we would have chosen the path
that goes to 𝑛.𝑠 through 𝑝𝑖 as 𝑃 . As a result, the nodes of all states
in 𝑃 between 𝑝 𝑗+1 and 𝑛.𝑠 do not fulfill conditions (i)-(iii), and thus
𝑑𝑙 (𝑝 𝑗+1, 𝑛.𝑠, B,C,O) ≤ 𝑑 (𝑝 𝑗+1, 𝑛.𝑠), where 𝑑𝑙 (𝑥,𝑦,B,C,O) is the dis-
tance from 𝑥 to𝑦 in the abstract graph, constructed by the low-level
search. The heuristic of 𝑝 𝑗+1 returned by the low-level search is the
cost of the shortest path from 𝑝 𝑗+1 to 𝑔𝑜𝑎𝑙 in the abstract graph,
ℎ(𝑝 𝑗+1, 𝑔𝑜𝑎𝑙, B,C,O) = 𝑑𝑙 (𝑝 𝑗+1, 𝑔𝑜𝑎𝑙, B,C,O). Similarly, the heuris-
tic of 𝑛.𝑠 is ℎ(𝑛.𝑠, 𝑔𝑜𝑎𝑙, B,C,O) = 𝑑𝑙 (𝑛.𝑠, 𝑔𝑜𝑎𝑙, B,C,O). Due to the
triangle inequality, 𝑑𝑙 (𝑝 𝑗+1, 𝑔𝑜𝑎𝑙, B,C,O) ≤ 𝑑𝑙 (𝑝 𝑗+1, 𝑛.𝑠, B,C,O) +
𝑑𝑙 (𝑛.𝑠, 𝑔𝑜𝑎𝑙, B,C,O). Thus, 𝑑𝑙 (𝑝 𝑗+1, 𝑔𝑜𝑎𝑙, B,C,O) ≤ 𝑑 (𝑝 𝑗+1, 𝑛.𝑠) +
𝑑𝑙 (𝑛.𝑠, 𝑔𝑜𝑎𝑙, B,C,O). As a result,

𝑓 (𝑛 𝑗+1) = 𝑔(𝑛 𝑗+1) + ℎ(𝑝 𝑗+1, 𝑔𝑜𝑎𝑙, B,C,O)
= 𝑑 (𝑠𝑡𝑎𝑟𝑡, 𝑝 𝑗+1) + 𝑑𝑙 (𝑝 𝑗+1, 𝑔𝑜𝑎𝑙, B,C,O)
≤ 𝑑 (𝑠𝑡𝑎𝑟𝑡, 𝑝 𝑗+1) + 𝑑 (𝑝 𝑗+1, 𝑛.𝑠) + 𝑑𝑙 (𝑛.𝑠, 𝑔𝑜𝑎𝑙, B,C,O)
= 𝑑 (𝑠𝑡𝑎𝑟𝑡, 𝑛.𝑠) + ℎ(𝑛.𝑠, 𝑔𝑜𝑎𝑙, B,C,O)
Since we assumed that 𝑛 was expanded via
a suboptimal path, 𝑔(𝑛) > 𝑑 (𝑠𝑡𝑎𝑟𝑡, 𝑛.𝑠), and thus:
< 𝑔(𝑛) + ℎ(𝑛.𝑠, 𝑔𝑜𝑎𝑙, B,C,O) = 𝑓 (𝑛)

In contradiction to 𝑛 being expanded before 𝑛 𝑗+1. □

Theorem 3. The low level of MXA
∗
returns a PDA heuristic for

the high level.

