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ABSTRACT
We present a new computing model for intrinsic rewards in

reinforcement learning that addresses the limitations of existing

surprise-driven explorations. The reward is the novelty of the
surprise rather than the surprise norm. We estimate the surprise

novelty as retrieval errors of a memory network wherein

the memory stores and reconstructs surprises. Our surprise

memory (SM) augments the capability of surprise-based intrinsic

motivators, maintaining the agent’s interest in exciting exploration

while reducing unwanted attraction to unpredictable or noisy

observations. Our experiments demonstrate that the SM combined

with various surprise predictors exhibits efficient exploring

behaviors and significantly boosts the final performance in

sparse reward environments, including Noisy-TV, navigation and

challenging Atari games.
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1 INTRODUCTION
What motivates agents to explore? Successfully answering this

question would enable agents to learn efficiently in formidable

tasks. Random explorations such as 𝜖-greedy are inefficient in high

dimensional cases, failing to learn despite training for hundreds of

million steps in sparse reward games [5]. Alternative approaches

propose to use intrinsic motivation to aid exploration by adding

bonuses to the environment’s rewards [5, 33]. The intrinsic reward

is often proportional to the novelty of the visiting state: it is high
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if the state is novel (e.g. different from the past ones [2, 3]) or less

frequently visited [5, 35].

Another view of intrinsic motivation is from surprise, which

refers to the result of the experience being unexpected, and is

determined by the discrepancy between the expectation (from the

agent’s prediction) and observed reality [4, 31]. Technically, surprise

is the difference between prediction and observation representation

vectors. The norm of the residual (i.e. prediction error) is used as the

intrinsic reward. Here, wewill use the terms “surprise” and “surprise

norm” to refer to the residual vector and its norm, respectively.

Recent works have estimated surprise with various predictive

models such as dynamics [33], episodic reachability [29] and

inverse dynamics [25]; and achieved significant improvements with

surprise norm [7]. However, surprise-based agents tend to be overly

curious about noisy or unpredictable observations [16, 30]. For

example, consider an agent watching a television screen showing

white noise (noisy-TV problem). The TV is boring, yet the agent

cannot predict the screen’s content and will be attracted to the TV

due to its high surprise norm. This distraction or "fake surprise" is

common in partially observable Markov Decision Process (POMDP),

including navigation tasks and Atari games [8]. Many works have

addressed this issue by relying on the learning progress [1, 30]

or random network distillation (RND) [8]. However, the former is

computationally expensive, and the latter requires many samples

to perform well.

This paper overcomes the "fake surprise" issue by using surprise
novelty - a new concept that measures the uniqueness of surprise.

To identify surprise novelty, the agent needs to compare the current

surprise with surprises in past encounters. One way to do this is to

equip the agent with some kind of associative memory, which we

implement as an autoencoder whose task is to reconstruct a query

surprise. The lower the reconstruction error, the lower the surprise

novelty. A further mechanism is needed to deal with the rapid

changes in surprise structure within an episode. As an example, if

the agent meets the same surprise at two time steps, its surprise

novelty should decline, and with a simple autoencoder this will not

happen. To remedy this, we add an episodic memory, which stores

intra-episode surprises. Given the current surprise, this memory can

retrieve similar “surprises” presented earlier in the episode through

an attention mechanism. These surprises act as a context added to

the query to help the autoencoder better recognize whether the

query surprise has been encountered in the episode or not. The
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Figure 1: Montezuma Revenge: surprise novelty better reflects the originality of the environment than surprise norm. While
surprise norm can be significant even for dull events such as those in the dark room due to unpredictability, surprise novelty
tends to be less (3𝑟𝑑 and 6

𝑡ℎ image). On the other hand, surprise novelty can be higher in truly vivid states on the first visit to
the ladder and island rooms (1𝑠𝑡 and 2

𝑛𝑑 image) and reduced on the second visit (4𝑡ℎ and 5
𝑡ℎ image). Here, surprise novelty and

surprise norm are quantified and averaged over steps in each room.

error between the query and the autoencoder’s output is defined as

surprise novelty, to which the intrinsic reward is set proportionally.

We argue that using surprise novelty as an intrinsic reward is

better than surprise norm. As in POMDPs, surprise norms can be

very large since the agent cannot predict its environment perfectly,

yet there may exist patterns of prediction failure. If the agent can

remember these patterns, it will not feel surprised when similar

prediction errors appear regardless of the surprise norms. An

important emergent property of this architecture is that when

random observations are presented (e.g., white noise in the noisy-

TV problem), the autoencoder can act as an identity transformation

operator, thus effectively “passing the noise through” to reconstruct

it with low error. We conjecture that the autoencoder is able to do

this with the surprise rather than the observation as the surprise

space has lower variance, and we show this in our paper. Since

our memory system works on the surprise level, we need to adopt

current intrinsic motivation methods to generate surprises. The

surprise generator (SG) can be of any kind based on predictive

models mentioned earlier and is jointly trained with the memory

to optimize its own loss function. To train the surprise memory

(SM), we optimize the memory’s parameters to minimize the

reconstruction error.

