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ABSTRACT
In this paper, we quantify the impact of manipulation using the

price of anarchy measurement and study the impact of the lexi-

cographic and the random candidate tie-breaking rules. We show

that neither dominates the other in terms of mitigating the impact

of manipulation. Specifically, we show that the random candidate

tie-breaking rule lowers the impact of manipulation in plurality

elections whereas the lexicographic tie-breaking rule lowers the

impact of manipulation in elections determined by majority judg-

ment.
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1 INTRODUCTION
Arrow’s impossibility theorem [3] and its many descendants (see

e.g. [4, 20]) tell us that to choose a voting rule is to trade off some

desirable rationality properties against others because they are not

mutually attainable. The Gibbard-Satterthwaite [17, 24], Gardenfors

[16] and related theorems tell us that every election rule that one

would consider to be reasonable is manipulable by a strategic voter.

To understand the impact of manipulations, Farquharson pro-

posed the use of voting games in order to understand outcomes

when voters behave strategically [15]. Since then, much work has

been done to understand the impact of strategic behavior. In one

stream, researchers aim to characterize the outcomes of voting

games (see e.g., [22],[13], [21]) to understand what implementa-

tions of voting rules look like. In another stream, researchers use

the computational complexity of manipulation to either design

mechanisms that are difficult to manipulate or to design mecha-

nisms where we are able to predict likely outcomes when agents

are strategic [1, 10, 12, 14].

In this paper, we focus on measuring the impact of manipulation

using the price of anarchy (PoA) [23]. We are not the first to analyze

voting games using PoA (see e.g, [2, 11, 18]). However, our work

differs from as others in that we primarily use the PoA to identify
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the impact of making small changes to a decision rule; specifically,

we use PoA to understand the impact of tie-breaking rules and

we show that (1) the tie-breaking rule can drastically change the

outcome of an election and (2) whether that change is positive

varies from voting rule to voting rule.

Another distinction of our work is the type of Nash equilibrium

refinement we use. For instance, in [11, 18], the dynamic price of
anarchy is used to evaluate plurality, veto, and Borda elections.

The dynamic price of anarchy considers only equilibria obtained

from best-response dynamics from truthful voting; this means that

if a single individual is unable to change the election, then the

election instance is not manipulable. It is straightforward to show

that with an impartial culture, that the probability that a single

voter can change the outcome of a plurality, veto, or Borda election

rapidly decays to zero and therefore we view this equilibrium as

overly restrictive. Instead, we rely on the minimal dishonesty [5]

refinement which indicates that voters prefer to be more honest if

the outcome remains unchanged.

Our Contributions:We use the PoA to analyze plurality and

majority judgment [7] elections with respect to lexicographic and

random candidate tie-breaking rules. We show that a tie-breaking

rule may impact manipulation in different voting rules in signifi-

cantly different ways.

For plurality elections, we show that while the PoA for lex-

ciographic tie-breaking is large (Theorems 3.2 and 3.5), random

candidate tie-breaking erodes any protections from manipulation

and that arbitrarily poor outcomes can be obtained (Theorems 4.1

and 4.2). In contrast, for majority judgment elections, we show that

randomized tie-breaking is less prone to manipulation by a large

margin (Theorems 3.6, 3.7, 4.3, and 4.5, and Corollary 4.4).

These results emphasize the importance of understanding rel-

atively small changes to a voting rule and demonstrates that the

price of anarchy can be used to identify these differences. Thus, we

propose that the price of anarchy be one of the metrics by which a

voting rule is accessed.

2 NOTATION AND DEFINITIONS
We consider an election with a set C = {𝑐1, ..., 𝑐𝑚} of candidates
and a set 𝑉 = {𝑣1, ..., 𝑣𝑛} voters.

Plurality is a position-based voting rule that relies on ordi-

nal preferences. Each voter 𝑣 ∈ 𝑉 has a transitive, ordinal pref-

erence list described by 𝜋𝑣 : 𝑐𝜎1
≻𝜋𝑣

𝑐𝜎2
≻𝜋𝑣

... ≻𝜋𝑣
𝑐𝜎𝑚 where

𝑐𝜎𝑖 ≻𝜋𝑣
𝑐𝜎 𝑗

indicates that 𝑣 prefers 𝑐𝜎𝑖 to 𝑐𝜎 𝑗
for all 𝑖 < 𝑗 with

respect to 𝜋𝑣 . For brevity, we will often denote 𝜋𝑣 with the vector

(𝑐𝜎1
, 𝑐𝜎2

, ..., 𝑐𝜎𝑚 ). The position of candidate 𝑐𝑖 ∈ C in the prefer-

ence list 𝜋𝑣 is 𝑝𝑜𝑠 (𝑐𝑖 , 𝜋𝑣) = |{𝑐 ∈ C : 𝑐𝑖 ≻𝜋𝑣
𝑐}| + 1, i.e., given

𝜋𝑣 = (𝑐𝜎1
, 𝑐𝜎2

, ..., 𝑐𝜎𝑚 ), 𝑝𝑜𝑠 (𝑐𝜎𝑖 , 𝜋𝑣) = 𝑖 . The full preference profile
is denoted by Π = {𝜋𝑣}𝑣∈𝑉 . The score of candidate 𝑐 with respect to
Π is 𝑆 (𝑐,Π) = |{𝑣 ∈ 𝑉 : 𝑝𝑜𝑠 (𝑐, 𝜋𝑣) = 1}|, i.e., 𝑆 (𝑐,Π) is the number
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of first place votes that candidate 𝑐 receives. The winning candidate

in a plurality election is selected from𝑀 (Π) = arg max𝑐∈C 𝑆 (𝑐,Π),
i.e., from the set of candidates that receive the most first place votes.

Majority judgment [7] is a score-based rule that relies on car-

dinal preferences. Each voter 𝑣 ∈ 𝑉 has a sincere valuation of

candidate 𝑐 given by 𝜋𝑣 (𝑐) ∈ {1, ..., 𝑢} for some 𝑢 ∈ Z>1 and voter

𝑣 prefers 𝑐𝑖 to 𝑐 𝑗 if and only if 𝜋𝑣 (𝑐𝑖 ) > 𝜋𝑣 (𝑐 𝑗 ). A voter 𝑣 may have

the same valuation for different candidates indicating indifference,

i.e., 𝜋𝑣 (𝑐𝑖 ) = 𝜋𝑣 (𝑐 𝑗 ) does not necessarily imply 𝑖 = 𝑗 . For brevity,

we often represent 𝜋𝑣 with the vector (𝜋𝑣 (𝑐1), 𝜋𝑣 (𝑐2), ..., 𝜋𝑣 (𝑐𝑚)).
We refer to the collection of scoring valuations as the preference

profile Π = {𝜋𝑣}𝑣∈𝑉 . The score for candidate 𝑐 is then given by

𝑆 (𝑐,Π) = 𝑚𝑒𝑑𝑖𝑎𝑛(∪𝑣∈𝑉 {𝜋𝑣 (𝑐)}), i.e., the median score for candi-

date 𝑐 . In the event |𝑉 | is even, and there are two median scores,

we follow the trend in [7–9, 19] of using the lower median score.

As a result if 𝑆 (𝑐,Π) = 𝑤 , then a strict majority of voters place

a value of at least 𝑤 on candidate 𝑐 . We remark that our results

can be extended to other methods of taking the median, but the

exact bound will change slightly depending on how the median is

selected. As before, the winning candidate in majority judgment

election is selected from from𝑀 (Π) = arg max𝑐∈C 𝑆 (𝑐,Π).
For both types of elections, ties are possible. In this paper, we

consider two different tie-breaking rules.

The lexicographic tie-breaking rules include a publicly known

sorted list of candidates L : 𝑐𝜎1
≻L 𝑐𝜎2

≻L ... ≻L 𝑐𝜎𝑚 and the

winning candidate is the first candidate appearing in the list with the

highest score. We use 𝑟 (Π) to denote this candidate. Formally, the

winner of the election given Π is 𝑟 (Π) = arg min𝑐∈𝑀 (Π) 𝑝𝑜𝑠 (𝑐,L).
The random candidate tie-breaking rule selects the winner

uniformly at random from the set of candidates with the highest

score. Formally, 𝑟 (Π) is the uniform distribution over𝑀 (Π).

2.1 The Voting Game
Unfortunately, voters do not necessarily reveal their true prefer-

ences and the result of an election may change due to manipulation.

For the remainder of the paper, we consider the voting game,
where voter 𝑣 has a sincere preference list/function 𝜋𝑣 over the

set of candidates C. If ties are broken lexicographically with re-

spect to the publicly known list L then, the winning candidate is

𝑟 (Π) = arg min𝑐∈𝑀 (Π) 𝑝𝑜𝑠 (𝑐,L). If ties are broken randomly, then

the outcome 𝑟 (Π) selected uniformly at random from𝑀 (Π). How-
ever, voter 𝑣 is not necessarily sincere and may submit a different 𝜋𝑣
over the set of candidates resulting in a possibly different outcome

𝑟 (Π̄). The submitted Π̄ is a Nash equilibrium if no voter can obtain

a better outcome by deviating from their submitted strategy.

