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ABSTRACT
Civilisations in the universe face the difficulty of communicating
and trying to understand others’ intentions. Moreover, advanced
civilisations could develop weapons to pre-emptively eliminate any
civilisations that present a future threat – this is known as the
Hobbesian trap. Here, we present a multi-agent simulation model
to investigate conditions for such pre-emptive attacks. We design a
novel algorithm for solving Interactive Partially Observable Markov
Decision Processes (I-POMDPs) with continuous state and observa-
tion spaces; it enables civilisations to perform higher-order reason-
ing. The algorithm builds a nested hierarchy of search forests using
Monte Carlo simulations, determining updated beliefs by weight-
ing existing particles. Our experiments reveal interesting insights
into the behaviour of rational civilisations under varying levels of
reasoning, morality and uncertainty. We find that selfish civilisa-
tions always create a war-like universe. Even good, universalist
civilisations can initiate pre-emptive attacks if they are uncertain
about others’ intentions. Finally, our findings have important im-
plications for international peace and security and may explain
persistent conflicts and the fragility of ceasefires. Under such con-
ditions a well-coordinated international approach, facilitated by
international alliances such as the United Nations, is paramount.
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1 INTRODUCTION
There is at least one civilisation in the universe. What if there
are more? This is a possibility that is rooted in credible academic
discourse. For example, in [25], the authors estimate the number of
communicating extraterrestrial civilisations based on astronomical
data and under a range of different assumptions. The existence
of other civilisations cannot be ruled out, although it remains a
hypothesis in the absence of data.
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Our goal is to investigate the interaction of civilisations in the
universe. This is an interesting problem to study for two reasons.
First, the environment of space does not make finding and making
friends easy. Distances are incomprehensibly large and travelling
takes time. Even sending messages using the seemingly instant
electromagnetic radiation is slow. The second reason is that the
civilisations do not know who they are interacting with. The uncer-
tainty about the intentions of the counterpart is one of the defining
features of this problem.

The main argument motivating our work is presented in [12].
Civilisations in the universe develop in vastly different cultural
contexts. In the absence of a common context in which to interact
and learn each others’ ways of communication, translating mes-
sages sent by other civilisations seems challenging and potentially
impossible. Moreover, creating weapons capable of inflicting great
damage against other civilisations seems to be easy for sufficiently
advanced civilisations. The authors argue that given the lack of com-
munication and the possibility of possession of world-destroying
capabilities, civilisationsmay choose to perform pre-emptive strikes.
In other words, they could attack because they fear someone else
might attack them. This line of reasoning is called a Hobbesian trap.
The implication is that contact with extraterrestrial civilisations
may be an existential risk for humanity.

We investigate the problem with a computational model. Given
the lack of information about how civilisations behave, we ground
our work in the assumption that civilisations are rational. We pro-
pose a novel algorithm for solving I-POMDPs – a framework for
rational behaviour – with continuous state and observation spaces
in Section 3.2. Finally, we describe the simulation experiments we
performed and their results in Section 4. We show that the nature of
the universe depends on the morality of civilisations and what they
believe about the morality of others. If civilisations are indifferent
towards the well-being of other civilisations (and believe others
are too), attacks are frequent. Even civilisations that prefer not to
destroy others can be motivated to pre-emptively attack if they are
unsure about whether a growing civilisation will want to threaten
them in the future.

2 BACKGROUND
2.1 Conflict Between Civilisations in Space
Different scenarios of humanity’s contact with extraterrestrial civil-
isations are catalogued in [3]. Beneficial scenarios usually assume
successful cooperation and exchange of information. The difficulty
in communication, whether related to translation or technology, is
acknowledged. In a harmful scenario humanity could be abused for
resources or entertainment.
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In terms of ethics, civilisations vary on the axis “selfish” versus
“universalist” [3]. As opposed to selfish civilisations, universalists
value things like life or consciousness of all civilisations, not just
themselves. The authors of [9] argue that civilisations are likely to
have democratic forms of government since they are more stable
than autocracies. Thus, we could also expect them to be peaceful like
their counterparts on Earth. However, we argue this peacefulness
is not guaranteed to extend to interstellar contacts.

In opposition to [12], another study [13] argues that civilisations
in space would be deterred from pre-emptive attacks because of the
associated uncertainties. By the time the attacker arrives at the tar-
get, the target could be stronger than the attacker. An attack could
fail to destroy it entirely and leave behind vindictive scraps of civil-
isation. Other civilisations could notice the attack and decide that
they prefer not having hostile neighbours. Here we investigate the
special case where attacks and observations happen without delay
(independent of distance) and the target is completely destroyed if
it is weaker than the perpetrator. We also assume that civilisations
are rational, which means that retaliation is not a reason in itself
to attack another civilisation.

2.2 Conflict Between Human Civilisations
Wars between nations are of interest to us, since they are the clos-
est equivalent to interstellar conflict we can study. Wars happen,
broadly speaking, for the same reasons smaller conflicts between
groups [5, 6] of humans do [21, Ch. 5]. At the heart of many con-
flicts between human groups is competition over limited resources.
Knowing that others may desire to forcefully take one’s resources
creates fear. Fear can lead to a preemptive attack; this mechanism
is known as the Hobbesian trap [21, Ch. 2] [2]. For example, in
the post-World War II U.S. many advocated for a preventive strike
against the Soviet Union before they could develop a substantial
nuclear weapons capacity [18]. The Hobbesian trap can be mod-
elled using game theory with a conflict game similar to stag hunt
[2]. Uncertainty about the opponent’s cost of attacking can make
attacking a rational choice.

Wars have been shown to have interesting statistical properties
[21, Ch. 5] (see also [22] for more visualisations). The starting times
of wars follow a Poisson process, and thus times between outbreaks
of wars follow an exponential distribution. This means that wars
begin randomly and independently at a constant rate. Likewise,
the duration of wars follow an exponential distribution. Finally,
the numbers of deaths in wars (or magnitudes of wars) follow a
power-law distribution.