Our contribution is two-fold:

• We propose a new concept of surprise novelty for intrinsic

motivation. We argue that it reflects better the environment

originality than surprise norm (see motivating graphics Fig.

1).

• We design a novel memory system, named Surprise

Memory (SM) that consists of an autoencoder associative

memory and an attention-based episodic memory. Our two-

memory system estimates surprise novelty within and across

episodes.

In our experiments, the SM helps RND [8] perform well in our

challenging noisy-TV problem while RND alone performs poorly.

Not only with RND, we consistently demonstrate significant

performance gain when coupling three different SGs with our SM

in sparse-reward tasks. Finally, in hard exploration Atari games, we

boost the scores of 2 strong SGs, resulting in better performance

under the low-sample regime.

2 METHODS
2.1 Surprise Novelty
Surprise is the difference between expectation and observation

[11]. If a surprise repeats, it is no longer a surprise. Based on this

intuition, we hypothesize that surprises can be characterized by

their novelties, and an agent’s curiosity is driven by the surprise

novelty rather than the surprising magnitude. Moreover, surprise

novelty should be robust against noises: it is small even for random

observations. For example, watching a random-channel TV can

always be full of surprises as we cannot expect which channel will

appear next. However, the agent should soon find it boring since

the surprise of random noises reoccurs repeatedly, and the channels

are entirely unpredictable.

We propose using a memory-augmented neural network

(MANN) to measure surprise novelty. The memory remembers

past surprise patterns, and if a surprise can be retrieved from

the memory, it is not novel, and the intrinsic motivation should

be small. The memory can also be viewed as a reconstruction

network. The network can pass its inputs through for random,

pattern-free surprises, making them retrievable. Surprise novelty

has an interesting property: if some event is unsurprising (the

expectation-reality residual is

−→
0 ), its surprise (

−→
0 with norm 0) is

always perfectly retrievable (surprise novelty is 0). In other words,

low surprise norm means low surprise novelty. On the contrary,

high surprise norm can have little surprise novelty as long as

the surprise can be retrieved from the memory either through

associative recall or pass-through mechanism. Another property

is that the variance of surprise is generally lower than that of

observation (state), potentially making the learning on surprise

space easier. This property is formally stated as follows.
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Figure 2: Surprise Generator+Surprise Memory (SG+SM). The SG takes input 𝐼𝑡 from the environment to estimate the surprise
𝑢𝑡 at state 𝑠𝑡 . The SM consists of two modules: an episodic memory (M) and an autoencoder network (W).M is slot-based,
storing past surprises within the episode. At timestep 𝑡 , given surprise 𝑢𝑡 ,M retrieves read-out 𝑢𝑒𝑡 to form a query surprise
𝑞𝑡 =

[
𝑢𝑒𝑡 , 𝑢𝑡

]
toW.W reconstructs the query and takes the reconstruction error (surprise novelty) as the intrinsic reward 𝑟 𝑖𝑡 .

Proposition 1. Let 𝑋 and𝑈 be random variables representing the
observation and surprise at the same timestep, respectively. Under an
imperfect SG, the following inequality holds:

∀𝑖 :
(
𝜎𝑋𝑖

)
2

≥
(
𝜎𝑈𝑖

)
2

where
(
𝜎𝑋
𝑖

)
2

and
(
𝜎𝑈
𝑖

)
2

denote the 𝑖-th diagonal elements of var(𝑋 )
and var(𝑈 ), respectively.

Proof. See Appendix E. □

2.2 Surprise Generator
Since our MANN requires surprises for its operation, it is built upon

a prediction model, which will be referred to as Surprise Generators

(SG). In this paper, we adopt many well-known SGs (e.g. RND [8]

and ICM [25]) to predict the observation, compute the surprise

𝑢𝑡 for every step in the environment. The surprise norm is the

Euclidean distance between the expectation and the reality:

∥𝑢𝑡 ∥ = ∥𝑆𝐺 (𝐼𝑡 ) −𝑂𝑡 ∥ (1)

where 𝑢𝑡 ∈ R𝑛
is the surprise vector of size 𝑛, 𝐼𝑡 the input of the

SG at step 𝑡 of the episode, 𝑆𝐺 (𝐼𝑡 ) and 𝑂𝑡 the SG’s prediction

and the observation target, respectively. The input 𝐼𝑡 is specific

to the SG architecture choice, which can be the current (𝑠𝑡 ) or

previous state, action (𝑠𝑡−1, 𝑎𝑡 ). The observation target𝑂𝑡 is usually

a transformation (can be identical or random) of the current state

𝑠𝑡 , which serves as the target for the SG’s prediction. The SG is

usually trained to minimize:

L𝑆𝐺 = E𝑡 [∥𝑢𝑡 ∥] (2)

Here, predictable observations have minor prediction errors or little

surprise. One issue is that a great surprise norm can be simply due

to noisy or distractive observations. Next, we propose a remedy for

this problem.