In the event that ties are broken randomly, then the outcome

𝑟 (Π̄) may be determined by a set of candidates. As such, how a

voter evaluates 𝑟 (Π̄) depends on how the voter evaluates risk, e.g.,

if a voter 𝑣 has the preference list (𝑐1, 𝑐2, 𝑐3), it is unclear if 𝑣 prefers
𝑟 (Π̄) = (𝑐1, 𝑐3) or 𝑟 (Π̄′) = (𝑐2); e.g., if 𝑣 ’s utility of 𝑐𝑖 is proportional
to 𝑝𝑜𝑠 (𝑐𝑖 , 𝜋𝑣), then 𝑣 prefers 𝑟 (Π̄′) = 𝑐2 if 𝑣 is risk-averse and

prefers 𝑟 (Π̄) = (𝑐1, 𝑐3) if 𝑣 is risk-prone. In this paper, we make

no assumptions about about how voters evaluate risk – all our

results hold as long as voters are rational, i.e., 𝑣 prefers 𝑟 (Π̄) to
𝑟 (Π̄′) if 𝑟 (Π̄) has at least as high of a probability of receiving a

candidate as least as good as 𝑐 (with respect to 𝜋𝑣 ) for all 𝑐 ∈ C.

This weak assumption or rationality is consistent with standard

dominance relations in the literature used to evaluate ties, e.g., Kelly,

Gardenfors, and Leximin.

It is straightforward to show that both plurality and majority

judgment based elections have Nash equilibria. In fact, is is well-

known the set of equilibria for these games is dense; as we show

in Proposition 2.1, for any candidate 𝑐 , there is a Nash equilibrium

where 𝑐 wins regardless of the sincere preferences.

Proposition 2.1. Let Π be an arbitrarily sincere preference profile
for𝑚 candidates and 𝑛 ≥ 3 voters and let 𝑐 be an arbitrary candi-
date. Then for both plurality and majority judgment, there is a Nash
equilibrium Π̄ where candidate 𝑐 wins the election.

Proof. Without loss of generality, we show the result for 𝑐 = 𝑐1.

For plurality, let𝜋𝑣 = (𝑐1, ..., 𝑐𝑚) so that 𝑆 (𝑐, Π̄) = 𝑛 and 𝑆 (𝑐𝑖 , Π̄) =
0 for all other candidates and for all 𝑣 = 1, ..., 𝑛. Trivially, 𝑟 (Π̄) = 𝑐1

wins the election with respect to Π̄. Further, Π̄ is a Nash equilibrium:

if 𝑣 changes their preferences to 𝜋 ′𝑣 resulting in the new profile

Π̄′ = [Π̄−𝑣, 𝜋 ′𝑣], then 𝑆 (𝑐𝑖 , Π̄′) is within 1 of 𝑆 (𝑐𝑖 , Π̄) since 𝑣 con-
tributes at most one point to a candidate. As a result, 𝑆 (𝑐1, Π̄

′) ≥
𝑛 − 1 ≥ 2 > 1 ≥ 𝑆 (𝑐𝑖 , Π̄′) for all 𝑖 ≠ 1. As a result, candidate 𝑐1

still wins the election and voter 𝑣 cannot change the outcome by

deviating from 𝜋𝑣 . Thus Π̄ is a Nash equilibrium.

For majority judgment, let 𝜋𝑣 (𝑐1) = 𝑢 and let 𝜋𝑣 (𝑐𝑖 ) = 1 for all

𝑖 ≠ 1 and for all 𝑣 ∈ 𝑉 . As a result, 𝑆 (𝑐1, Π̄) = 𝑢 and 𝑆 (𝑐𝑖 , Π̄) = 1

for all 𝑖 ≠ 1 and 𝑟 (Π̄) = 𝑐1 wins the election with respect to Π̄.
Suppose voter 𝑣 instead submits 𝜋 ′𝑣 resulting in the new profile Π̄′ =
[Π̄−𝑣, 𝜋 ′𝑣]. Since 𝑛 ≥ 3, this deviation does not cause the median to

shift and 𝑆 (𝑐1, Π̄
′) = 𝑢 and 𝑆 (𝑐𝑖 , Π̄′) = 1 for all 𝑖 ≠ 1. As a result, 𝑣

cannot change the outcome and Π̄ is a Nash equilibrium. □

2.2 Minimal Dishonesty Refinement
To eliminate the spurious equilibria of Proposition 2.1, we make

use of theminimally dishonest Nash equilibrium [6]. A voter is

minimally dishonest if submitting a more sincere preference list

𝜋 ′ results in a strictly worse outcome; equivalently, a voter lies as

little as possible to receive their best possible outcome. Formally:

Definition 2.2. Given the sincere preference profile Π, a submit-

ted profile Π̄, and a function | · | that measures the distance between

two preference lists/functions, the voter 𝑣 is minimally dishonest
with respect to | · | if |𝜋 ′𝑣 − 𝜋𝑣 | < |𝜋𝑣 − 𝜋𝑣 | implies that 𝑣 prefers

the outcome 𝑟 (Π̄) to 𝑟 ( [Π̄−𝑣, 𝜋 ′𝑣]). A Nash equilibrium Π̄ is a mini-

mally dishonest Nash equilibrium with respect to | · | if all voters
are minimally dishonest.

We remark that in this setting, and in any setting where there are

a finite number of possible actions from a voter that the minimal

dishonesty is equivalent to charging an arbitrarily small cost to a

voter that is proportional to the size of their lie – proportional to

|𝜋𝑣 − 𝜋𝑣 |. Thus, in this setting, the minimal dishonest refinement is

equivalent to truth-bias with 𝜖-distorted costs [21] (see [6, Appendix
D] for the formal distinction between the two concepts).

Measuring Distance in Plurality Elections: There are two
standard methods for measuring the distance between two ordinal

lists. The Spearman’s footrule distance measures the total posi-

tional difference between two lists, while the Kendall’s tau distance
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counts the number of pairwise disparities between the two lists.

The distances are defined as follows:

𝐹 (𝜋, 𝜋) =
𝑚∑︁
𝑖=1

|𝑝𝑜𝑠𝜋 (𝑐𝑖 ) − 𝑝𝑜𝑠𝜋 (𝑐𝑖 ) |

(Spearman’s Footrule Distance)

𝐾 (𝜋, 𝜋) =
��{(𝑐𝑖 , 𝑐 𝑗 ) : 𝑝𝑜𝑠 (𝑐𝑖 , 𝜋) < 𝑝𝑜𝑠 (𝑐 𝑗 , 𝜋) 𝑏𝑢𝑡
𝑝𝑜𝑠 (𝑐𝑖 , 𝜋) > 𝑝𝑜𝑠 (𝑐 𝑗 , 𝜋)

}��
(Kendall’s Tau Distance)

Different metrics can result in different sets of minimally dishon-

est Nash equilibria (see e.g., [21]), but our main results will hold

identically for both metrics.

Measuring Dishonesty in Majority Judgment Elections:
In this setting, voter 𝑣 submit the score vector 𝜋𝑣 ∈ {1, ..., 𝑢}𝑚 .

Standard methods for measuring distance between two vectors

include both the ℓ1 and ℓ2 norm. Our results only rely on changes

to a single component of 𝜋𝑣 , i.e., our results hold for any metric

where |𝜋𝑣 − 𝜋 ′𝑣 | < |𝜋𝑣 + 𝑒𝑖 − 𝜋 ′𝑣 | when 𝜋𝑣𝑖 ≥ 𝜋 ′
𝑣𝑖
. We refer to such

metrics as component-wise norms.
The minimal dishonesty refinement removes many absurd Nash

equilibria. For instance, the equilibrium given in Proposition 2.1 is

not a minimally dishonest Nash equilibrium since no voter receives

a benefit from lying; each agent’s unique minimally dishonest best

response is to be truthful.

2.3 Price of Anarchy (PoA)
Arrow’s impossibility theorem [3] and its many descendants (see

e.g. [4, 20]) tell us that every reasonable voting game is manipulable.

In this paper, we use the price of anarchy (PoA) [23] to measure

the impact of manipulation. The PoA is an indicator of a voting

rule’s ability to provided the promised solution.