2.3 Modelling Rational Behaviour
Rational behaviour is studied through the paradigm of decision
theory, with a central assumption that agents act to maximise their
expected utility [19]. If this utility is obtained through a sequence
of decisions, the problem is called a sequential decision problem.
Markov decision processes (MDPs) are a basic model for sequential
decision problems. POMDPs generaliseMDPs by introducing partial
observability of the underlying state. The agent maintains a belief
distribution over the state space using observations. [23]

The problem of considering others’ decisions in one’s own decision-
making is studied in game theory [19]. Of particular interest here

are stochastic games [16]. They, along with their partially observable
extension (POSG) [8], capture dynamic situations where decisions
cause the game to change. Equilibrium concepts can be used to
predict the behaviour of rational agents [10].

While equilibria are appropriate for describing or predicting the
kind of behaviours one might observe in a multi-agent system, they
are less well suited for prescribing the best course of action. Acting
according to the equilibrium strategy is only optimal when others
act according to the same equilibrium. This introduces problems
when there are multiple equilibria and no obvious way to know
which one other agents are acting according to (if any). Interactive
POMDPs (I-POMDPs) provide an alternative approach to modelling
multi-agent environments [7]. It is a framework for solving a POSG
not from the bird’s-eye view of game theory, but from the subjective
point of view of the acting agent. It extends a POMDP by including
models of other agents in the state space. These models represent
the agent’s beliefs about others’ strategies. Instead of using the
concept of an equilibrium to choose its actions, the agent acts
optimally with respect to these beliefs.

3 METHODS
In this section we introduce our model and a novel approach to
solving I-POMDPs. For readers unfamiliar with the I-POMDP frame-
work, we provide supplementary material in Appendix A.2.

3.1 Modelling Civilisations Using the I-POMDP
Framework

Let us create a model of a system of civilisations. The ultimate
goal of civilisations is to survive. Each civilisation is characterised
by a metric, technology level. This variable reflects how advanced
the civilisation is when it comes to its capabilities to attack and
observe others. The metric ranges from 0 (weak) to 1 (strong)
and grows over time. We use sigmoid growth which reflects the
s-shaped nature of technological growth seen in human societies.
It has two parameters, ‘speed’ 𝑔𝑠 and ‘takeoff age’ 𝑔𝑡 , which vary
between civilisations. The technology level at age 𝑡 is given by
𝜏 (𝑡, 𝑔𝑠 , 𝑔𝑡 ) = 1/(1 + exp(−𝑔𝑠 (𝑡 − 𝑔𝑡 ))). Spatially, civilisations are
distributed uniformly and randomly in the two-dimensional unit
square. Technology level determines the radius of influence of a
civilisation. To be able to observe or attack a target, it needs to
be within this distance. For technology level 𝜏 , the radius is given
by 𝑟 (𝜏) = 0.1 tan((𝜋/2)𝜏). The radius grows asymptotically as
the technology level approaches 1. Civilisations with a technology
level higher than approximately 0.96 can influence the entire uni-
verse. Civilisations can also attempt to hide their presence from
others. They do this by controlling their technosignatures, which
are signals indicative of intelligent life [20]. We assume it takes
the form 𝑣𝜏 where 𝑣 is the visibility factor between 0 and 1 and 𝜏
is the technology level of the civilisation. Finally, the initial val-
ues of the civilisations’ parameters – age, visibility factor, growth
speed and takeoff age – independently follow the uniform distribu-
tions (discrete, where appropriate) over the intervals I𝑡 , I𝑣 , I𝑔𝑠 and
I𝑔𝑡 , respectively. This joint distribution over a single civilisation’s
parameters is denoted 𝑝init.

In the I-POMDP framework, civilisations use models of other
civilisations to predict how they act. These models form a hierarchy
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where a reasoning level characterises the number of levels of models
taken into account by a civilisation. Specifically, we assume that the
following models are used. At level 0, civilisations choose actions
randomly. The lowest level civilisations in our model reason at
level 1. These civilisations model others using level 0 models. In
other words, at level 1 civilisations assume they are interacting with
opponents that act randomly. At level 2, civilisations think they are
playing against a level 1 civilisation. Therefore at level 2 the other
agents are modelled with an intentional, or rational, model. Even
higher levels are possible, but here we do not go further than level
2. At reasoning level 1 civilisations hold beliefs about the state of
the universe. In contrast, at level 2 beliefs are about both the state
and the beliefs and frame of the level 1 opponent.

We will now define the components of the I-POMDP (𝐼𝑆𝑖,𝐿, 𝐴,𝑂𝑖 ,
𝑇 , 𝑍𝑖 , 𝑅𝑖 ,𝐶𝑖 ) of agent 𝑖 who reasons at level 𝐿.

3.1.1 States. Let 𝑁 = {1, . . . , 𝑛} be the set of civilisations. States
are tuples 𝑠 = (𝑠1, . . . , 𝑠𝑛), where 𝑠 𝑗 is the state of civilisation 𝑗 ∈ 𝑁 .
A civilisation state is a tuple (𝑡, 𝑣, 𝑔𝑠 , 𝑔𝑡 ) consisting of the age 𝑡 (in
model time steps), visibility factor 𝑣 and growth parameters of a
civilisation. Locations of civilisations are assumed to be common
knowledge and therefore it is not necessary to include them in the
state.

3.1.2 Actions. Possible actions for a civilisation include hiding,
attacking one of the other civilisations or doing nothing. During one
time step of the decision process one randomly chosen civilisation
gets to act. Therefore the joint actions (𝑎1, . . . , 𝑎𝑛) ∈ 𝐴 consist of an
actual action by one civilisation while others do a ‘no turn’ action.
The time steps are thought to be relatively short in “universe time”.
This reflects the hypothesis that civilisations in the real universe
observe frequently but act sparsely1. Actions therefore take place
in a sequence rather than simultaneously.