Proof. Since the OPTEX property holds, every node𝑛 ∈ Closed
has𝑔(𝑛) = 𝑑 (𝑠𝑡𝑎𝑟𝑡, 𝑛.𝑠). Let 𝑃 be an optimal solution, and let𝑛 𝑗 with
𝑛 𝑗 .𝑠 = 𝑝 𝑗 ∈ 𝑃 be the node with the largest index in 𝑃 that was ex-
panded, thus 𝑛 𝑗+1 ∈ Open. W.l.o.g., we assume that all nodes before
𝑝 𝑗 in 𝑃 were expanded; otherwise, we would consider an alternative
prefix for 𝑃 that reaches 𝑝 𝑗 . In addition, we assume that there is no
other node 𝑛𝑖 corresponding to state 𝑝𝑖 ∈ 𝑃 such that 𝑛𝑖 ∈ Open,
𝑖 > 𝑗 + 1, and 𝑔(𝑛𝑖) ≤ 𝑔(𝑛 𝑗) + 𝑑 (𝑝 𝑗 , 𝑝𝑖), otherwise, we would have
chosen 𝑃 to be the path that goes to through 𝑝𝑖 . As a result, condi-
tions (i)-(iii) are not fulfilled for the nodes of all states in 𝑃 between
𝑝 𝑗+1 and 𝑔𝑜𝑎𝑙 . Therefore, 𝑑𝑙 (𝑝 𝑗+1, 𝑔𝑜𝑎𝑙, B,C,O) ≤ 𝑑 (𝑝 𝑗+1, 𝑔𝑜𝑎𝑙).
Since 𝑑𝑙 (𝑝 𝑗+1, 𝑔𝑜𝑎𝑙, B,C,O) is the heuristic returned by the low-
level search for 𝑛 𝑗+1. 𝑛 𝑗+1 ∈ Open fulfills the requirement defined
for a PDA heuristic, and thus the low level is a PDA heuristic for
the high level. □

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1044

A∗ MXA∗+LE MXA∗+LE + CO Ratio

4

Game 0.008 333.22 144.69 0.43
Maze 0.009 1,796.37 88.91 0.05

Random 0.008 97.64 10.65 0.11
Room 0.017 126.90 33.25 0.26
City 0.016 212.20 89.05 0.42

8

Game 0.007 384.52 153.24 0.40
Maze 0.004 1,063.79 79.88 0.08

Random 0.006 69.48 4.01 0.06
Room 0.011 151.04 26.83 0.18
City 0.018 453.55 138.96 0.31

Table 2: Average number of expansions (in millions) for
MXA∗ with LE, without and with CO, on different maps. A∗’s
high-level expansions are provided in the first column for
comparison.

Since the low-level search returns a PDA heuristic and the high-
level search is simply A∗ that uses the values returned by the low-
level as a heuristic, MXA∗ is guaranteed to return an optimal solu-
tion (Theorem 1).

6.3 Experiments: Comparing Expansions
Weevaluated the average number of low-level expansions ofMXA∗+LE
with and without the pruning of Closed and Open and nodes (CO),
on the same maps and problem instances used in the experiments
presented in Table 1 and Figure 4. Table 2 presents the average
number of expansions (in millions) performed by each algorithm.
Notably, the adoption of CO yields a substantial reduction (see the
ratio column) in the number of expansions across all maps, result-
ing in an expansion ratio ranging from 0.05 (Maze) to 0.43 (Game)
in 4-connected grids and from 0.06 (Random) to 0.40 (Game) in
8-connected grids. This significant reduction shows the great ben-
efit of exploiting the information on Closed and Open, collected
during the search, for pruning nodes.

For comparison, in the first row we also provide the number
of nodes expanded by plain A∗ that only executes the high-level
search with a static heuristic but without any low-level search.
Indeed, when considering the number of expansions rather than
explorations, this table demonstrates the notable CPU overhead
induced by the new MXA∗ algorithm. MXA∗+LE +CO performed
significantly more expansions than A∗, ranging from approximately
660 times (Random) to around 21,800 times (Game). In practical
terms, this implies that if the goal is to minimize the overall runtime,
MXA∗+LE +CO will outshine A∗ in scenarios where a sensing
operation is slower than an in-memory expansion by a comparable
factor.

7 DISCUSSION ON THE DYNAMIC HEURISTIC
To stay within the focus of this paper, we exploited the notion of
dynamic heuristics by adding it into the MXA∗ algorithm. Neverthe-
less, as mentioned in Section 5, the concept of a dynamic heuristic
ℎ(𝑠, 𝐼) has broader applicability beyond minimizing exploration in
GUO. We next discuss a number of such applications which are left
as a challenge for the future.