In our setting, voting rules are cast as maximizers of a “social

utility function” 𝑆 , i.e., in a plurality election, the “quality” of a

candidate is given by the number of first place votes, and in a

majority judgment election, the “quality” of a candidate is their

median score. The PoA indicates the worst-case ratio between the

social utility obtained when voters are honest and the social utility

obtained voters are strategic and minimally dishonest. Formally:

Definition 2.3. Let Π be the set of possible preference profiles

for a voting rule 𝑟 that selects a candidate that maximizes a score

𝑆 (𝑐,Π) with respect to the preferences Π ∈ Π. Let 𝑁𝐸 (Π) denote
the set of minimally dishonest Nash equilibria with respect to the

sincere Π. The Price of Anarchy (PoA) of the voting rule 𝑟 is

max

Π∈Π
max

Π̄∈𝑁𝐸 (Π)

𝐸 [𝑆𝑟 (Π)𝑐 (Π)]
𝐸 [𝑆𝑟 (Π)𝑐 (Π̄)]

i.e., the PoA for the voting mechanism 𝑟 is the worst-case ratio

between the (expected
1
) social utility when voters are sincere and

the expected social utility obtained when voters are strategic and

minimally dishonest. The expectation here is needed due to the

possible randomness in tie-breaking.

The PoA reports a voting rule’s ability to deliver its promised

results. For instance, if the PoA of a plurality election is 8/7, then it

guarantees that thewinner of an election (when agents are strategic)

1
When voters are sincere, the utility is deterministic even when the winning candidate

is selected randomly since every candidate in𝑀 (Π) has the same sincere score.

would receive at least 7/8ths asmany votes as the sincere winner, i.e.,

manipulation would have a relatively small impact on the outcome

whereas a PoA of ∞ would indicate that it is possible for someone

to win the election despite being no one’s sincerely most preferred

candidate. Like the computational complexity of manipulation [10],

it is one of many metrics we should use to evaluate the quality of

an election mechanism.

Normalized PoA: The PoA as introduced, is not a fine enough

measure to discriminate among scenarios with an unbounded PoA.

For example, suppose that the sincere winner receives 40% of the

votes in one plurality election and receives 20% of the votes in

another. Suppose in both elections there is a strategic equilibrium

in which the winner is no voter’s top choice. The PoA is equally bad

– infinity – in both elections, yet we might wish it to be measured

as worse in the first election.

Another potential shortcoming of the PoA is that its value can

be greatly altered by changing a score’s scale. For instance, in

a plurality election it is possible for a winning candidate in the

strategic voting game to be no voter’s first choice. The PoA can be

1/0 = ∞. Create a new decision mechanism, plurality+, where a

candidate receives 2 points for being most favored by a voter, and

1 point from the voter otherwise. Plurality and plurality+ always

yield the same outcome, yet they have significantly different prices

of anarchy. With respect to plurality+, every candidate receives

between 𝑛 and 2𝑛 votes and the PoA is at most 2.

To address both of these issues, we also normalize the PoA so

that its value is at most𝑚 for all voting mechanisms. We apply an

affine transformation to the scoring function such that each candi-

date receives at least 1 and at most𝑚 points. While PoA without

normalization gives a pure measure of how much a voting rule can

be manipulated, we believe that normalization is appropriate for

comparing prices of anarchy of different mechanisms. For example,

plurality and plurality+ have the same PoA after normalization.

3 LEXICOGRAPHIC TIE-BREAKING
We begin by studying the PoA for both plurality and majority judg-

ment using a lexicographic tie-breaking rule. We show that both

rules are heavily impacted by manipulation when using lexico-

graphic tie-breaking.

3.1 Plurality
We first show that it is possible for someone to win a plurality

election despite not receiving any first place votes implying the

PoA for plurality is ∞.

Lemma 3.1. Suppose ties in a plurality election are broken lex-
icographically. There exists a Π and a minimally dishonest Nash
equilibrium (with respect to the Spearman’s footrule and Kendall’s
tau distance) Π̄ where 𝑆 (𝑟 (Π̄),Π) = 0 – where the winning candidate
would receive no votes with respect to the sincere Π.

Proof. Let |𝑉 | = 3𝑘−1 for an arbitrary 𝑘 ∈ Z≥2. Suppose the tie-

breaking list L is such that 𝑐 ≻L 𝑐2 for all 𝑐 ≠ 𝑐2 – 𝑐2 can only win

the election if 𝑐2 uniquely receives themost votes.We describe 3 sets

of voter preferences, 𝑉1,𝑉2, and 𝑉3 where |𝑉1 | = 𝑘 − 2, |𝑉2 | = 𝑘 + 1

and |𝑉3 | = 𝑘 :
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𝑣 ∈ 𝑉1 : 𝜋𝑣 = (𝑐1, ..., 𝑐𝑚), 𝜋𝑣 = 𝜋𝑣 (honest)

𝑣 ∈ 𝑉2 : 𝜋𝑣 = (𝑐1, ..., 𝑐𝑚), 𝜋𝑣 = (𝑐2, 𝑐1, 𝑐3, 𝑐4, ..., 𝑐𝑚)
𝑣 ∈ 𝑉3 : 𝜋𝑣 = (𝑐3, 𝑐4, ..., 𝑐𝑚, 𝑐1, 𝑐2), 𝜋𝑣 = 𝜋𝑣 (honest)

With respect to the sincere preferences, candidate 𝑐1 receives

𝑆 (𝑐1,Π) = 2𝑘 − 1 points, candidate 𝑐3 receives 𝑆 (𝑐3,Π) = 𝑘 points

and all other candidates receive 0 points implying 𝑟 (Π) = 𝑐1 would

win the election if everyone was sincere.

However, with respect to the submitted preferences, candidate

𝑐1 receives 𝑆 (𝑐1, Π̄) = 𝑘 − 2 points, candidate 𝑐2 receives 𝑆 (𝑐2, Π̄) =
𝑘 + 1 points, candidate 𝑐3 receives 𝑆 (𝑐3, Π̄) = 𝑘 points, and all

other candidates receive 0 points implying that 𝑟 (Π̄) = 𝑐2 wins the

election with respect to the submitted Π̄. We now show that each

voter is submitting a minimally dishonest best response.

First, consider voter 𝑣 ∈ 𝑉1. The voter is honest and therefore

minimally dishonest. Further, voter 𝑣 is submitting a best response:

Suppose voter 𝑣 submits 𝜋 ′ resulting in the new profile Π̄′ =

[Π̄−𝑣, 𝜋 ′𝑣]. If voter 𝑣 submits any list with 𝑐1 first, then 𝑆 (𝑐𝑖 , Π̄) =
𝑆 (𝑐𝑖 , Π̄′) and the result of the election does not change. Next, sup-

pose 𝑣 lists 𝑐𝑖 first where 𝑖 ≠ 1. Then 𝑆 (𝑐1, Π̄
′) = 𝑆 (𝑐1, Π̄)−1 = 𝑘−3,

𝑆 (𝑐𝑖 , Π̄′) = 𝑆 (𝑐𝑖 , Π̄) + 1 and 𝑆 (𝑐 𝑗 , Π̄′) = 𝑆 (𝑐 𝑗 , Π̄) for 𝑗 ∉ {1, 𝑖}. If
𝑖 = 3, then 𝑆 (𝑐2, Π̄

′) = 𝑆 (𝑐3, Π̄
′) resulting in 𝑟 (Π̄′) = 𝑐3 winning

the election due to the tie-breaking rule, a strictly worse outcome

for voter 𝑣 . If 𝑖 ∉ {1, 3}, 𝑆 (𝑐2, Π̄
′) ≥ 𝑘 + 1 and 𝑆 (𝑐 𝑗 , Π̄′) ≤ 𝑘 for

all 𝑗 ≠ 2 resulting in the same outcome (𝑟 (Π̄′) = 𝑐2). In all cases,

voter 𝑣 cannot alter their preferences to receive a better outcome

implying 𝑣 is providing a minimally dishonest best response.

Next, consider 𝑣 ∈ 𝑉2. We first show that 𝑣 is minimally dishonest.

The only preference list that is more sincere than 𝜋𝑣 , with respect

to either the Spearman’s footrule distance or the Kendall’s tau

distance, is the honest 𝜋 ′𝑣 = 𝜋𝑣 . If voter 𝑣 is honest, resulting in the

new profile Π̄′ = [Π̄−𝑣, 𝜋 ′𝑣], then 𝑆 (𝑐1, Π̄
′) = 𝑆 (𝑐1, Π̄) + 1 = 𝑘 − 1,

𝑆 (𝑐2, Π̄
′) = 𝑆 (𝑐2, Π̄) − 1 = 𝑘 , and 𝑆 (𝑐 𝑗 , Π̄′) = 𝑆 (𝑐 𝑗 , Π̄) for 𝑗 ∉ {1, 2}.

In particular, 𝑆 (𝑐3, Π̄
′) = 𝑆 (𝑐2, Π̄

′) = 𝑘 causing 𝑟 (Π̄′) = 𝑐3 to win

due to the tie-breaking rule, a strictly worse outcome for 𝑣 implying

that 𝑣 is minimally dishonest. The argument that 𝑣 ∈ 𝑉2 is providing

a best response is identical to the argument for 𝑣 ∈ 𝑉1; by altering

their preferences, 𝑣 can only cause 𝑐3 or 𝑐2 to win, neither of which

are better than the current outcome 𝑐2. Thus, 𝑣 ∈ 𝑉2 is providing a

minimally dishonest best response.