2.3 Surprise Memory
The surprise generated by the SG is stored and processed by a

memory network dubbed Surprise Memory (SM). It consists of

an episodic memoryM and an autoencoder networkW, jointly

optimized to reconstruct any surprise. At each timestep, the SM

receives a surprise 𝑢𝑡 from the SG module and reads content 𝑢𝑒𝑡
from the memoryM.

{
𝑢𝑒𝑡 , 𝑢𝑡

}
forms a surprise query 𝑞𝑡 toW to

retrieve the reconstructed 𝑞𝑡 . This reconstruction will be used to

estimate the novelty of surprises forming intrinsic rewards 𝑟 𝑖𝑡 . Fig.

2 summarizes the operations of the components of our proposed

method. Our 2 memory design effectively recovers surprise novelty

by handling intra and inter-episode surprise patterns thanks to

M andW, respectively.M can quickly adapt and recall surprises

that occur within an episode.W is slower and focuses more on

consistent surprise patterns across episodes during training.

Here the query 𝑞𝑡 can be directly set to the surprise 𝑢𝑡 . However,

this ignores the rapid change in surprise within an episode. Without

M, when the SG and W are fixed (during interaction with

environments), their outputs 𝑢𝑡 and 𝑞𝑡 stay the same for the same

input 𝐼𝑡 . Hence, the intrinsic reward 𝑟 𝑖𝑡 also stays the same. It

is undesirable since when the agent observes the same input at

different timesteps (e.g., 𝐼1 = 𝐼2), we expect its curiosity should

decrease in the second visit (𝑟 𝑖
1
<𝑟 𝑖

2
). Therefore, we design SM with

M to fix this issue.

The episodic memoryM stores representations of surprises

that the agent encounters during an episode. For simplicity,M is

implemented as a first-in-first-out queue whose size is fixed as 𝑁 .

Notably, the content ofM is wiped out at the end of each episode.

Its information is limited to a single episode.M can be viewed as

a matrix:M ∈ R𝑁×𝑑 , where 𝑑 is the size of the memory slot. We

denoteM ( 𝑗) as the 𝑗-th row in the memory, corresponding to the

surprise 𝑢𝑡− 𝑗 . To retrieve fromM a read-out 𝑢𝑒𝑡 that is close to 𝑢𝑡 ,

we perform content-based attention [14] to compute the attention

weight as𝑤𝑡 ( 𝑗) = (𝑢𝑡𝑄 )M( 𝑗 )⊤
∥ (𝑢𝑡𝑄 ) ∥ ∥M( 𝑗 ) ∥ . The read-out fromM is then

𝑢𝑒𝑡 = 𝑤𝑡M𝑉 ∈ R𝑛
. Here, 𝑄 ∈ R𝑛×𝑑

and 𝑉 ∈ R𝑑×𝑛 are learnable

weights mapping between the surprise and the memory space. To

force the read-out close to 𝑢𝑡 , we minimize:

LM = E𝑡
[𝑢𝑒𝑡 − 𝑢𝑡 ] (3)
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The read-out and the SG’s surprise form the query surprise toW:

𝑞𝑡 =
[
𝑢𝑒𝑡 , 𝑢𝑡

]
∈ R2𝑛

.M stores intra-episode surprises to assist the

autoencoder in preventing the agent from exploring “fake surprise”

within the episode. Our episodic memory formulation is unlike

prior KNN-based episodic memory [3] because our system learns to

enforce the memory retrieval error to be small. This is critical when

the representations stored inM can not be easily discriminated

if we only rely on unsupervised distance-based metrics. More

importantly, under our formulation, the retrieval error can still

be small even when the stored items in the memory differ from the

query. This helps detect the “fake surprise” when the query surprise

seems unlike those in the memory if considered individually, yet

can be approximated as weighted sum of the store surprises.

In general, since we optimize the parameters to reconstruct

𝑢𝑡 using past surprises in the episode, if the agent visits a state

whose surprise is predictable from those inM,

𝑢𝑒𝑡 − 𝑢𝑡  should be
small. Hence, the read-out context𝑢𝑒𝑡 contains no extra information

than 𝑢𝑡 and reconstructing 𝑞𝑡 from W becomes easier as it is

equivalent to reconstructing 𝑢𝑡 . In contrast, visiting diverse states

leads to a more novel read-out 𝑢𝑒𝑡 and makes it more challenging

to reconstruct 𝑞𝑡 , generally leading to higher intrinsic reward.