3.1.3 Observations. Civilisations make noisy observations about
others’ technosignatures, constrained by their radius of influence.
They also observe the results of any attacks on them and attacks
initiated by them. Specifically, assume the process is in state 𝑠 =
(𝑠1, . . . , 𝑠𝑛) and the previous joint action was 𝑎. The resulting obser-
vation 𝑜 𝑗 ∈ 𝑂 𝑗 of agent 𝑗 ∈ 𝑁 is a random vector (𝜏1, . . . , 𝜏𝑛, 𝑟1, 𝑟2)
where 𝑟1, 𝑟2 ∈ {−1, 0, 1} indicate the result of an attack by agent 𝑗
and the result of an attack on agent 𝑗 , respectively (−1 means that
no attack took place). In addition,

𝜏𝑘 =


𝜏 (𝑠𝑘 ) + Φ𝑘 𝑑 𝑗𝑘 = 𝑑 𝑗 𝑗 = 0
𝑣𝜏 (𝑠𝑘 ) + Φ𝑘 0 < 𝑑 𝑗𝑘 ≤ 𝑟 (𝜏 (𝑠 𝑗 ))
Υ𝑘 𝑑 𝑗𝑘 > 𝑟 (𝜏 (𝑠 𝑗 ))

where 𝑑 𝑗𝑘 is the distance between civilisations 𝑗 and 𝑘 , 𝜏 (𝑠𝑘 ) is
the technology level of agent 𝑘 in state 𝑠 , Φ𝑘 is a normal random
variable (independent of others) with mean 0 and standard devi-
ation 𝜎obs and Υ𝑘 follows a uniform distribution on [0, 1]. These
distributions define the observation probability function 𝑍 𝑗 . The
civilisation only receives substantive technosignature observations
from civilisations within its radius of influence. It observes its own
technology level directly, without the effect of the visibility factor.

1This is similar to how modern states spy on their enemies but engage in hostility
very rarely.

3.1.4 Transition function. The transition function 𝑇 is determin-
istic. First, at every step the age 𝑡 of each agent is increased by
1. If a civilisation with a higher technology level attacks another
civilisation that is i) within its radius of influence and ii) weaker,
the target is destroyed. When this happens, the age 𝑡 of the target is
set to zero and its visibility factor 𝑣 to one. This reflects the destruc-
tion of the civilisation and its capabilities. Taking the hiding action
multiplies the visibility factor 𝑣 by a constant between 0 and 1. We
call this constant the visibility multiplier 𝑣𝑚 . This multiplicative
effect reflects diminishing returns in the attempts to mask one’s
technology level as observed by others.

3.1.5 Rewards. The reward function 𝑅 𝑗 determines the expected
reward received by civilisation 𝑗 when an action is taken in a state.
If 𝑗 is destroyed it receives a reward of 𝑟𝐷 = −1. This is the worst
outcome for the civilisation. The cost hiding is a model parameter
𝑟ℎ ∈ (−1, 0], as is the cost 𝑟𝑎 > −1 of attacking another civilisation.
This latter cost reflects mostly moral considerations as any material
and manufacturing costs of a weapon are likely to be negligible in
comparison. In all other cases the reward is 0.

3.1.6 Optimality Criterion. Civilisations use the infinite horizon
criterion with discounting as their optimality criterion. Assume
that civilisation 𝑗 at level 𝑙 holds a belief distribution 𝑏 𝑗,𝑙 over the
level 𝑙 interactive states. If the current time is 𝑡∗, this means that 𝑗
attempts to maximise the expected utility

𝑈 (𝑏 𝑗,𝑙 ) = E
( ∞∑︁
𝑡=𝑡∗

𝛾𝑡−𝑡
∗
𝑅
(𝑡 )
𝑗

)
(1)

where 𝑅 (𝑡 )
𝑗 is a random variable denoting the reward received by

the civilisation on time step 𝑡 . We denote this criterion 𝐶 𝑗 . Further
explanation can be found in Appendix B.1.

3.2 Novel Algorithm for Solving I-POMDPs
In this section we introduce a new algorithm developed for solving
the I-POMDP defined in Section 3.1. The algorithm combines ideas
from I-NTMCP [24] (see Appendix B.2.6), LABECOP [11] (Appendix
B.2.7) and the Interactive Particle Filter [4] (Appendix B.2.2) to
efficiently solve I-POMDPs with continuous state and observation
spaces. It constructs a set of forests which form a nested hierarchy.

3.2.1 Structure. The hierarchy of forests reflects the hierarchy of
models in the initial belief 𝑏𝑖,𝐿 of agent 𝑖 . At the top of the hierarchy
at level 𝐿 is the forest F𝑖 (𝜃𝑖 ) which represents the decision-making
of agent 𝑖 . If other agents are modelled using intentional models,
these are represented by the forests {F𝑖, 𝑗 (𝜃 𝑗 ) | 𝑗 ∈ 𝑁 \ {𝑖}} at level
𝐿−1. A forest is created for every frame 𝜃 𝑗 of agent 𝑗 that is assigned
a positive probability in 𝑏𝑖,𝐿 . A single agent’s forests corresponding
to its different frames at a given level – denoted F𝑖, 𝑗 , for example –
constitute a forest group. This hierarchy continues until level 0, or
level 1 if level 0 agents are modelled with a subintentional model.