Finally, consider 𝑣 ∈ 𝑉3. Voter 𝑣 is honest and thereforeminimally

dishonest. Voter 𝑣 cannot change the election result; Suppose 𝑣

submits 𝜋 ′𝑣 resulting in the profile Π̄′ = [Π̄−𝑣, 𝜋 ′𝑣]. Since 𝑣 currently
assigns 1 point to candidate 𝑐3, 𝑣 can cause 𝑐3’s score to decrease

by 1 and the score of exactly one other candidate to increase 1. As

a result, regardless of 𝜋 ′𝑣 , 𝑆 (𝑐2, Π̄
′) ≥ 𝑆 (𝑐2, Π̄) = 𝑘 + 1, 𝑆 (𝑐3, Π̄

′) ≤
𝑆 (𝑐3, Π̄) = 𝑘 , and 𝑆 (𝑐 𝑗 , Π̄′) ≤ 𝑆 (𝑐 𝑗 , Π̄) + 1 = 1 for 𝑗 ∉ {2, 3}. As a
result 𝑟 (Π̄′) = 𝑐2 and voter 𝑣 is providing a minimally dishonest

best response which completes the proof of the lemma. □

Theorem 3.2. The PoA for plurality voting with lexicographic
tie-breaking is∞ for both the Spearman’s footrule distance and the
Kendall’s tau distance.

Proof. The sincere preferences in Lemma 3.1 is such that if ev-

eryonewas honest then the sincerewinnerwould receive 𝑆 (𝑟 (Π),Π) =
2𝑘 − 1 votes while the minimally dishonest Nash equilibrium is

such that 𝑆 (𝑟 (Π̄),Π) = 0 resulting in a PoA of ∞. □

3.1.1 Normalized PoA for Plurality. The result of Theorem 3.2 sug-

gests that arbitrarily poor outcomes can be obtained, which is true

in the sense that someone no one sincerely prefers could win the

election. However, the proof itself suggests that for this to occur,

there cannot be a unanimous winner when individuals are sincere.

To capture a finer measure of the impact of manipulation, we

consider the normalized PoA where candidate 𝑐 receives 𝑚
𝑛 points

from a voter that lists 𝑐 as their favorite candidate and 1

𝑛 from all

other voters so that each candidate receives between𝑚 and 1 point.

While the outcome can still be poor, we show that the normalized

PoA is at most
2𝑚+1

3
, implying that if the winner with respect

to an equilibrium Π̄ sincerely receives zero votes (a normalized

score of 1, then the sincere winner can have a normalized score of

at most
2𝑚+1

3
implying the sincere winner would receive at most

𝑛 (2𝑚+1)
3𝑚 = 2𝑛

3
+ 𝑛

3𝑚 ≤ 7𝑛
9
votes for elections with𝑚 ≥ 3 candidates.

Prior to establishing a result, we give a partial characterization

of minimally dishonest Nash equilibria. Specifically, if the PoA is

more than one, then the winning candidate wins by at most one

vote and every voter will vote either for their favorite candidate or

the candidate that wins the election.

Lemma 3.3. If Π̄ is a minimally dishonest Nash equilibrium (with
respect to Spearman’s footrule or Kendall’s tau distance) for a plurality
election with lexicographic tie-breaking where 𝑟 (Π̄) ≠ 𝑟 (Π), then
there is some candidate 𝑐 ≠ 𝑟 (Π̄) such that 𝑆 (𝑐, Π̄) ≥ 𝑆 (𝑟 (Π̄), Π̄) − 1,
i.e., 𝑟 (Π̄) wins by at most one vote.

Proof. For contradiction, suppose that 𝑆 (𝑟 (Π̄), Π̄) ≥ 𝑟 (𝑐, Π̄) − 2

for all 𝑐 ≠ 𝑟 (Π̄). Since 𝑟 (Π̄) ≠ 𝑟 (Π), there must exist a voter 𝑣

with a most preferred candidate 𝑐 ≠ 𝑟 (Π̄) where 𝑝𝑜𝑠 (𝑐, 𝜋𝑣) = 1 but

𝑝𝑜𝑠 (𝑐, 𝜋𝑣) > 1 since otherwise 𝑆 (𝑐′,Π) ≤ 𝑆 (𝑐′, Π̄) for all 𝑐′ ∈ C
implying 𝑟 (Π̄) does not win the election, a contradiction.

Suppose voter 𝑣 instead submits the honest 𝜋𝑣 resulting in the

Π̄′ = [Π̄−𝑣, 𝜋𝑣]; 𝜋𝑣 is more honest with respect to both distances.

Let 𝑐 be such that 𝑝𝑜𝑠 (𝑐, 𝜋𝑣) = 1. Since only 𝑐 receives a point from

𝑣 with respect to 𝜋𝑣 , only 𝑐’s score increases while the score of all

other candidates decreases or stays the same. As a result,

𝑆 (𝑐, Π̄′) = 𝑆 (𝑐, Π̄) + 1 ≤ 𝑆 (𝑟 (Π̄), Π̄) − 1

𝑆 (𝑟 (Π̄), Π̄′) ≥ 𝑆 (𝑟 (Π̄), Π̄) − 1

𝑆 (𝑐′, Π̄′) ≤ 𝑆 (𝑐′, Π̄) ≤ 𝑆 (𝑟 (Π̄), Π̄) − 1 ∀𝑐′ ∉ {𝑐, 𝑟 (Π̄)}
implying either 𝑀 (Π̄) = {𝑟 (Π̄)} (𝑟 (Π̄) still wins the election), or
𝑀 (Π̄) = {𝑐, 𝑟 (Π̄)} (there is a tie between 𝑐 and 𝑟 (Π̄) with respect to

Π̄′
). If 𝑟 (Π̄′) = 𝑟 (Π̄), then we contradict minimal dishonesty since

𝑣 is more honest. If 𝑟 (Π̄′) = 𝑐 , then we contradict the equilibrium

property since, by definition, 𝑐 ≻𝜋𝑣
𝑟 (Π̄) and 𝑣 can submit 𝜋𝑣

to obtain a better outcome. In both cases, Π̄ is not a minimally

dishonest Nash equilibrium, a contradiction. □

Lemma 3.4. Let 𝑐 be such that 𝑝𝑜𝑠 (𝑐, 𝜋𝑣) = 1. If Π̄ is a minimally
dishonest Nash equilibrium (with respect to Spearman’s footrule or
Kendall’s tau distance) for a plurality election with lexicographic tie-
breaking, then either (1) 𝑝𝑜𝑠 (𝑐, 𝜋𝑣) = 1 or (2) 𝑝𝑜𝑠 (𝑟 (Π̄), 𝜋𝑣) = 1, i.e.,
𝑣 votes for either their favorite candidate or the winning candidate.

Proof. Let L be the list used for lexicographic tie-breaking and

suppose without loss of generality that 𝑟 (Π̄) = 𝑐2 wins the election.

For contradiction, suppose 𝑐𝑖 ∉ {𝑐2, 𝑐} is such that 𝑝𝑜𝑠 (𝑐 𝑗 , 𝜋𝑣) = 1.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

108



Suppose instead 𝑣 submits the honest 𝜋𝑣 resulting in Π̄
′ = [Π̄−𝑣, 𝜋𝑣].

As in the proof of Lemma 3.3, only the score of 𝑐 𝑗 and 𝑐 change and,

as a result, 𝑀 (Π̄′) ⊆ 𝑀 (Π̄) \ {𝑐 𝑗 } ∪ {𝑐}. Since 𝑟 (Π̄) = 𝑐2, the tie-

breaking rule is such that 𝑐2 ≻L 𝑐′ for all 𝑐′ ∈ 𝑀 (Π̄) and therefore

𝑐2 ≻L 𝑐′ for all 𝑐′ ∈ 𝑀 (Π̄′) \ {𝑐}. As a result, 𝑟 (Π̄′) ∈ {𝑐2, 𝑐}. As in
Lemma 3.3, in both cases, the voter 𝑣 has not submitted a minimally

dishonest best response, a contradiction. □

With this partial characterization, we show that the normalized

PoA is
2𝑚+1

3
.

Theorem 3.5. The normalized PoA for plurality voting with lexico-
graphic tie-breaking is 2𝑚+1

3
for both the Spearman’s footrule distance

and the Kendall’s tau distance.