The autoencoder networkW can be viewed as an associative

memory of surprises that persist across episodes. At timestep 𝑡 in

any episode during training,W is queried with 𝑞𝑡 to produce a

reconstructed memory 𝑞𝑡 . The surprise novelty is determined as:

𝑟 𝑖𝑡 = ∥𝑞𝑡 − 𝑞𝑡 ∥ (4)

which is the norm of the surprise residual 𝑞𝑡 − 𝑞𝑡 . It will be
normalized and added to the external reward as an intrinsic reward

bonus. The details of computing and using normalized intrinsic

rewards can be found in Appendix C.

We implementW as a feed-forward neural network that learns

to reconstruct its own inputs. The query surprise is encoded to the

weights of the network via backpropagation as we minimize the

reconstruction loss below:

LW = E𝑡
[
𝑟 𝑖𝑡
]
= E𝑡 [∥W (𝑞𝑡 ) − 𝑞𝑡 ∥] (5)

Here, 𝑞𝑡 = W (𝑞𝑡 ). Intuitively, it is easier to retrieve non-

novel surprises experienced many times in past episodes. Thus,

the intrinsic reward is lower for states that leads to these

familiar surprises. On the contrary, rare surprises are harder to

retrieve, which results in high reconstruction errors and intrinsic

rewards. We note that autoencoder (AE) has been shown to

be equivalent to an associative memory that supports memory

encoding and retrieval through attractor dynamics [27]. Unlike

slot-based memories, AE has a fixed memory capacity, compresses

information and learns data representations. We could store the

surprise in a slot-based memory across episodes, but the size of

this memory would be autonomous, and the data would be stored

redundantly. Hence, the quality of the stored surprise will reduce

as more and more observations come in. On the other hand, AE can

efficiently compress surprises to latent representations and hold

them to its neural weights, and the surprise retrieval is optimized.

Besides, AE can learn to switch between 2 mechanisms: pass-

through and pattern retrieval, to optimally achieve its objective.

We cannot do that with slot-based memory. Readers can refer to

Algorithm 1 Intrinsic rewards computing via SG+SM framework.

Require: 𝑢𝑡 , and our surprise memory SM consisting of a slot-

based memoryM, parameters 𝑄 , 𝑉 , and a neural networkW
1: Compute L𝑆𝐺 = ∥𝑢𝑡 ∥
2: Query M with 𝑢𝑡 , retrieve 𝑢

𝑒
𝑡 = 𝑤𝑡M𝑉 where 𝑤𝑡 is the

attention weight

3: Compute LM = ∥𝑢𝑒𝑡 − 𝑢𝑡 .𝑑𝑒𝑡𝑎𝑐ℎ()∥
4: QueryW with 𝑞𝑡 = [𝑢𝑒𝑡 , 𝑢𝑡 ], retrieve 𝑞𝑡 =W(𝑞𝑡 )
5: Compute intrinsic reward 𝑟 𝑖𝑡 = 𝐿W = ∥𝑞𝑡 − 𝑞𝑡 .𝑑𝑒𝑡𝑎𝑐ℎ()∥
6: return L𝑆𝐺 , LM , 𝐿W

Algorithm 2 Jointly training SG+SM and the policy.

Require: buffer, policy 𝜋𝜃 , surprise-based predictor SG, and our

surprise memory SM consisting of a slot-based memoryM,

parameters 𝑄 , 𝑉 , and a neural networkW
1: Initialize 𝜋𝜃 , SG, 𝑄 ,W
2: for 𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 = 1, 2, ... do
3: for 𝑡 = 1, 2, ...𝑇 do
4: Execute policy 𝜋𝜃 to collect 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , forming input 𝐼𝑡 =

𝑠𝑡 , ... and target 𝑂𝑡

5: Compute surprise 𝑢𝑡 = 𝑆𝐺 (𝐼𝑡 ) −𝑂𝑡 .𝑑𝑒𝑡𝑎𝑐ℎ() (Eq. 1)
6: Compute intrinsic reward 𝑟 𝑖𝑡 using Algo. 1

7: Compute final reward 𝑟𝑡 ← 𝑟𝑡 + 𝛽𝑟 𝑖𝑡/𝑟𝑠𝑡𝑑𝑡

8: Add (𝐼𝑡 ,𝑂𝑡 , 𝑠𝑡−1, 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 ) to buffer

9: Add 𝑢𝑡𝑄 toM
10: if done episode then clearM
11: end for
12: for 𝑘 = 1, 2, .., 𝐾 do
13: Sample 𝐼𝑡 , 𝑂𝑡 from buffer

14: Compute surprise 𝑢𝑡 = 𝑆𝐺 (𝐼𝑡 ) −𝑂𝑡 .𝑑𝑒𝑡𝑎𝑐ℎ() (Eq. 1)
15: Compute L𝑆𝐺 , LM , 𝐿W using Algo. 1

16: Update SG, 𝑄 andW by minimizing the loss L = L𝑆𝐺 +
LM + LW

17: Update 𝜋𝜃 with sample (𝑠𝑡−1, 𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 ) from buffer using

backbone algorithms

18: end for
19: end for

Appendix A to see the architecture details and howW can be

interpreted as implementing associative memory.