Each node in forest F·, 𝑗 (𝜃 𝑗 ) (where · denotes a possibly empty
sequence of agents) corresponds to a unique agent action history
– a sequence of actions – of agent 𝑗 . If a node corresponds to a
time 𝑡 agent action history, its child nodes correspond to time 𝑡 + 1
histories. A node contains a set of particles. A particle 𝑝 stores a
state 𝑠 (𝑝), a history ℎ(𝑝) of actions taken by all agents (a joint
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action history), a tuple of frames 𝜃 (𝑝) = (𝜃 (𝑝)𝑘 )𝑘∈𝑁 \{ 𝑗 } for other
agents (assuming they are modelled intentionally), the number of
times 𝑛(𝑝, 𝑎 𝑗 ) it has been propagated with each action 𝑎 𝑗 and the
utility estimate 𝑢 (𝑝, 𝑎 𝑗 ) of taking the action 𝑎 𝑗 and then continuing
optimally if 𝑝 represents the true state. In addition, 𝑝 remembers
its ancestor, which is the particle that was propagated with some
joint action to create 𝑝 . The particles link the forests together: the
agent action history ℎ(𝑝)𝑘 and frame 𝜃 (𝑝)𝑘 of agent 𝑘 in particle 𝑝
point to a specific node in the forest F·, 𝑗,𝑘 (𝜃 (𝑝)𝑘 ). We can denote
this node F·, 𝑗,𝑘 (𝜃 (𝑝)𝑘 ) (ℎ(𝑝)𝑘 ).
3.2.2 Representing and Updating Beliefs. The particles in a node
are weighted to represent a belief. A belief is always maintained in
the unique root node of the forest F𝑖 (𝜃𝑖 ). This is agent 𝑖’s current
belief of the state. In addition to the usual properties, the particles
in the root nodes of each forest F·, 𝑗 (𝜃 𝑗 ) contain a belief 𝛿 (𝑝) =
(𝛿 (𝑝)𝑘 )𝑘∈𝑁 \{ 𝑗 } for other agents. These are weights that can be
used to create beliefs in the nodes of other agents 𝑝 points to in
the forests on the level below. In this way the particles in the root
nodes represent interactive states.

Updating beliefs is necessary during planning and after a real
action is performed and an observation is received. Updating is done
according to the Sequential Importance sampling and Resampling
(SIR) particle filter approach [1]. Let 𝑏 𝑗,𝑙 be the time-𝑡 belief of agent
𝑗 in the node F·, 𝑗 (𝜃 𝑗 ) (ℎ 𝑗 ) and 𝑜′𝑗 be the new observation received.
First, the belief 𝑏 𝑗,𝑙 is resampled using systematic resampling [17].
The particle 𝑝 in node F·, 𝑗 (𝜃 𝑗 ) (ℎ 𝑗𝑎 𝑗 ) then receives the weight

𝑏′𝑗,𝑙 (𝑝) ∝ 𝑏 𝑗,𝑙 (ancestor(𝑝))𝑍 𝑗 (𝑠 (𝑝), ℎ(𝑝) (𝑡), 𝑜′𝑗 ) (2)

where ℎ(𝑝) (𝑡) = (. . . , 𝑎 𝑗 , . . . ) refers to the most recent joint action
in the history stored in 𝑝 .

After a real action 𝑎𝑖 at time 𝑡 by the owner 𝑖 of the I-POMDP, the
aforementioned process is used to create a belief in the new unique
root node F𝑖 (𝜃𝑖 ) (ℎ𝑖𝑎𝑖 ) corresponding to time 𝑡 + 1. In addition,
it is necessary to determine the beliefs 𝛿 (𝑝) of other agents for
each particle 𝑝 in the time 𝑡 + 1 nodes of each forest F·, 𝑗 (𝜃 𝑗 ). To
do this, first the beliefs of these other agents are initialised using
the time-𝑡 beliefs stored in the ancestor of 𝑝 . An observation 𝑜′

𝑘
is then sampled for each agent 𝑘 ∈ 𝑁 \ { 𝑗} from the distribution
𝑍𝑘 (𝑠 (𝑝), ℎ(𝑝) (𝑡), ·). Here 𝑍𝑘 refers to the observation probability
function in the frame of the corresponding forest. These simulated
observations are used in the belief update process and the resulting
weights for the relevant time 𝑡 + 1 nodes are stored in 𝛿 (𝑝). After
this process is complete, all time 𝑡 nodes can be removed.

3.2.3 Initialisation. Each forest is initialised with a single root node
corresponding to an empty agent action history. A fixed number
𝑛init of particles are added to each one. The particles and corre-
sponding beliefs and frames for other agents are sampled according
to the initial belief of the I-POMDP.

3.2.4 Planning. Planning is done using Monte Carlo simulations
while keeping track of updated beliefs. Each forest group is simu-
lated 𝑛simul times. Forests are simulated bottom-up, starting from
the lowest-level forest groups. An illustration of planning is shown
in Figure 1. A simulation in forest group F𝑖, 𝑗𝐿−1,..., 𝑗𝑙 := F·, 𝑗 be-
gins by determining a particle to start from. In practice this means

weighting the particles in one of the root nodes of one of the forests
in the group and sampling the particle according to this initial be-
lief. The belief is determined top-down, guided by the beliefs of
the owner. First, a particle (𝑝) is sampled according to the belief
in the root node of F𝑖 (𝜃𝑖 ). The belief of agent 𝑗𝐿−1 stored in the
particle initialises the weights of particles in a root node of a forest
in the group F𝑖, 𝑗𝐿−1 . This process can be repeated until a belief is
initialised in a forest in the group F·, 𝑗 , denoted F·, 𝑗 (𝜃 𝑗 ). After a
starting particle is sampled according to the belief, the beliefs of
other agents are initialised using the particle. This creates initial
beliefs in the forest groups {F·, 𝑗,𝑘 | 𝑘 ∈ 𝑁 \ { 𝑗}} which are used as
models of the other agents’ behaviour during the simulation.