Proof. For the preferences given in Lemma 3.1, the normalized

score of 𝑐1 is 𝑆 (𝑐1,Π) = (2𝑘 − 1) · 𝑚𝑛 + 𝑘 · 1

𝑛 =
(2𝑚+1) ·𝑘−𝑚

3𝑘−1
and

the normalized score of 𝑐2 is 𝑆 (𝑐2,Π) = 1. The proof of Lemma

3.1 shows there is a minimally dishonest Nash equilibrium where

𝑐2 wins implying the normalized PoA is
(2𝑚+1) ·𝑘−𝑚

3𝑘−1
→ 2𝑚+1

3
as

𝑘 → ∞. It remains to show the PoA is at most
2𝑚+1

3
.

Consider any Π and a corresponding minimally dishonest Nash

equilibrium Π̄. The PoA is 1 when when 𝑟 (Π) = 𝑟 (Π̄). Next we
consider, without loss of generality, when 𝑐1 = 𝑟 (Π) ≠ 𝑟 (Π̄) = 𝑐2

and break the problem into two cases. In the first case, 𝑐1 has one

of the top two scores (possibly tied) with respect to the submitted

Π̄. In the second case, 𝑐1 does not have a top two score and there is

a third candidate 𝑐3 that has a top two score.

Suppose first that 𝑐1 has a top two score. By Lemma 3.3, 𝑆 (𝑐1, Π̄) ≥
𝑆 (𝑐2, Π̄) − 1. Let 𝐴1 := {𝑣 ∈ 𝑉 : 𝑝𝑜𝑠 (𝑐1, 𝜋𝑣) = 1} be the set of voters
that sincerely most prefer 𝑐1 and let𝐴2 := {𝑣 ∈ 𝑉 : 𝑝𝑜𝑠 (𝑐2, 𝜋𝑣) = 1}
be the set of voters that report that they most prefer 𝑐2. We claim

𝐴1∩𝐴2 = ∅. For contradiction, suppose that 𝑣 ∈ 𝐴1∩𝐴2 and suppose

𝑣 submits the honest 𝜋𝑣 resulting in Π̄′ = [Π̄−𝑣, 𝜋𝑣]. As a result,
𝑆 (𝑐1, Π̄

′) = 𝑆 (𝑐1, Π̄) + 1 ≥ 𝑆 (𝑐2, Π̄) = 𝑆 (𝑐2, Π̄
′) + 1. Further, since 𝑐1

has a top two score with respect to Π̄, 𝑆 (𝑐1, Π̄
′) = 𝑆 (𝑐1, Π̄) + 1 ≥

𝑆 (𝑐𝑖 , Π̄) + 1 for all 𝑖 ∉ {1, 2} implying 𝑟 (Π̄′) = 𝑐1, contradicting that

Π̄ is an equilibrium. Therefore 𝐴1 ∩𝐴2 = ∅.
Combining𝐴1∩𝐴2 = ∅with Lemma 3.4 implies that for all 𝑣 ∈ 𝐴1

truthfully reveals that 𝑝𝑜𝑠 (𝑐1, 𝜋𝑣) = 𝑝𝑜𝑠 (𝑐1, 𝜋𝑣) and 𝑆 (𝑐1, Π̄) = |𝐴1 |.
By definition of𝐴2, 𝑆 (𝑐2, Π̄) = |𝐴2 | and |𝐴2 | ≥ |𝐴1 | since 𝑟 (Π̄) = 𝑐2.

Since 𝐴1 ∩ 𝐴2 = ∅, |𝐴1 | + |𝐴2 | ≤ |𝑉 | = 𝑛 and |𝐴1 | ≤ 𝑛/2. Finally,

observe that 𝑆 (𝑐1,Π) = |𝐴1 | · 𝑚
𝑛 + (𝑛 − |𝐴1 |) and 𝑆 (𝑐2,Π) ≥ 1.

Combining everything, the normalized PoA in this case is at most

|𝐴1 | · 𝑚𝑛 + (𝑛 − |𝐴1 |) · 1

𝑛

1

≤ 𝑚 + 1

2

<
2𝑚 + 1

3

.

Next, suppose that that 𝑐3 has a top two score but 𝑐1 does not.
We will generate several inequalities, apply weights to them, and

combine them to yield an upper bound on the PoA. As in the pre-

vious case, let 𝐴𝑖 := {𝑣 ∈ 𝑉 : 𝑝𝑜𝑠 (𝑐𝑖 , 𝜋𝑣) = 1} and let 𝐴𝑖 :=

{𝑣 ∈ 𝑉 : 𝑝𝑜𝑠 (𝑐𝑖 , 𝜋𝑣) = 1}. With this notation 𝑆 (𝑐𝑖 ,Π) = |𝐴𝑖 | and
𝑆 (𝑐𝑖 , Π̄) = |𝐴𝑖 |.

Unlike the previous case, 𝐴1 ∩𝐴2 is not necessarily empty. By

Lemma 3.4, for 𝑣 ∈ 𝐴1, 𝑣 ∈ 𝐴1 ∪ 𝐴2 since 𝑟 (Π̄) = 𝑐2 implying

|𝐴1 | = |𝐴1 |+ |𝐴1∩𝐴2 |. Since there are𝑛 voters,𝑛 ≥ |𝐴1 |+ |𝐴2 |+ |𝐴3 |.

Combining both expression yields

2 ·
(
|𝐴1 | − |𝐴1 ∩𝐴2 | + |𝐴2 | + |𝐴3 |

)
≤ 2 · 𝑛

where the use of the multiplier 2 will become apparent later.

Next, since 𝑐3 is in second place and by Lemma 3.3, 𝑐3’s reported

score is within 1 of 𝑐2’s reported score, |𝐴3 | ≥ |𝐴2 | − 1 yielding

|𝐴2 | − |𝐴3 | ≤ 1.

Next, by definition, |𝐴2 | ≥ |𝐴1 ∩𝐴2 | yielding

3 · ( |𝐴1 ∩𝐴2 | − |𝐴2 |) ≤ 3 · 0.

Next, since 𝑐3 is a top two scorer and 𝑐1 is not, |𝐴3 | ≥ |𝐴1 | + 1 =

|𝐴1 | − |𝐴1 ∩𝐴2 | + 1 yielding

|𝐴1 | − |𝐴1 ∩𝐴2 | − |𝐴3 | ≤ −1.

Adding together the four inequalities yields 3 · |𝐴1 | ≤ 2𝑛 implying

|𝐴1 | ≤ 2𝑛
3
. Following identically to the first case, the normalized

PoA is at most

|𝐴1 | · 𝑚𝑛 + (𝑛 − |𝐴1 |) · 1

𝑛

1

≤ 2𝑚 + 1

3

.

□

3.2 Majority Judgment
Next, we study the impact of manipulation on elections determined

by majority judgment. Since the score of candidate 𝑐 satisfies 1 ≤
𝑆 (𝑐,Π) ≤ 𝑢, the PoA is trivially at most𝑢. We begin by showing that

this trivial bound is nearly tight – like plurality elections, majority

judgment can be significantly impacted by manipulation.

Theorem 3.6. The PoA for majority judgment with lexicographic
tie-breaking is 𝑢 − 1 for any component-wise norm.

Proof. We begin by showing an upper bound of 𝑢 − 1. We first

claim that if 𝜋𝑣 (𝑐) = 𝑢, then 𝜋𝑣 (𝑐) = 𝑢 at every minimally dishonest

Nash equilibrium. Suppose for contradiction, this is not the case.

Then for any component-wise norm, 𝑣 can be more honest by

submitting 𝜋 ′𝑣 (𝑐) = 𝜋𝑣 (𝑐) = 𝑢 and 𝜋 ′𝑣 (𝑐′) = 𝜋 (𝑐′) for all 𝑐′ ≠ 𝑐

resulting in the new profile Π̄′ = [Π̄−𝑣, 𝜋 ′𝑣]. Since a candidate’s

score is determined by their median score, 𝑆 (𝑐′, Π̄′) = 𝑆 (𝑐′, Π̄) for
𝑐′ ≠ 𝑐 and 𝑆 (𝑐, Π̄′) ≥ 𝑆 (𝑐, Π̄). As a result, the set of candidates

with the highest median score is𝑀 (Π̄′) ⊆ 𝑀 (Π̄) ∪ {𝑐}. As shown
in the proof of Lemma 3.3, for lexicographic tie-breaking rules,

𝑟 (Π̄′) ∈ {𝑟 (Π̄)} ∪ {𝑐}. Since 𝜋𝑣 (𝑐) = 𝑢, 𝑣 (weakly) prefers 𝑐 to 𝑟 (Π̄)
and 𝑐 obtains at least as good of a result by submitting the more

honest 𝜋 ′𝑣 , contradicting that 𝑣 is minimally dishonest. As a result,

𝜋𝑣 (𝑐) = 𝑢, then 𝜋𝑣 (𝑐) = 𝑢.
Through a nearly identical argument, we claim if 𝜋𝑣 (𝑐) = 1,

then 𝜋𝑣 (𝑐) = 1. If not, 𝑣 can submit the more honest 𝜋 ′𝑣 where

𝜋 ′𝑣 (𝑐) = 𝜋𝑣 (𝑐) = 1 and 𝜋 ′𝑣 (𝑐′) = 𝜋𝑣 (𝑐′) for all other 𝑐′ resulting in
Π̄′ = [Π̄−𝑣, 𝜋 ′𝑣]. Following identically to the previous case, either