The whole system SG+SM is trained end-to-end by minimizing

the following loss: L = L𝑆𝐺 + LM + LW . Here, we block the

gradients from LW backpropagated to the parameters of SG to

avoid trivial reconstructions of 𝑞𝑡 . The pseudocode of our algorithm

is presented in Algo. 1 and 2. We note that vector notations in the

algorithm are row vectors. For simplicity, the algorithm assumes

1 actor. In practice, our algorithm works with multiple actors and

mini-batch training. See Appendix C for explaination of 𝛽 and 𝑟𝑠𝑡𝑑 .

3 EXPERIMENTAL RESULTS
3.1 Noisy-TV: Robustness against Noisy

Observations
We use Noisy-TV, an environment designed to fool exploration

methods [8, 29], to confirm that our method can generate intrinsic
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Figure 3: Noisy-TV: (a) mean-normalized intrinsic reward (MNIR) produced by RND and RND+SM at 7 selected steps in an
episode. (b) Average task return (mean±std. over 5 runs) over 4 million training steps.

rewards that (1) are more robust to noises and (2) can discriminate

rare and common observations through surprise novelty. We

simulate this problem by employing a 3D maze environment with

a random map structure. The TV is not fixed in specific locations in

the maze to make it more challenging. Instead, the agent “brings”

the TV with it and can choose to watch TV anytime. Hence, there

are three basic actions (turn left, right, and move forward) plus

an action: watch TV. When taking this action, the agent will see a

white noise image sampled from standard normal distribution and

thus, the number of TV channels can be considered infinity. The

agent’s state is an image of its viewport, and its goal is to search

for a red box randomly placed in the maze (+1 reward if the agent

reaches the goal).

The main baseline is RND [8], a simple yet strong SG that

is claimed to obviate the stochastic problems of Noisy-TV. Our

SG+SM model uses RND as the SG, so we name it RND+SM. The

source code can be accessed on our GitHub repository at https:

//github.com/thaihungle/SM. Since our model and the baseline

share the same RND architecture, the difference in performance

must be attributed to our SM. We also include a disagreement-

based method (Disagreement) [26], which leverages the variance

of multiple dynamic predictors as the intrinsic reward. Finally, as

a reference, we use PPO without intrinsic reward as the vanilla

Baseline, which is not affected by the noisy TV traps.

The result demonstrates that the proposed SM outperforms

other intrinsic motivators by a significant margin, as shown in

Fig. 3 (b). Notably, SM improves RND performance by around

25 %, showcasing the impact of surprise novelty. The result also

shows that RND+SM outperforms the vanilla Baseline. Although

the improvement is moderate (0.9 vs 0.85), the result is remarkable

since the Noisy-TV is designed to fool intrinsic motivation methods

and among all, only RND+SM can outperform the vanilla Baseline.

Fig. 3 (a) illustrates the mean-normalized intrinsic rewards

(MNIR)
1
measured at different states in our Noisy-TV environment.

The first two states are noises, the following three states are

common walls, and the last two are ones where the agent sees

the box. The MNIR bars show that both models are attracted

mainly by the noisy TV, resulting in the highest MNIRs. However,

our model with SM suffers less from noisy TV distractions since

1
See Appendix C for more information on this metric.

its MNIR is lower than RND’s. We speculate that SM is able to

partially reconstruct the white-noise surprise via the pass-through

mechanism, making the normalized surprise novelty generally

smaller than the normalized surprise norm in this case. That

mechanism is enhanced in SM with surprise reconstruction (see

Appendix D.1 for explanation).

On the other hand, when observing red box, RND+SM shows

higher MNIR than RND. The difference between MNIR for common

and rare states is also more prominent in RND+SM than in

RND because RND prediction is not perfect even for common

observations, creating relatively significant surprise norms for

seeing walls. The SM fixes that issue by remembering surprise

patterns and successfully retrieving them, producing much smaller

surprise novelty compared to those of rare events like seeing red

box. Consequently, the agent with SM outperforms the other by a

massive margin in task rewards (Fig. 3 (b)).

As we visualize the number of watching TV actions and the value

of the intrinsic reward by RND+SM and RND over training time, we

realize that RND+SM helps the agent take fewer watching actions

and thus, collect smaller amounts of intrinsic rewards compared to

RND. See more in Appendix D.1.