Next, a series of forward steps is performed down the chosen
tree. The goal of a step is to simulate the rational decision-making
of 𝑗 and the other agents given their beliefs 𝑏 𝑗,𝑙 and {𝑏𝑘,𝑙−1 | 𝑘 ∈
𝑁 \ { 𝑗}} at some time 𝑡 . During a step, the current particle 𝑝 is
propagated with an action and new beliefs are formed for the next
time step. First, each actor (typically all agents but in our model
a randomly chosen agent) chooses an action. For agent 𝑗 a Monte
Carlo Tree Search (MCTS) inspired policy is used. The current
estimates of action utilities are calculated. The estimate of 𝑎 𝑗 is

𝑈 (𝑏 𝑗,𝑙 , 𝑎 𝑗 ) =

∑
𝑝∈F·, 𝑗 (𝜃 𝑗 ) (ℎ 𝑗 )

𝑛 (𝑝,𝑎 𝑗 )>0
𝑏 𝑗,𝑙 (𝑝)𝑢 (𝑝, 𝑎 𝑗 )∑

𝑝∈F·, 𝑗 (𝜃 𝑗 ) (ℎ 𝑗 )
𝑛 (𝑝,𝑎 𝑗 )>0

𝑏 𝑗,𝑙 (𝑝)
(3)

where the summation is over particles in the current node that
have been expanded with 𝑎 𝑗 at least once. Next, define the quan-
tities 𝑁+ (𝑏 𝑗,𝑙 ) =

∑
𝑝∈F·, 𝑗 (𝜃 𝑗 ) (ℎ 𝑗 ),𝑏 𝑗,𝑙 (𝑝 )>0 𝑛(𝑝) and 𝑁+ (𝑏 𝑗,𝑙 , 𝑎 𝑗 ) =

(𝑊 (𝑏 𝑗,𝑙 , 𝑎 𝑗 )/𝑊 (𝑏 𝑗,𝑙 ))𝑁+ (𝑏 𝑗,𝑙 ) which are “the total number of prop-
agations of positivelyweighted particles” and “theweighted number
of propagations using action 𝑎 𝑗 ”, respectively. In the above 𝑛(𝑝)
is the number of times 𝑝 has been propagated in total,𝑊 (𝑏 𝑗,𝑙 ) =∑
𝑝∈F·, 𝑗 (𝜃 𝑗 ) (ℎ 𝑗 ) 𝑏 𝑗,𝑙 (𝑝)𝑛(𝑝), and𝑊 (𝑏 𝑗,𝑙 , 𝑎 𝑗 ) =

∑
𝑝∈F·, 𝑗 (𝜃 𝑗 ) (ℎ 𝑗 ) 𝑏 𝑗,𝑙 (𝑝)

𝑛(𝑝, 𝑎 𝑗 ). Now the action 𝑎 𝑗 is chosen to maximise

𝑈 (𝑏 𝑗,𝑙 , 𝑎 𝑗 ) + 𝑐explr
√︄

ln𝑁+ (𝑏 𝑗,𝑙 )
𝑁+ (𝑏 𝑗,𝑙 , 𝑎 𝑗 )

. (4)

The second term, controlled by 𝑐explr, encourages choosing unex-
plored actions. The actions of other agents are chosen using the
already simulated forests in {F·, 𝑗,𝑘 | 𝑘 ∈ 𝑁 \ { 𝑗}}. Each action 𝑎𝑘
is chosen with a probability proportional to

exp
©«

𝑈 (𝑏𝑘,𝑙−1, 𝑎𝑘 )
𝑐sft ·

(
1/√︁𝑁+ (𝑏𝑘,𝑙−1)

) ª®®¬ (5)

which is known as the Boltzmann distribution or the softargmax
function. The higher the number 𝑁+ (𝑏𝑘,𝑙−1) of simulations, the
more the probability is concentrated on the best actions. The pa-
rameter 𝑐sft regulates the strength of this effect. If the other agents
are modelled with subintentional models, these models are used
instead to determine actions.

The particle 𝑝 is propagated with the chosen joint action 𝑎 and
a next state 𝑠′ is sampled from the distribution 𝑇 (𝑠 (𝑝), 𝑎, ·). Here
𝑇 is the transition function in the frame 𝜃 𝑗 . A new particle 𝑝′ is
constructedwith state 𝑠 (𝑝′) = 𝑠′, joint action historyℎ(𝑝′) = ℎ(𝑝)𝑎,
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o′ 2 ∼ Z2(s ( p′ ), a , ⋅ )
o′ 1 ∼ Z1(s ( p′ ), a , ⋅ )b′ 2,1 b′ 1,0

p′ 

a = (a1, a2)
1. Determine joint action

0.  Choose start particle 
i. Sample particle 
ii. Apply weights 
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0.i 0.ii

2. Propagate state and 
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0.iii

3. Create beliefs for the next 
time step 
i. Resample previous beliefs 
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3.i

2. 3.ii 3.ii

… (Repeat 1. - 3. for 
each forward step)
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ℱ1,2( ̂θ2)

Add particles (     ) to 
nodes and backup value

Rollout

Figure 1: A single simulation in the planning phase. Here the forest F1,2 (𝜃2) is being simulated.

and empty propagation information. Observations 𝑜′𝑚 are sampled
for each agent 𝑚 ∈ 𝑁 according to the observation probability
distribution𝑍𝑚 (𝑠′, 𝑎, ·) from the frame corresponding to the agent’s
forest. Updated beliefs are generated for the relevant time 𝑡 +1 node
in the forest F·, 𝑗 (𝜃 𝑗 ) and forest groups {F·, 𝑗,𝑘 | 𝑘 ∈ 𝑁 \ { 𝑗}} using
the observations. This is the child node of the time 𝑡 node that
corresponds to the chosen action of the forest agent.

Since the resampling step of the belief update process tends to
decrease particle diversity, we may optionally add some noise to the
state of the new particle before generating the observations. In our
model we add unbiased Gaussian noise with standard deviation 𝜎𝑔𝑠
to the growth speed and noise from the uniform discrete distribution
[−𝜎𝑔𝑡 , 𝜎𝑔𝑡 ] to the takeoff age of each civilisation. The perturbed
values are then constrained to the ranges I𝑔𝑠 and I𝑔𝑡 .