7.1 General and Standard Graphs.
A dynamic heuristic can be defined for standard graphs (without
unknown obstacles) as ℎ(𝑠,C,O). A specific example of such a
heuristic was used by the BOXA∗ algorithm [3] on 4-connected grid
graphs. BOXA∗ constructs a rectangle encompassing Closed and
directly computes a heuristic that avoids traversing this rectangle
(without performing a low-level search). However, BOXA∗ was
not substantially efficient in terms of CPU time compared to A∗.
Effectively leveraging dynamic heuristics to substantially decrease
search times presents a challenge that we defer to future research.
This requires a wide future study on using dynamic heuristics
on more complex graphs than 4-connected grids. Specifically, this
study can be done on the following graphs:

• 8-connected grids (or any of the 2𝑛- connected family of
grids [13]) where the physical structure of the Open and
Closed lists is more complex.

• 3D grids of even higher-dimensionality grids.
• Any planner graph or map where lakes or mountains behave
as obstacles but are not part of the map, as blocked cells in
grids.

• Any general graph, even exponential graphs, such as combi-
natorial problems, where the shape of the Open and Closed
lists cannot be represented in an Euclidean space.

7.2 A* with lookahead
A* with lookahead (AL*) [15] is a hybrid of A* and depth-first search
that performs limited DFS lookaheads from the frontier of a best-
first search such as the Open list of A∗. A direct usage of a dynamic
heuristic that uses COwill be to prune away DFS nodes that are also
contained on the Closed or Open lists according to our definition
above. This might significantly reduce the running time of the
DFS phase, and might allow performing deeper DFS lookahead and
return better heuristic values.

8 CONCLUSION AND FUTUREWORK
In this paper, we proposed the MXA∗ algorithm, designed to mini-
mize exploration while searching graphs with unknown obstacles.
We showed that MXA∗ dramatically reduces exploration compared
to A∗, by avoiding blocked states in the heuristic calculation. We
also introduced the novel definition of dynamic heuristic and used
it to prove that MXA∗ can also exploit dynamic information from
the open and closed lists while maintaining its optimality. Looking
ahead, ourwork paves theway for future research to utilize dynamic
heuristics in other problem domains. Furthermore, the low-level
search introduced in this work could benefit from enhancements
through the preservation of search information between iterations,
akin to the incremental A∗ algorithm proposed by Koenig and
Likhachev [9].

ACKNOWLEDGMENTS
This work was supported by the Israel Science Foundation (ISF)
grant #909/23 awarded to Shahaf Shperberg and Ariel Felner, by
Israel’s Ministry of Innovation, Science and Technology (MOST)
grant #1001706842, awarded to Shahaf Shperberg, and by United
States-Israel Binational Science Foundation (BSF) grant #2021643
awarded to Ariel Felner.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1045

REFERENCES
[1] Chih-Chung Chou, Feng-Li Lian, and Chieh-Chih Wang. 2011. Characterizing

Indoor Environment for Robot Navigation Using Velocity Space Approach With
Region Analysis and Look-Ahead Verification. IEEE Transactions on Instrumenta-

tion and Measurement 60, 2 (2011), 442–451.
[2] Rina Dechter and Judea Pearl. 1985. Generalized Best-First Search Strategies and

the Optimality of A*. Journal of the ACM (JACM) 32, 3 (1985), 505–536.
[3] Ariel Felner, Shahaf S. Shperberg, and Hadar Buzhish. 2021. The Closed List is

an Obstacle Too. In the International Symposium on Combinatorial Search (SOCS).
121–125.

[4] Ariel Felner, Roni Stern, Sarit Kraus, Asaph Ben-Yair, and Nathan S. Netanyahu.
2004. PHA*: Finding the Shortest Path with A* in An Unknown Physical Envi-
ronment. J. Artif. Intell. Res. 21 (2004), 631–670.

[5] Guy Foux, Michael Heymann, and Alfred Marcel Bruckstein. 1993. Two-
dimensional robot navigation among unknown stationary polygonal obstacles.
IEEE Trans. Robotics Autom. 9 (1993), 96–102.