3.2 MiniGrid: Compatibility with Different
Surprise Generators

We show the versatility of our framework SG+SM by applying SM

to 4 SG backbones: RND [8], ICM [25], NGU [3] and autoencoder-

AE (see Appendix D.2 for implementation details). We test the

models on three tasks fromMiniGrid environments: Key-Door (KD),

Dynamic-Obstacles (DO) and Lava-Crossing (LC) [10]. If the agent

reaches the goal in the tasks, it receives a +1 reward. Otherwise, it

can be punished with negative rewards if it collides with obstacles

or takes too much time to finish the task. These environments are

not as stochastic as the Noisy-TV but they still contain other types

of distraction. For example, in KD, the agent can be attracted to

irrelevant actions such as going around to drop and pick the key. In

DO, instead of going to the destination, the agentmay chase obstacle

balls flying around the map. In LC the agent can commit unsafe

actions like going near lava areas, which are different from typical

paths. In any case, due to reward sparsity, intrinsic motivation is

beneficial. However, surprise alone may not be enough to guide an
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Task

w/o intrinsic RND ICM NGU AE

reward w/o SM w/ SM w/o SM w/ SM w/o SM w/ SM w/o SM w/ SM

KD 0.0±0.0 48.3±26 79.3±4 5.9±5 4.7±3 64.4±3 83.4±4 1.4±1 91.2±6
DO -27.0±0.7 -13.6±8 70.8±11 -27.7±2 43.6±16 -23.9±3 48.6±28 -5.1±2 67.5±13
LC 78.0±1.7 25.0±35 71.1±5 56.2±40 84.6±1 42.2±40 69.5±5 29.0±6/ 70.9±2

Table 1: MiniGrid: test performance after 10 million training steps. The numbers are average task return×100 over 128 episodes
(mean±std. over 5 runs). Bold denotes the best results on each task. Italic denotes that SG+SM is better than SG regarding Cohen
effect size less than 0.5.

0

1

2

-10

2

4

(a) (b) (c)
Figure 4: Key-Door: (a) Example map in Key-Door where the light window is the agent’s view window (state). MNIR produced
for each cell in a manually created trajectory for RND+SM (b) and RND (c). The green arrows denote the agent’s direction at
each location. The brighter the cell, the higher MNIR assigned to the corresponding state.

efficient exploration since the observation can be too complicated

for SG to minimize its prediction error. Thus, the agent quickly

feels surprised, even in unimportant states.

Table 1 shows the average returns of the models for three

tasks. The Baseline is the PPO backbone trained without intrinsic

reward. RND, ICM, NGU and AE are SGs providing the PPO with

surprise-norm rewards while our method SG+SM uses surprise-

novelty rewards. The results demonstrate that models with SM

often outperform SG significantly and always contain the best

performers. Notably, in the LC task, SGs hinder the performance

of the Baseline because the agents are attracted to dangerous vivid

states, which are hard to predict but cause the agent’s death. The SM

models avoid this issue and outperform the Baseline for the case of

ICM+SM. Compared to AE, which computes intrinsic reward based

on the novelty of the state, AE+SM shows a much higher average

score in all tasks. That manifests the importance of modeling the

novelty of surprise instead of states.

Regarding the compatibility of our SM with different SGs, we

realize that if the SG is strong, SG+SM tends to have better

performance. For example, in LC task, ICM is the best SG, resulting

ICM+SM being the best performer. The exception is the AE SG

in KD task. We speculate that AE generates intrinsic rewards

as the reconstruction error, which can be more sensitive to the

state representation of specific tasks. In KD, the viewport of the

agent is almost empty. The state representations look similar

most of the time, leading to similar AE’s reconstruction errors

(surprise norm), even for special events (pick the key). Therefore,

AE performance is just slightly above the no-IR baseline. The

good thing is that other noisy states like throwing the key also

receive low IR. When equipped with SM, AE+SM differentiates the

reconstruction residual vectors, which can vary even when they

have similar norms (Appendix Fig. 8). Therefore, AE+SM can assign

high IR to special events while still providing low IR to noisy states,

which is optimal in this case.

To analyze the difference between the SG+SM and SG’s MNIR

structure, we visualize the MNIR for each cell in the map of Key-

Door in Figs. 4 (b) and (c). We create a synthetic trajectory that

scans through all the cells in the big room on the left and, at each

cell, uses RND+SM and RND models to compute the corresponding

surprise-norm and surprise-novelty MNIRs, respectively. As shown

in Fig. 4 (b), RND+SM selectively identifies truly surprising events,

where only a few cells have high surprise-novelty MNIR. Here, we

can visually detect three important events that receive the most

MNIR: seeing the key (bottom row), seeing the door side (in the

middle of the rightmost column) and approaching the front of the

door (the second and fourth rows). Other less important cells are

assigned very low MNIR. On the contrary, RND often gives high

surprise-norm MNIR to cells around important ones, which creates

a noisy MNIR map as in Fig. 4 (c). As a result, RND’s performance

is better than Baseline, yet far from that of RND+SM. Another

analysis of how surprise novelty discriminates against surprises

with similar norms is given in Appendix Fig. 8.