A simulation can terminate in two ways. If there is an action
𝑎 𝑗 for which𝑊 (𝑏 𝑗,𝑙 , 𝑎 𝑗 ) = 0, this action is considered unexpanded
and is chosen. The current particle 𝑝 is propagated with 𝑎 𝑗 and
the simulation ends in the resulting particle 𝑝′. The second way
for a simulation to end is if the discount horizon is reached. This
happens when the depth 𝑑 of the particle 𝑝′ – the number of time
steps traversed forward from the current time – satisfies 𝛾𝑑 < 𝜀.
The discount horizon 𝑑max is the smallest such number. When a
simulation is terminated, a rollout is performed starting from the
final particle 𝑝′. The state of the final particle is propagated forward
with random actions for 𝑑max time steps. The rollout results in a
noisy estimate for the utility of taking the action 𝑎 𝑗 from 𝑝 (the
ancestor of 𝑝′). We update 𝑢 (𝑝, 𝑎 𝑗 ) to equal this estimate.

At the end of the simulation, we traverse the path of nodes taken
from the leaf back to the starting root node and add the created
particles to the corresponding nodes. The utility estimate 𝑢 (𝑝, 𝑎 𝑗 )

of taking the chosen action 𝑎 𝑗 (contained in the joint action 𝑎)
from particle 𝑝 is 𝑅 𝑗 (𝑠 (𝑝), 𝑎) +𝛾𝑢 (𝑝′, ·), where 𝑢 (𝑝′, ·) is the utility
estimate from the particle resulting from the propagation of 𝑝 . In
the root node this is combined with previous estimates to be the
average of computed estimates thus far. The propagation counter
𝑛(𝑝, 𝑎 𝑗 ) is increased by one.

3.2.5 Analysis. We provide a brief analysis of some basic aspects of
the algorithm’s performance. The number of forests when solving
a level 𝐿 I-POMDP that uses intentional models on all levels and
doesn’t have uncertainty about frames is 1+ (𝑛−1) + (𝑛−1) (𝑛−1) +
· · · + (𝑛 − 1)𝐿 =

∑𝐿
𝑘=0 (𝑛 − 1)𝑘 = 𝑂 (𝑛𝐿). This means that planning

time is exponential in the reasoning level and polynomial in the
number of agents. For the standard two-agent case the number
of forests is linear in the reasoning level. Each forest simulation
takes 𝑂 (𝑛) time since the beliefs of each agent need to be updated
after each forward step. Note, however, that the simulation time
scales superlinearly with the number of simulations done: in later
simulations there are more particles to weight during belief update
in each encountered node.

4 EXPERIMENTS AND RESULTS
Our goal is to investigate the behaviour of rational civilisations in
the universe. We do this by performing the following simulation
experiments with our model.

(1) How the morality of civilisations affects the actions taken.
We do this by varying the attack reward 𝑟𝑎 in the interval
[−0.2, 0.1]. We measure the proportion of time each action
is taken.
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(2) The statistical properties of the system when 𝑟𝑎 = 0. We
measure the lengths of streaks of attacks and non-attacks
and estimate the underlying distribution.

(3) Investigating pre-emptive attacks in a scenario where a
weaker civilisation is potentially surpassing a stronger one in
technological capability. We investigate the scenarios 𝑟𝑎 = 0
(“selfish” civilisations) and 𝑟𝑎 = −0.1 (“weakly universalist”
civilisations).

(4) Investigating the effect of uncertainty about others’ inten-
tions. We continue with the scenario of experiment 3, and
assume that civilisations are weakly universalist (𝑟𝑎 = −0.1).
In addition, we assume each agent thinks the other is selfish
(𝑟𝑎 = 0) with a 50% probability. We want to see if this cost
uncertainty elicits pre-emptive attacks.

The parameter values used in the experiments are shown in
Table 1 in Appendix C. We compare reasoning levels 1 and 2 to see
the effect of higher-order reasoning. The exception is experiment
4, where only reasoning level 2 is appropriate. All experiments
use two agents since the interactions in our model are essentially
pairwise. The length of simulations is a hundred time steps in
experiment 1 and two hundred in experiment 2. In experiments 3
and 4 only the optimal action from the initial belief is computed.
The appendix contains model sensitivity analysis (Appendix C) and
solver parameter values (Appendix D).

4.1 A Non-negative Attack Cost Leads to a
Warring Universe

Here, we investigate the overall behaviour of the system: how
often each action is selected by the civilisations. Both civilisations
𝑖 ∈ {1, 2} begin with an initial belief where 𝑖 knows its own state 𝑠𝑖
exactly but is uninformed about the other’s (∼𝑖) state. This means
that 𝑖 thinks 𝑠∼𝑖 is distributed according to 𝑝init. At reasoning level
2 we assume 𝑖 thinks ∼𝑖 is uninformed by the state (regardless of
𝑖’s own belief about the state). However, 𝑖 has no uncertainty about
the observational capabilities, rewards and transition function of ∼𝑖
and as such uses only the frame 𝜃∼𝑖,1 = (𝐴,𝑂∼𝑖 ,𝑇 , 𝑍∼𝑖 , 𝑅∼𝑖 ,𝐶∼𝑖 ).

The result of varying the attack reward is shown in Figure 2 (left).
It shows the proportions of attack actions over hundred time step
simulations. Hiding actions (not shown) are taken fairly consistently
around 10% of the time, independent of 𝑟𝑎 . The rest of the actions
are “no action” actions. We observe a transition at 𝑟𝑎 = 0. Above
this value, attacks make up roughly half of all the actions. The
reason for this proportion is that typically simulations in this reward
range have a strong civilisation that constantly attacks the weaker
civilisation. When the weak civilisation acts (roughly half of the
time), any attack attempts are counted as “no action” since the
stronger civilisation is not within its radius of influence. Below
the 𝑟𝑎 = 0 cut-off there are very few attacks. As we will see in
experiment 3 and 4, this does not mean that there are no attacks
at all; instead, they are performed only when they are deemed
necessary.