𝑀 (Π̄′) = 𝑀 (Π̄) or𝑀 (Π̄′) = 𝑀 (Π̄) \ {𝑐}. If 𝑟 (Π̄′) = 𝑟 (Π̄), then 𝑣 is
more honest while obtaining the same outcome, a contradiction. If

𝑟 (Π̄′) ≠ 𝑟 (Π̄), then 𝑟 (Π̄) = 𝑐 since the outcome of a lexicographic

tie-breaking can only change if 𝑀 (·) changes. Voter 𝑣 (weakly)

prefers all other candidates to 𝑐 = 𝑟 (Π̄) and therefore obtains

at least as good an outcome, once again contradicting minimal

dishonest. As a result, if 𝜋𝑣 (𝑐) = 1, then 𝜋𝑣 (𝑐) = 1.
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We now prove a PoA of 𝑢 − 1. First, suppose there is a candidate

𝑟 (Π) = 𝑐 where 𝑆 (𝑐,Π) = 𝑢, i.e., where amajority of voters sincerely

assign a utility of 𝑢 to 𝑐 . By the first claim, these voters are truthful

about 𝑐 and 𝑆 (𝑐, Π̄) = 𝑢. Symmetrically, if there is a candidate 𝑐′

where 𝑆 (𝑐′,Π) = 1, then the second claim implies 𝑆 (𝑐′, Π̄) = 1

and such a voter cannot defeat 𝑐 even when voters are strategic.

Therefore the equilibrium Π̄ is such that 𝑆 (𝑟 (Π̄), 𝜋) ≥ 2 yielding a

PoA of at most
𝑢
2
.

Next, suppose 𝑆 (𝑟 (Π),Π) ≤ 𝑢−1. For every candidate, 𝑆 (𝑐,Π) ≥
1 yielding a trivial PoA of 𝑢 − 1 ≥ 𝑢/2. In the following example,

we show the bound of 𝑢 − 1 is tight.

Suppose our tie-breaking rule L is such that 𝑐1 ≻L 𝑐 for all

𝑐 ≠ 𝑐1. Consider three disjoint sets of voters𝑉1,𝑉2, and𝑉3 with the

following sincere and submitted preferences.

𝑣 ∈ 𝑉1 : 𝜋𝑣 (𝑐1) = 𝜋𝑣 (𝑐1) = 1,

𝜋𝑣 (𝑐𝑖 ) = 𝜋𝑣 (𝑐𝑖 ) = 𝑢 for 𝑖 ≠ 1 (honest)

𝑣 ∈ 𝑉2 : 𝜋𝑣 (𝑐1) = 𝜋𝑣 (𝑐1) = 1,

𝜋𝑣 (𝑐𝑖 ) = 𝜋𝑣 (𝑐𝑖 ) = 1 for 𝑖 ≠ 1 (honest)

𝑣 = 𝑉3 : 𝜋𝑣 (𝑐1) = 𝜋𝑣 (𝑐1) = 𝑢,
𝜋𝑣 (𝑐𝑖 ) = 𝑢 − 1 but 𝜋𝑣 (𝑐𝑖 ) = 1 for 𝑖 ≠ 1

where |𝑉1 | = 𝑘, |𝑉2 | = 𝑘 and |𝑉3 | = 1. With respect to Π, some

candidate 𝑐𝑖 ≠ 𝑐1 wins the election since 𝑆 (𝑐𝑖 ,Π) = 𝑢 − 1 for

𝑖 ≠ 1 and 𝑆 (𝑐1,Π) = 1. However, with respect to the submitted

preferences, 𝑆 (𝑐 𝑗 , Π̄) = 1 for all 𝑗 and 𝑟 (Π̄) = 𝑐1 since 𝑐1 ≻L 𝑐𝑖 for

all 𝑖 ≠ 1. Thus, the PoA is𝑢−1 is all agents are minimally dishonest.

Voters in 𝑉1 and 𝑉2 are honest. Voters in 𝑉1 cannot change the

outcome of the election at all and therefore are minimally dishonest.

Voters in 𝑉2 can change the election by increasing their reported

utility for 𝑐𝑖 ≠ 𝑐1, however, these voters are indifferent between all

candidates and therefore providing a best response.

Finally, voter 𝑣 ∈ 𝑉3 can only become more honest by increasing

their reported valuation for 𝑐𝑖 ≠ 𝑐1. However, doing so raises the

median score of 𝑐𝑖 causing 𝑐𝑖 to win the election, a strictly worse

outcome. As a result, 𝑣 is providing a minimally dishonest best

response. Thus, the PoA of majority judgment is 𝑢 − 1. □

3.3 Normalized PoA for Majority judgment
If voter 𝑣 ’s score for candidate 𝑐 is 𝑥 , then 𝑣 ’s normalized score for

𝑐 is 𝑚−1

𝑢−1
(𝑥 − 1) + 1. After the transformation, the maximum score

for any candidate is𝑚 and the minimum score for any candidate is

1. The bound for the PoA is obtained by updating Theorem 3.6.

Theorem 3.7. The normalized PoA for majority judgment with
lexicographic tie-breaking is (𝑢−2)𝑚+1

𝑢−1
for any component-wise norm.

Proof. The proof follows identically to Theorem 3.6. For the

upper bound, we broke the problem in two cases: In the first case,

the largest score a candidate can receive is𝑚 while the 2nd lowest

score a candidate can receive is
𝑚−1

𝑢−1
+ 1 yielding a ratio of

𝑚

𝑚−1

𝑢−1
+ 1

=
𝑢 (𝑚 − 1)
𝑚 + 𝑢 .

In the second case, the largest score a candidate can receive is

𝑚−1

𝑢−1
(𝑢 − 2) + 1 while the lowest score a candidate can receive is 1

yielding a ratio of

𝑚 − 1

𝑢 − 1

(𝑢 − 2) + 1 =
(𝑢 − 2)𝑚 + 1

𝑢 − 1

.

To see that the second bound is larger, it suffices to show

𝑢 (𝑚 − 1)
𝑚 + 𝑢 ≤ (𝑢 − 2)𝑚

𝑢 − 1

⇔(𝑢 − 1)2 ≤ (𝑢 − 2) (𝑢 +𝑚)
⇔(𝑢 − 1)2 ≤ (𝑢 − 2) (𝑢 +𝑚)
⇔1 ≤ (𝑢 − 2)𝑚

which is true for all 𝑢 ≥ 3. For 𝑢 = 2, both bounds evaluate to

1. Thus, the normalized PoA is at most
(𝑢−2)𝑚+1

𝑢−1
. The instance

provided in the proof of Theorem 3.6 yields the second bound

demonstrating that the bound is tight. □

3.4 Discussion of Lexicographic Rules
Both plurality and majority judgment have near worst-case prices

of anarchy and are significantly impacted by manipulation. As

discussed in Section 2.3, we recommend using the normalized PoA

when comparing two dissimilar voting rules.

The normalized PoA of majority judgment is
(𝑢−2)𝑚+1

𝑢−1
→𝑚 as

𝑢 → ∞, i.e., as voters are allowed to provide more granular rating

of candidates, the PoA can approach the worst-case possible value

of𝑚. The normalized PoA of plurality on the other hand is
2𝑚+1

3
,

and therefore arbitrarily bad outcomes are avoided. But neither rule

is able to offer meaningful guarantees that a solution will be close

to the intended outcome.

However, the PoA of majority judgment can be artificially low-

ered, e.g., as mentioned in the proof of Theorem 3.7, the normalized

PoA becomes 1 when 𝑢 = 2. Further, it is straightforward to show

the normalized PoA of majority judgment is strictly less than the

normalized PoA if and only if 𝑢 < 4. This lower PoA is obtained

by unnaturally removing choice from voters, i.e., if we force voters

to all report identical values for candidates, then it appears like

manipulation has no impact on the outcome because all candidates

look the same. Instead, in the next section, we look for more natural

way to lower the impact of manipulation.

4 RANDOM CANDIDATE TIE-BREAKING
In this section, we consider plurality and majority judgment elec-

tions where ties are broken uniformly at random. Formally, the

outcome 𝑟 (Π̄) is the uniform distribution over𝑀 (Π̄), the set of can-
didates with the largest score. As defined in Section 2.3, we examine

the expected PoA, i.e., the PoA for a risk-neutral society. Our results

hold for all rational voters; we make no additional assumptions on

how voters evaluate distributions of candidates.