[6] Peter E. Hart, Nils J. Nilsson, and Bertram Raphael. 1968. A Formal Basis for the
Heuristic Determination of Minimum Cost Paths. IEEE Transactions on Systems

Science and Cybernetics 4(2) (1968), 100–107.
[7] Erez Karpas, Oded Betzalel, Solomon Eyal Shimony, David Tolpin, and Ariel

Felner. 2018. Rational deployment of multiple heuristics in optimal state-space
search. Artif. Intell. 256 (2018), 181–210.

[8] Erez Karpas and Carmel Domshlak. 2012. Optimal Search with Inadmissible
Heuristics. In ICAPS.

[9] Sven Koenig and Maxim Likhachev. 2001. Incremental A*. In Advances in Neural

Information Processing Systems (NeurIPS). 1539–1546.

[10] Sven Koenig, Maxim Likhachev, and David Furcy. 2004. Lifelong Planning A*.
Artificial Intelligence 155, 1 (2004), 93–146.

[11] Sven Koenig and Yury Smirnov. 1997. Sensor-based planning with the freespace
assumption. In Proceedings of International Conference on Robotics and Automation,
Vol. 4. 3540–3545.

[12] Maxim Likhachev, Dave Ferguson, Geoff Gordon, Anthony Stentz, and Sebastian
Thrun. 2008. Anytime search in dynamic graphs. Artificial Intelligence 172, 14
(2008), 1613–1643.

[13] Nicolás Rivera, Carlos Hernández, Nicolás Hormazábal, and Jorge A. Baier. 2020.
The 2ˆk Neighborhoods for Grid Path Planning. J. Artif. Intell. Res. 67 (2020),
81–113.

[14] Bar Shofer, Guy Shani, and Roni Stern. 2023. Multi Agent Path Finding under
Obstacle Uncertainty. In the International Conference on Automated Planning and

Scheduling (ICAPS). 402–410.
[15] Roni Stern, Tamar Kulberis, Ariel Felner, and Robert Holte. 2010. Using Looka-

heads with Optimal Best-First Search. In Proceedings of the Twenty-Fourth AAAI

Conference on Artificial Intelligence, Maria Fox and David Poole (Eds.). 185–190.
[16] Roni Tzvi Stern, Meir Kalech, and Ariel Felner. 2010. Searching for a k-Clique

in Unknown Graphs. In the Symposium on Combinatorial Search (SoCS), Ariel
Felner and Nathan R. Sturtevant (Eds.). 83–89.

[17] Nathan R. Sturtevant. 2012. Benchmarks for grid-based pathfinding. Computa-

tional Intelligence and AI in Games 4, 2 (2012), 144–148.
[18] Alexander Zelinsky. 1992. A mobile robot navigation exploration algorithm. IEEE

Transactions of Robotics and Automation 8, 6 (1992), 707–717.
[19] Xunyu Zhong, Jun Tian, Huosheng Hu, and Xiafu Peng. 2020. Hybrid Path

Planning Based on Safe A* Algorithm and Adaptive Window Approach for
Mobile Robot in Large-Scale Dynamic Environment. Journal of Intelligent &

Robotic Systems 99 (2020), 65–77.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1046

	Abstract
	1 Introduction
	2 Definitions and Background
	3 Solving MXSP with A*
	4 Minimize Exploration A* (MXA*)
	4.1 Lazy Exploration (LE)
	4.2 The Impact of a Tie-Breaking Rule
	4.3 Experiments: Comparing Explorations

	5 Dynamic Heuristic Function
	5.1 Formalizing Dynamic Heuristic Functions

	6 Using a Dynamic Heuristic for GUO
	6.1 Improved Low-Level Search for MXA*
	6.2 Optimality of MXA*
	6.3 Experiments: Comparing Expansions

	7 Discussion on the Dynamic Heuristic
	7.1 General and Standard Graphs.
	7.2 A* with lookahead

	8 Conclusion and Future Work
	Acknowledgments
	References