We examine the case of selfish civilisations, in other words 𝑟𝑎 = 0,
in experiment 2. Here attacks are costless and but also benefit-less.
We measure attack streaks (a series of consecutive attack actions)
and peaceful streaks (a series of non-attacks). We performed eight

−0.2 −0.1 0.0 0.1

Attack Reward (𝑟𝑎)
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1
Figure 2: Left: proportion of actions that are attacks. The
red shaded region shows a 95% confidence interval for the
average. Right: distributions of lengths of attack and non-
attack (peace) streaks. The dashed lines show the probability
mass functions of fitted geometric distributions.

simulations at both reasoning level 1 and 2. Figure 2 (right) illus-
trates the distribution of attack streaks observed. In both cases,
a geometric distribution is a reasonably good model for the data.
Based the estimated values of 𝑝 , and remembering that typically
a strong agent dominates a weaker one in simulations, we can
hypothesise the following. At 𝑟𝑎 = 0 our model is approximately
statistically equivalent to a situation where one of the civilisations
is chosen at random to act. When selected, the stronger civilisation
attacks with a probability of approximately 50%. The weaker civili-
sation may choose any action. This means that attacks happen with
a probability of approximately 25%, which is close to the estimated
25.5%. We find that frequent attacks mean the weak civilisation is,
indeed, very weak and thus the strong civilisation cannot plan far
enough into future to recognise the potential benefit of attacking
the weak civilisation preemptively.

4.2 Pre-Emptive Attacks Depend on How the
Other Civilisation is Modelled

Here, we attempt to investigate preemptive attacks: the fear that
another civilisation will surpass a civilisation in technological ca-
pacity and could therefore be a risk in the future (surpass scenario).
Let us denote the two civilisations in the scenario𝑊 (“weak”) and
𝑆 (“strong”). We generate an initial belief where the technology
level of𝑊 is lower than that of 𝑆 . In addition, we assign a proba-
bility to the belief that𝑊 surpasses 𝑆 . At reasoning level 1, with
probability 𝑝1surpass𝑊 will surpass 𝑆 within 𝑡surpass time steps. At
reasoning level 2, the civilisation (either𝑊 or 𝑆) believes that𝑊
will surpass with probability 𝑝2surpass and believes that the other
civilisation believes that the surpass will happen with probability
𝑝1surpass. For example, if we consider the situation from the point
of view of𝑊 and 𝑝2surpass = 𝑝1surpass = 1, then𝑊 is certain it will
surpass 𝑆 (𝑝2surpass = 1) and it believes 𝑆 is certain𝑊 will surpass
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Figure 3: Optimal actions for a level 1 civilisation in the sur-
pass scenario. Columns correspond to strong and weak civili-
sations. Rows show the actions when attack reward is 0 (civil-
isations are “selfish”) and -0.1 (civilisations are “weakly uni-
versalist”). The vertical axis shows the proportion of times
that different actions were chosen.

it (𝑝1surpass = 1). We still assume there is no uncertainty about the
frame of the other civilisation at reasoning level 2.

We solve the optimal action from this belief for each agent.
This is performed for different combinations of 𝑝1surpass, 𝑝2surpass
and 𝑡surpass. We investigate two scenarios: civilisations are selfish
(𝑟𝑎 = 0) and weakly universalist (𝑟𝑎 = −0.1). The result is shown
in Figure 3 for reasoning level 1. When attacking is free (top row),
𝑆 always attacks𝑊 before it gets the chance to grow stronger.𝑊
does not have good choices and mostly chooses between attack-
ing (unsuccessfully) and doing nothing. Hiding is avoided because
its only benefit is in changing the beliefs of 𝑆 , and at level 1𝑊
doesn’t model these beliefs. When attacking is costly (bottom row)
𝑆 employs a more sophisticated approach: it is more likely to attack
the more certain it is𝑊 will surpass.𝑊 abstains from attacking to
avoid the cost, but otherwise mostly chooses to do nothing.

Figure 4 shows the corresponding result for civilisations at rea-
soning level 2, where civilisations reason about each others’ beliefs.
When civilisations are selfish, 𝑆 still always attacks, independent
of what it believes𝑊 believes (top left graph). The top right graph,
corresponding to𝑊 in a selfish universe, is more intriguing. We
have to be careful in the interpretation here: the confidence inter-
vals (not shown) are in the range ±[0.14, 0.23] for all cells. Since the
usefulness of hiding comes from changing beliefs, we would expect
the frequency of hiding to depend only on the belief𝑊 has about
the beliefs of 𝑆 . There appears to be a region in the middle part of
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Figure 4: Probability of choosing select actions for a level 2
civilisation in the surpass scenario. For a strong civilisation
(left) attacking is shown: for a weak civilisation (right) hiding
is shown. Rows show the probabilities when attack reward is
0 (civilisations are selfish) and -0.1 (civilisations are weakly
universalist).

the belief space where hiding is most useful when𝑊 thinks this is
where 𝑆 is the most persuadable: hiding is more likely to take the
beliefs of 𝑆 to a part of the belief space where it does not think𝑊
will surpass it. The reason this explanation is incomplete is because,
as we saw in Figure 3 (top left), 𝑆 always attacks at level 1 when
there is a positive probability that it will be surpassed. A possible
explanation, then, is that the hiding action makes this probability
zero.