For plurality, we show that that random candidate tie-breaking

actually increases the PoA – the worst-case impact of manipula-

tion. In contrast, we show that the random candidate tie-breaking

decreases the PoA for majority judgment.

4.1 Plurality
In this section, we show that the random candidate tie-breaking

rule negatively impacts the PoA for plurality elections.
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Theorem 4.1. The PoA for plurality voting with the random can-
didate tie-breaking rule is∞ for both the Spearman’s footrule distance
and the Kendall’s tau distance.

The proof of Theorem 4.1 follows identically to Theorem 3.2; in

the proof of Theorem 3.2, the tie-breaking rule is never invoked.

Unlike plurality elections with lexicographic tie-breaking, we

show that a candidate with no sincere votes can win even when all

voters sincerely agree on which candidate should win the election.

This implies that the normalized PoA is 𝑚 – which is the worst

any election mechanism can be; in the setting of plurality elec-

tions, the random candidate tie-breaking rule completely erodes

any protections against manipulation.

Theorem 4.2. The normalized PoA for plurality voting with the
random candidate tie-breaking rule is 𝑚 for both the Spearman’s
footrule distance and the Kendall’s tau distance.

Proof. By definition, the normalized PoA is at most𝑚 for any

voting rule and it remains to provide a lower bound. We consider

two sets of voters:

𝑣 ∈ 𝑉1 : 𝜋𝑣 = (𝑐𝑚, 𝑐1, 𝑐2, 𝑐3, ..., 𝑐𝑚−1),
𝜋𝑣 = (𝑐1, 𝑐𝑚, 𝑐2, 𝑐3, ..., 𝑐𝑚−1)

𝑣 ∈ 𝑉2 : 𝜋𝑣 = (𝑐𝑚, 𝑐𝑚−1, 𝑐𝑚−2, 𝑐𝑚−3, ..., 𝑐1),
𝜋𝑣 = (𝑐𝑚−1, 𝑐𝑚, 𝑐𝑚−2, 𝑐𝑚−3, ..., 𝑐1)

where |𝑉1 | = |𝑉2 | = 𝑘 . If voters are sincere, then 𝑟 (Π) = 𝑐𝑚 and the

normalized score for 𝑐𝑚 is 𝑆 (𝑐𝑚,Π) = 𝑛 ·𝑚𝑛 =𝑚 and the normalized

score for all other candidates is 1.

With respect to Π̄, candidate 𝑐1 and 𝑐𝑚−1 tie and 𝑟 (Π̄) is the uni-
form distribution over 𝑀 (Π̄) = {𝑐1, 𝑐𝑚−1}. If voter 𝑣 ∈ 𝑉1 reports

𝜋 ′𝑣 such that 𝑝𝑜𝑠 (𝑐 𝑗 , 𝜋 ′𝑣) = 1 for 𝑗 ≠ 1 resulting in Π̄′ = [Π̄−𝑣, 𝜋 ′𝑣],
then 𝑀 (Π̄′) = {𝑐𝑚−1} and 𝑣 obtains a worse outcome. Thus 𝑣 is

providing a best response. Further 𝑣 is minimally dishonest since

the only preference list more honest (with respect to either distance)

than 𝜋𝑣 is 𝜋𝑣 , which causes 𝑐𝑚−1 to win the election. Thus, 𝑣 ∈ 𝑉1

is providing a minimally dishonest best response. Symmetrically,

so is 𝑣 ∈ 𝑉2 and Π̄ is a minimally dishonest Nash equilibrium with

a PoA of𝑚. □

Finally, we note that the proof for Theorem 3.5 remains valid

if there is a unique winner even when ties are broken randomly.

Thus, given a unique winner, the normalized PoA is at most
2𝑚+1

3
.

4.2 Majority Judgment
In contrast, we show that the random candidate tie-breaking rule

improves the PoA for majority judgment.

Theorem 4.3. The PoA for majority judgment with the random
candidate tie-breaking rule is max{ 𝑢𝑚−𝑚

𝑢+𝑚−2
, 𝑢−1

2
} for any component-

wise norm.

Proof. Following the first part of Theorem 3.6, we show that

if 𝜋𝑣 (𝑐) = 𝑢, then 𝜋𝑣 (𝑐) = 𝑢 at a minimally dishonest Nash equi-

librium: If not, then for any component-wise norm, 𝑣 can be more

honest by submitting 𝜋 ′𝑣 (𝑐) = 𝜋𝑣 (𝑐) = 𝑢 and 𝜋 ′𝑣 (𝑐′) = 𝜋𝑣 (𝑐) for
all 𝑐′ ∈ 𝐶 resulting in the new profile Π̄′ = [Π̄−𝑣, 𝜋 ′𝑣]. As in The-

orem 3.6, the set of candidates with the highest median score is

𝑀 (Π̄′) ⊆ 𝑀 (Π̄) ∪ {𝑐}. If 𝑀 (Π̄′) = 𝑀 (Π̄) then 𝑣 obtains the same

outcome, contradicting minimal dishonesty.

Next, suppose 𝑐 ∈ 𝑀 (Π̄′) but 𝑐 ∉ 𝑀 (Π̄). Given C′ ⊆ C, let
𝑝𝑟𝑒 𝑓 (𝑤, 𝜋𝑣, C′) = {𝑐 ∈ C′

: 𝜋𝑣 (𝑐) ≥ 𝑤} for all𝑤 ∈ {1, ..., 𝑢} be the
set of candidates in C′

that 𝑣 sincerely values with weight at least𝑤 .

With this notation, the probability that 𝑣 receives an outcome with

weight at least𝑤 is
|𝑝𝑟𝑒 𝑓 (𝑤,𝜋𝑣 ,𝑀 (Π̄′ ) |

|𝑀 (Π̄′ ) | . In particular, since 𝜋𝑣 (𝑐) = 𝑢,
𝑐 ∈ 𝑝𝑟𝑒 𝑓 (𝑤, 𝜋𝑣, 𝑀 (Π̄′)) and

|𝑝𝑟𝑒 𝑓 (𝑤, 𝜋𝑣, 𝑀 (Π̄′) |
|𝑀 (Π̄′) |

=
|𝑝𝑟𝑒 𝑓 (𝑤, 𝜋𝑣, 𝑀 (Π̄) | + 1

|𝑀 (Π̄) | + 1

≥ |𝑝𝑟𝑒 𝑓 (𝑤, 𝜋𝑣, 𝑀 (Π̄) |
|𝑀 (Π̄) |

for all 𝑤 ∈ {1, ..., 𝑢}, i.e., voter 𝑣 weakly prefers 𝑟 (Π̄′) to 𝑟 (Π̄),
contradicting that 𝑣 is minimally dishonest. Thus, 𝜋𝑣 (𝑐) = 𝑢 implies

𝜋𝑣 (𝑐) = 𝑢.
Symmetrically, 𝜋𝑣 (𝑐) = 1, then 𝜋𝑣 (𝑐) = 1 since 𝑣 can potentially

remove a candidate with weight 1 from𝑀 (Π̄).
Next, we break the problem into two cases. The bound of

𝑢𝑚−𝑚
𝑢+𝑚−2

occurs when there is a tie and the bound
𝑢−1

2
occurs when there is

a unique winner.

Case 1:We consider the Nash equilibrium Π̄ where𝑀 (Π̄) is a
singleton – when there is not a tie – and show the PoA is

𝑢−1

2
.

First, consider a candidate 𝑐 where 𝑆 (𝑐,Π) = 1. By the earlier

claim 𝜋𝑣 (𝑐) = 1 for all 𝑣 where 𝜋𝑣 (𝑐) = 𝑢 and 𝑆 (𝑐, Π̄) = 1. Since all

candidates receive at least one point, and since there is not a tie with

respect to Π̄, 𝑐 ≠ 𝑟 (Π̄) and 𝑆 (𝑟 (Π̄),Π) ≥ 2. Next, suppose there is a

candidate 𝑐 where 𝑆 (𝑐,Π) = 𝑢. Then by the earlier claim, 𝜋𝑣 (𝑐) = 𝑢
for all 𝑣 where 𝜋𝑣 (𝑐) = 𝑢 and 𝑆 (𝑐, Π̄) = 𝑢 implying 𝑐 = 𝑀 (Π̄) and
the PoA is 1. Thus, if the PoA is more than 1, then 𝑆 (𝑐,Π) ≤ 𝑢 − 1

for all 𝑐 ∈ C.
Combining the two statements, we obtain a bound on the PoA

of
𝑢−1

2
. We now demonstrate that this bound is tight. We consider

3 sets of voters with the following preferences:

𝑣 ∈ 𝑉1 : 𝜋𝑣 (𝑐1) = 𝜋𝑣 (𝑐1) = 𝑢 − 1,

𝜋𝑣 (𝑐2) = 𝜋𝑣 (𝑐2) = 𝑢 (honest)

𝑣 ∈ 𝑉2 : 𝜋𝑣 (𝑐1) = 𝜋𝑣 (𝑐1) = 𝑢 − 1,

𝜋𝑣 (𝑐2) = 𝜋𝑣 (𝑐2) = 1 (honest)

𝑣 = 𝑉3 : 𝜋𝑣 (𝑐1) = 𝜋𝑣 (𝑐1) = 1,

𝜋𝑣 (𝑐2) = 2 but 𝜋𝑣 (𝑐2) = 𝑢

where |𝑉1 | = 𝑘, |𝑉2 | = 𝑘 and |𝑉3 | = 1 and where 𝜋𝑣 (𝑐𝑖 ) = 𝜋𝑣 (𝑐𝑖 ) = 1

for all 𝑖 ≥ 3. If voters are honest then 𝑟 (Π̄) = 𝑐1 since 𝑆 (𝑐1,Π) =
𝑢 − 1, 𝑆 (𝑐2,Π) = 2 and 𝑆 (𝑐𝑖 ,Π) = 1 for all 𝑖 ≥ 3.