3.3 Atari: Sample-efficient Benchmark
We adopt the sample-efficiency Atari benchmark [17] on six

hard exploration games where the training budget is only 50
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Task EMI
♠

LWM
♠

RND
♠

NGU
♦

LWM
♦

LWM+SM
♦

RND
♦

RND+SM
♦

Freeway 33.8 30.8 33.3 2.6 31.1 31.6 22.2 22.2

Frostbite 7002 8409 2227 1751 8598 10258 2628 5073
Venture 646 998 707 790 985 1381 1081 1119
Gravitar 558 1376 546 839 1,242 1693 739 987
Solaris 2688 1268 2051 1103 1839 2065 2206 2420

Montezuma 387 2276 377 2062 2192 2269 2475 5187
Norm. Mean 61.4 80.6 42.2 31.2 80.5 97.0 50.7 74.8
Norm. Median 34.9 60.8 32.7 33.1 66.5 83.7 58.3 84.6

Table 2: Atari: average return over 128 episodes after 50 million training frames (mean over 5 runs). ♠ is from a prior work [12].
♦ is our run. The last two rows are mean and median human normalized scores. Bold denotes best results. Italic denotes that
SG+SM is significantly better than SG regarding Cohen effect size less than 0.5.

million frames. We use our SM to augment 2 SGs: RND [8] and

LWM [12]. Unlike RND, LWM uses a recurrent world model

and forward dynamics to generate surprises. Details of the SGs,

training and evaluation are in Appendix D.3. We run the SG

and SG+SM in the same codebase and setting. Table 2 reports

our and representative results from prior works, showing SM-

augmented models outperform their SG counterparts in all games

(same codebase). In Frostbite and Montezuma Revenge, RND+SM’s

score is almost twice as many as that of RND. For LWM+SM, games

such as Gravitar and Venture observe more than 40% improvement.

Overall, LWM+SM and RND+SM achieve the best mean and median

human normalized score, improving 16% and 22% w.r.t the best SGs,

respectively. Notably, RND+SM shows significant improvement

for the notorious Montezuma Revenge. We also test the episodic

memory baseline NGU to verify whether episodic memory on the

state level is good enough in such a challenging benchmark. The

result shows that NGU does not perform well within 50 million

training frames, resulting in human normalized scores much lower

than our LWM+SM and RND+SM.

We also verify the benefit of the SM in the long run for

Montezuma Revenge and Frostbite. As shown in Fig. 5 (a,b),

RND+SM still significantly outperforms RND after 200 million

training frames, achieving average scores of 10,000 and 9,000,

respectively. The result demonstrates the scalability of our proposed

method. When using RND and RND+SM to compute the average

MNIR in several rooms in Montezuma Revenge (Fig. 1), we realize

that SM makes MNIR higher for surprising events in rooms with

complex structures while depressing the MNIR of fake surprises in

dark rooms. Here, even in the dark room, the movement of agents

(human or spider) is hard to predict, leading to a high average MNIR.

On the contrary, the average MNIR of surprise novelty is reduced

if the prediction error can be recalled from the memory.

Finally, measuring the running time of the models, we notice

little computing overhead caused by our SM. On our Nvidia A100

GPUs, LWM and LWM+SM’s average time for one 50M training

are 11h 38m and 12h 10m, respectively. For one 200M training,

RND and RND+SM’s average times are 26h 24m and 28h 1m,

respectively. These correspond to only 7% more training time while

the performance gap is significant (4000 scores).

3.4 Ablation Study
Role of Memories Here, we use Minigrid’s Dynamic-Obstacle

task to study the role ofM andW in the SM (built upon RND

as the SG). DisablingW, we directly use ∥𝑞𝑡 ∥ =
[𝑢𝑒𝑡 , 𝑢𝑡 ] as the

intrinsic reward, and name this version: SM (noW). To ablate

the effect of M, we remove 𝑢𝑒𝑡 from 𝑞𝑡 and only use 𝑞𝑡 = 𝑢𝑡
as the query to W, forming the version: SM (no M). We also

consider different episodic memory capacities and slot sizes 𝑁 -𝑑=

{32 − 4, 128 − 16, 1024 − 64}. As 𝑁 and 𝑑 increase, the short-term

context expands and more past surprise information is considered

in the attention. In theory, a bigM is helpful to capture long-term

and more accurate context for constructing the surprise query.

Fig. 5 (c) depicts the performance curves of the methods after

10 million training steps. SM (noW) and SM (noM) show weak

signs of learning, confirming the necessity of both modules in this

task. Increasing 𝑁 -𝑑 from 32 − 4 to 1024 − 64 improves the final

performance. However, 1024 − 64 is not significantly better than

128−16, perhaps because it is unlikely to have similar surprises that

are more than 128 steps apart. Thus, a larger attention span does

not provide a benefit. As a result, we keep using 𝑁 = 128 and 𝑑 = 16

in all other experiments for faster computing. We also verify the

necessity ofM andW in Montezuma Revenge, Frostbite, Venture

and illustrate howM generates lower MNIR when 2 similar event

occurs in the same episode in Key-Door (see Appendix D.4).