The bottom left graph corresponds to the frequency of 𝑆 attack-
ing𝑊 in a universe where both are weakly universalist. The graph
shows that 𝑆 never attacks. This is in contrast to Figure 3 (bottom
left), where the probability of attacking depends on the beliefs of 𝑆 .
This difference can be explained by considering the models of𝑊
that 𝑆 uses at reasoning levels 1 and 2. At level 1,𝑊 is modelled as a
level 0 civilisation, i.e. as taking random actions. Such a civilisation
is a threat post-surpass, since it can randomly choose to attack 𝑆 .
At reasoning level 2𝑊 is modelled as a level 1 civilisation. Such a
civilisation has nothing to gain from attacking 𝑆 , even if it surpasses
𝑆 : if that was the case, the now-weaker 𝑆 could not threaten it.

Finally, in a weakly universalist universe𝑊 almost never hides
(bottom right graph). Such a civilisation is playing against a level
1 𝑆 who attacks when it is reasonably certain it will be surpassed
(Figure 3, bottom left). A possible explanation for why hiding is
not optimal here is that while the upper part of this graph is where
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Figure 5: Probability of choosing select actions for a level 2
civilisation in the surpass scenario. For a strong civilisation
(left) attacking is shown: for a weak civilisation (right) hiding
is shown. Both civilisations are weakly universalist: they
have an attack reward 𝑟𝑎 = −0.1. However, both think that
the other’s attack reward is -0.1 (weakly universalist) with a
50% probability and 0 (selfish) with a 50% probability.

hiding could help deter attacks, it is also the part where 𝑆 is the
most certain about its belief and thus least persuadable.

4.3 Cost Uncertainty Promotes Pre-Emptive
attacks

Here we investigate the case where each civilisation assigns a 50%
probability to the other being selfish (𝑟𝑎 = 0) and an equal probabil-
ity to them being weakly universalist (𝑟𝑎 = −0.1). In the I-POMDP
framework this corresponds to the level 2 civilisation assigning
equal probabilities to the two possible frames of the other civilisa-
tion. These frames differ only in the reward function; otherwise
they are the same frame we have been using thus far. In our al-
gorithm we assign these frames randomly to the interactive state
samples representing the level 2 beliefs of the civilisation. The as-
signment is independent of the environment state in the interactive
state sample or the associated beliefs ascribed to the other agent.

The results are shown in Figure 5. It is best compared to the
bottom row of Figure 4. The left graph, which visualises how often
𝑆 would choose to attack in the surpass scenario, shows an interest-
ing difference. Namely, if 𝑆 is relatively certain that𝑊 will surpass
it (large 𝑝2surpass), then it sometimes engages in a pre-emptive at-
tack. The frequency with which this happens is up to around 23%,
although the confidence intervals (not shown) are large at slightly
under ±25%. While the exact frequencies are uncertain, the result
is qualitatively different to Figure 4: when there is no uncertainty
about the reward, 𝑆 never attacks. This difference is because a selfish
𝑊 that surpasses 𝑆 can be a danger to 𝑆 , prompting a pre-emptive
strike.

The fraction of times𝑊 chooses to hide (right graph) show a
similarly notable difference.𝑊 chooses to hide between 30-50%
of the time. While there is no discernible pattern in the action
choices as 𝑝2surpass and 𝑝1surpass vary (especially considering the
error margin of ±17 − 21%), this is again a qualitative difference
to Figure 4 (bottom right). It appears that hiding becomes more

rational once there is uncertainty about whether 𝑆 will launch
a pre-emptive attack. Essentially,𝑊 is uncertain about whether
it is interacting with a selfish level 1 civilisation (Figure 3, top
left) which always attacks or with a weakly universalist level 1
civilisation (Figure 3, bottom left) which only attacks when it is
relatively sure a surpass will happen. Again, we would expect the
frequency with which hiding actions are taken to only depend on
the beliefs𝑊 has about the beliefs of 𝑆 . It is not possible to reliably
assess this hypothesis due to large uncertainties in the data.

5 DISCUSSION
Our experiments revealed insights into the behaviour of rational
civilisations. If attacking is free, attacks are frequent. If attacking is
costly (due to moral considerations, for example), the number of
attacks significantly decreases. Even so, attacks are still possible.
Specifically, a strong civilisationmay engage in a pre-emptive attack
if it believes another will surpass it in strength and if it is uncertain
about the intentions of this growing civilisation. We found this
happens in two cases: when the strong civilisation doesn’t model
the other civilisation as a rational agent, and when it does but is
uncertain about how costly attacking is to the growing civilisation.
Out of all the experiments, this last scenario is perhaps the most
realistic. Based on this, we conclude that if our universe resem-
bles the the model built here, it seems possible for civilisations to
fall into the Hobbesian trap and attack out of fear. The findings
illuminate the Hobbesian nature of our modern society, where pre-
emptive war for control of resources from geopolitically weaker
nations is often observed. Further, Hobbesian traps may explain the
fragility of ceasefires, especially if the costs of attacks are low and
under uncertainty about the intent of the adversary. Under such
conditions, a well-coordinated international approach, facilitated
by international alliances such as the United Nations, is paramount
to preserve peace.

The applicability of these results to our universe hinges on the
validity of the assumptions built into our model. Perhaps the most
important is the assumption that civilisations in the universe act
rationally. Another founding assumption in our work is that civili-
sations cannot communicate with each other. While perfect trans-
lation of an alien language seems extremely challenging, it may be
possible for civilisations to communicate simpler messages such as
“I am not a threat”. Finally, one of the biggest assumptions is that
civilisations know of the existence and location of other civilisations
in the universe. This is clearly not a valid assumption: discovering
other intelligent life is incredibly challenging. In the real universe
hiding from stronger, yet-unknown civilisations and seeking hid-
den, unpredictable civilisations may be important features that are
not captured by our model.

Future work should concentrate on extending the results to more
than two agents. As discussed above, work should also commence
on investigating the applicability of open agent models – models
where agents are uncertain about the set of interacting agents – to
our work.

6 SUPPLEMENTARY MATERIAL
The code [14] and appendices [15] are available.
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