However, with respect to the submitted preferences, 𝑆 (𝑐1, Π̄) =
𝑢 − 1, 𝑆 (𝑐2, Π̄) = 𝑢 and 𝑆 (𝑐𝑖 , Π̄) = 1 for all 𝑖 ≥ 3 and 𝑟 (Π̄) = 𝑐2.

If Π̄ is minimally dishonest Nash equilibrium, then we yield the

desired bound of
𝑢−1

2
. For 𝑣 ∈ 𝑉1, voter 𝑣 receives their preferred

outcome and is honest. For 𝑣 ∈ 𝑉2, voter 𝑣 cannot change the score

of any candidate and is honest. For 𝑣 = 𝑉3, voter 𝑣 is receiving

their most preferred outcome and the only set of preferences that

is more honest (with respect to any component-wise norm) assigns

𝑐2 a lower score causing 𝑐3 to tie or win the election, both of which

are worse for 𝑣 . As a result, all voters are providing a minimally

dishonest best response and the PoA is
𝑢−1

2
when there is a unique

winner.

Case 2: We considers Π̄ where |𝑀 (Π̄) | =𝑚′ ≥ 2.
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First, suppose there is a candidate 𝑐 ∈ 𝑀 (Π) such that 𝑆 (𝑐,Π) = 𝑢
implying 𝐸 [𝑆 (𝑟 (Π),Π)] = 𝑢. By the earlier claim, 𝑆 (𝑐, Π̄) = 𝑢 and

𝑐 ∈ 𝑀 (Π̄). Similarly, 𝑆 (𝑐′,Π) ≥ 2 for all 𝑐′ ∈ 𝑀 (Π̄) since our earlier
claim also implies 𝑆 (𝑐′′, Π̄) = 1 for all 𝑐′′ where 𝑆 (𝑐′′,Π) = 1 and

since 𝑆 (𝑐, Π̄) = 𝑢. As a result, 𝐸 [𝑆 (𝑟 (Π̄),Π)] ≥ 𝑢 · 1

𝑚′ + 2 · 𝑚′−1

𝑚′ ≥
𝑢+2𝑚−2

𝑚 yielding an expected PoA of

𝑢

𝑢+2𝑚−2

𝑚

=
𝑢𝑚

𝑢 + 2𝑚 − 2

≤ 𝑢𝑚 −𝑚
𝑢 + 2𝑚 − 2 −𝑚 =

𝑢𝑚 −𝑚
𝑢 +𝑚 − 2

Alternatively, suppose 𝐸 [𝑆 (𝑟 (Π),Π)] = 𝑥 ≤ 𝑢 − 1. If 𝑆 (𝑐,Π) ≥ 2

for all 𝑐 ∈ 𝑀 (Π̄), then we obtain an upper bound of
𝑥
2

≤ 𝑢−1

2

matching the bound when there are no ties. Alternatively, suppose

there is a 𝑐 ∈ 𝑀 (Π̄) such that 𝑆 (𝑐,Π) = 1. By our earlier claim, this

implies that 𝑆 (𝑐, Π̄) = 1. Since 1 is the minimum score, 𝑆 (𝑐′, Π̄) = 1

for all 𝑐′ (everyone ties) yielding a PoA of at most

𝑥

𝑥 1

𝑚 + 𝑚−1

𝑚

≤ 𝑢 − 1

𝑢+𝑚−2

𝑚

=
𝑢𝑚 −𝑚
𝑢 +𝑚 − 2

.

Finally, to observe that this bound tight, consider the following

three disjoint sets of voters:

𝑣 ∈ 𝑉1 : 𝜋𝑣 (𝑐𝑖 ) = 𝜋𝑣 (𝑐𝑖 ) = 1 for all 𝑖 (honest)

𝑣 ∈ 𝑉2 : 𝜋𝑣 (𝑐1) = 𝜋𝑣 (𝑐1) = 𝑢,
𝜋𝑣 (𝑐𝑖 ) = 𝜋𝑣 (𝑐𝑖 ) = 1 for 𝑖 ≠ 1 (honest)

𝑣 = 𝑉3 : 𝜋𝑣 (𝑐1) = 𝑢 − 1 but 𝜋𝑣 (𝑐1) = 1,

𝜋𝑣 (𝑐𝑖 ) = 𝜋𝑣 (𝑐𝑖 ) = 𝑢 for 𝑖 ≠ 1

where |𝑉1 | = |𝑉2 | = 𝑘 and |𝑉3 | = 1With respect toΠ, 𝑆 (𝑐1,Π) = 𝑢−1

and 𝑆 (𝑐𝑖 ,Π) = 1 for all 𝑖 ≠ 1. For the submitted Π̄, 𝑆 (𝑐, Π̄) = 1 for

all 𝑐 yielding a ratio of
𝑢𝑚−𝑚
𝑢+𝑚−2

. As in the previous proofs, Π̄ is a

minimally dishonest Nash equilibrium: For 𝑣 ∈ 𝑉1 ∪𝑉2, voter 𝑣 is

honest and cannot change the outcome. For 𝑣 = 𝑉3, for 𝑣 to be more

honest, 𝑣 must increase the score of 𝑐1, which causes 𝑐1 to be the

unique winner, a result that is strictly worse for 𝑣 . As a result, Π̄ is

a minimally dishonest Nash equilibrium. □

Theorem 4.3 represents a constant factor improvement over

lexicographic tie-breaking.

Corollary 4.4. When there are ties and when𝑚 ≤ 𝑢−2

𝛼−1
, the PoA

for majority judgment with the random candidate tie-breaking rule is
𝛼 times better than the PoA for majority judgment with lexicographic
tie-breaking.

Proof. First, observe that
𝑢𝑚−𝑚
𝑢+𝑚−2

= 𝑢−1

1+𝑢−2

𝑚

is increasing with

𝑚 and therefore
𝑢𝑚−𝑚
𝑢+𝑚−2

= 𝑢−1

1+𝑢−2

𝑚

≤ 𝑢−1

1+𝛼−1
= 𝑢−1

𝛼 – an 𝛼 times

improvement over the lexicographic tie-breaking rule. □

As with the lexicographic case, to compute the normalized PoA,

we simply replace every score 𝑥 with the normalized score
𝑚−1

𝑢−1
(𝑥−

1) + 1 resulting in the following normalized PoA.

Theorem 4.5. The normalized PoA for majority judgment with the
random candidate tie-breaking rule is max{ 𝑢𝑚2−2𝑚2+𝑚

2𝑢𝑚−𝑢−3𝑚+2
, 𝑢𝑚−2𝑚+1

𝑢+𝑚−2
}

for any component-wise norm.

The proof follows identically to Theorem 4.3 with updated scores.

5 DISCUSSION AND CONCLUSION
Section 4 demonstrated that small changes to voting rules can sig-

nificantly alter the impact of manipulation. For plurality elections,

lexicographic tie-breaking lessens the impact of manipulation and

randomization erodes all protections from manipulation. In con-

trast, for majority judgment, the random candidate tie-breaking

rule significantly lessens the impact of manipulation (by a factor of

𝛼 for𝑚 ≤ 𝑢−1

𝛼−1
).

Further, tie-breaking rules fundamentally changed the relation-

ship between plurality and majority judgment; with respect to

lexicographic tie-breaking, plurality appears better than majority

judgment at resisting manipulation, whereas for the random candi-

date tie-breaking rule, majority judgement performs better.

These results indicate that election designers should take care

when considering slightly different variants of a voting rule since

small changes can have a large impact. Moreover, these results

indicate that manipulation is not equivalent in all settings. Further,

the price of anarchy is able to discriminate between these types

of manipulation and is also able to identify the impact of small

changes to voting rules. As such, we propose that price of anarchy

be one of the metrics in which a voting rule is accessed.
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