No Task Reward In this experiment, we remove task rewards

and merely evaluate the agent’s ability to explore using intrinsic

rewards. The task is to navigate 3D rooms and get a +1 reward

for picking an object [9]. The state is the agent’s image view, and

there is no noise. Without task rewards, it is crucial to maintain the

agent’s interest in the unique events of seeing the objects. In this

partially observable environment, surprise-prediction methods may

struggle to explore even without noise due to a lack of information

for good predictions, leading to usually high prediction errors. For

this testbed, we evaluate random exploration agent (Baseline), RND

and RND+SM in 2 settings: 1 room with three objects (easy), and 4

rooms with one object (hard).

To see the difference among the models, we compare the

cumulative task rewards over 100 million steps (see Appendix D.4

for details). RND is even worse than Baseline in the easy setting

because predicting causes high biases (intrinsic rewards) towards

the unpredictable, hindering exploration if the map is simple. In
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Figure 5: (a,b) Atari long runs over 200 million frames: average return over 128 episodes. (c) Ablation study on SM’s components.
(d) MiniWorld exploration without task reward: Cumulative task returns over 100 million training steps for the hard setting.
The learning curves are mean±std. over 5 runs.

contrast, RND+SM uses surprise novelty, generally showing smaller

intrinsic rewards (see Appendix Fig. 12 (right)). Consequently, our

method consistently demonstrates significant improvements over

other baselines (see Fig. 5 (d) for the hard setting).

4 RELATEDWORKS
Intrinsic motivation approaches usually give the agent reward

bonuses for visiting novel states to encourage exploration. The

bonus is proportional to the mismatch between the predicted and

reality, also known as surprise [31]. One kind of predictive model

is the dynamics model, wherein the surprise is the error of the

models as predicting the next state given the current state and

action [1, 33]. One critical problem of these approaches is the

unwanted bias towards transitions where the prediction target

is a stochastic function of the inputs, commonly found in partially

observable environments. Recent works focus on improving the

features of the predictor’s input by adopting representation learning

mechanisms such as inverse dynamics [25], variational autoencoder,

random/pixel features [7], or whitening transform [12]. Although

better representations may improve the reward bonus, they cannot

completely solve the problem of stochastic dynamics and thus, fail

in extreme cases such as the noisy-TV problem [8].

Besides dynamics prediction, several works propose to predict

other quantities as functions of the current state by using

autoencoder [24], episodic memory [29], and random network

[8]. Burda et al. (2018) claimed that using a deterministic random

target network is beneficial in overcoming stochasticity issues.

Other methods combine this idea with episodic memory and other

techniques, achieving good results in large-scale experiments [2, 3].

From an information theory perspective, the notation of surprise

can be linked to information gain or uncertainty, and predictive

models can be treated as parameterized distributions [1, 15, 34].

Furthermore, to prevent the agent from unpredictable observations,

the reward bonus can be measured by the progress of the model’s

prediction [1, 23, 30] or disagreement through multiple dynamic

models [26, 32]. However, these methods are complicated and hard

to scale, requiring heavy computing. A different angle to handle

stochastic observations during exploration is surprsie minimization

[6, 28]. In this direction, the agents get bigger rewards for seeing

more familiar states. Such a strategy is somewhat opposite to

our approach and suitable for unstable environments where the

randomness occurs separately from the agents’ actions.

These earlier works use surprise as an incentive for exploration

and differ from our principle that utilizes surprise novelty. Also,

our work augments these existing works with a surprise memory

module and can be used as a generic plug-in improvement for

surprise-based models. We note that our memory formulation

differs from the memory-based novelty concept using episodic

memory [3], momentum memory [13], or counting [5, 35] because

our memory operates on the surprise level, not the state level.

Moreover, our utilization of memory to store surprise novelty

represents a novel approach compared to other memory-based

RL methods that typically use memory for storing trajectories [20],

policies [19, 22], and hyperparameters [18]. In ourwork, exploration

is discouraged not only in frequently visited states but also in states

whose surprises can be reconstructed using SM. Our work provides

a more general and learnable novelty detection mechanism, which

is more flexible than counting lookup table.

5 DISCUSSION
This paper presents Surprise Generator-Surprise Memory (SG+SM)

framework to compute surprise novelty as an intrinsic motivation

for the reinforcement learning agent. Exploring with surprise

novelty is beneficial when there are repeated patterns of surprises

or random observations. In Noisy-TV, our SG+SM can harness the

agent’s tendency to visit noisy states such as watching random TV

channels while encouraging it to explore rare events with distinctive

surprises. We empirically show that our SM can supplement four

surprise-based SGs to achieve more rewards in fewer training

steps in three grid-world environments. In 3D navigation without

external reward, ourmethod significantly outperforms the baselines.

On two strong SGs, our SM also achieve superior results in hard-

exploration Atari games within 50 million training frames. Even in

the long run, our method maintains a clear performance gap from

the baselines, as shown in Montezuma Revenge and Frostbite.
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