
Policy Learning for Off-Dynamics RL with Deficient Support
Linh Le Pham Van

Applied Artificial Intelligence

Institute, Deakin University

Geelong, Australia

l.le@deakin.edu.au

Hung The Tran

Applied Artificial Intelligence

Institute, Deakin University

Geelong, Australia

hung.tranthe@deakin.edu.au

Sunil Gupta

Applied Artificial Intelligence

Institute, Deakin University

Geelong, Australia

sunil.gupta@deakin.edu.au

ABSTRACT
Reinforcement Learning (RL) can effectively learn complex policies.

However, learning these policies often demands extensive trial-

and-error interactions with the environment. In many real-world

scenarios, this approach is not practical due to the high costs of

data collection and safety concerns. As a result, a common strategy

is to transfer a policy trained in a low-cost, rapid source simu-

lator to a real-world target environment. However, this process

poses challenges. Simulators, no matter how advanced, cannot per-

fectly replicate the intricacies of the real world, leading to dynamics

discrepancies between the source and target environments. Past

research posited that the source domain must encompass all possi-

ble target transitions, a condition we term full support. However,

expecting full support is often unrealistic, especially in scenarios

where significant dynamics discrepancies arise. In this paper, our

emphasis shifts to addressing large dynamics mismatch adaptation.

We move away from the stringent full support condition of earlier

research, focusing instead on crafting an effective policy for the

target domain. Our proposed approach is simple but effective. It is

anchored in the central concepts of the skewing and extension of

source support towards target support to mitigate support deficien-

cies. Through comprehensive testing on a varied set of benchmarks,

ourmethod’s efficacy stands out, showcasing notable improvements

over previous techniques.
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1 INTRODUCTION
Reinforcement Learning (RL) has shown its capacity to acquire

intricate behaviors in numerous real-world challenges [12, 16, 23].

However, it requires numerous trial-and-error interactions with the

environment, which may not be feasible due to the high costs of

data collection or safety concerns in many real-world scenarios (e.g.

robotics, autonomous driving, medical treatment, etc). Training
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the policy in an alternative source environment, e.g. a simulator,

which is both safer and faster, and using a limited set of data from

the real-world target environment has, therefore, become a com-

mon approach. This approach is usually known as Off-Dynamics

Reinforcement Learning [6].

Previous work on this problem includes [1, 3, 15, 17]. Ljung [15]

and Chebotar et al. [3] propose an approach to align the source dy-

namics to the target dynamics by real-world data using the system

identification method. These methods require a detailed under-

standing of the target domain (e.g. knowing the physics behind the

systems). Peng et al. [17] train the policy on a set of randomized

simulators to yield a robust policy. Again, the set of randomizations

is chosen carefully based on the detailed understanding of the target

domain. The requirement of having a detailed understanding of

target and source domains limits the applicability of such methods.

Thus new methods that do not rely on such detailed knowledge are
required.

The other recent works such as [4, 5, 9, 10] learn the target pol-

icy via learning an action transformation function which maps the

actions suggested by the source policy to make them suitable for

the target domain. In a related approach, Eysenbach et al. [6], Liu

et al. [14] use the dynamics discrepancy term as an additional

reward to prevent the policy from exploiting the dynamics mis-

match area. However, all these works make a strong assumption

that the source domain (e.g. a simulator) encompasses all possible

target (real-world) transitions, a condition which we call Full sup-
port. However, full support condition rarely holds in practice as a

simulator no matter how advanced cannot perfectly replicate the

intricacies of the real world, and thus can not cover all the transi-

tions in the target domain. For example, an autonomous driving

vehicle may face changed conditions such as new kind of places

(i.e. highway, city, countryside), weather (i.e. sunny, rainy, hazy),

or time (i.e. day, night), resulting in only a fraction of target transi-

tions in the support of the source domain. In Section 5, we show

that the existing methods fail drastically when a source domain

does not fully support the target domain. Therefore, the problem of
off-dynamics reinforcement learning under deficient support remains
an open problem.

In this paper, we address the aforementioned challenges relaxing

both the detailed domain understanding and full support require-

ments in Off-dynamics RL to deal with source support deficiency.

Under this setting, we propose an effective method to reduce source

deficiency by creating a modified source domain using two opera-

tions: (1) by skewing the source transitions to support the target

domain with higher probability, (2) and extending the source transi-

tions towards the target transitions to improve the source support

for the target. The skewing is guided by an importance weighting

which is learned by solving an optimization problem and the source
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support extension is done by following the MixUp scheme [32]. Fi-

nally, we utilize both the skewed and mixup transitions and adjust

the rewards to compensate for the dynamics discrepancy between

the modified source domain and the target domain, and use this

modified data for target policy learning.

Our main contributions are:

• Weare the first to address the policy learning for off-dynamics

RL with deficient support, which is a novel problem and is

encountered in numerous real-world scenarios.

• We conduct a theoretical analysis of off-policy RL under

the setting of deficient support, offering valuable practical

insights for the development of effective policy learning

algorithm.

• We propose DADS, a practical and effective algorithm for

off-dynamics RL with deficient support via source skewing

and extension operations.

• Finally, we demonstrate the superior performance of our pro-

posed method over the existing methods through a diverse

set of experiments.

2 RELATEDWORK
Domain adaptation in RL: Domain adaptation in RL is needed

when there is a difference in the observation space, transition

dynamics, or reward function. In this paper, we study domain

adaptation with dynamics mismatch. System identification method

[3, 11, 15, 30] is a direct approach to align the source dynamics

with the observed target data. However, these methods typically

require a model of the source environment and a large set of target

data to adjust the parameters of the source environment to align it

with the target domain. Another approach, domain randomization

[1, 17, 19, 25], involves training RL policies over a collection of

randomized simulated source domains. However, this approach

often exhibits sensitivity to the selection of randomized parameters

or parameter distributions [6].

In contrast, ground action transformation techniques [4, 5, 9, 10,

31] eliminate the need for a parameterized simulator or manually

selected randomized dynamics parameters. These techniques aim

to rectify dynamics mismatch by learning action transformations of

the source policy using the target data. Such action transformation

techniques require the existence of an accurate action transforma-

tion policy, which may be infeasible when the dynamics mismatch

between the source and target is large e.g. when the source domain

lacks transitions seen in the target domain. In the absence of an

accurate action transformation policy, such methods exhibit poor

performance.

Xu et al. [29] introduce value-guided data filtering that removes

the transitions that have high value discrepancies during policy

training. Recently, Eysenbach et al. [6], Liu et al. [14] proposed

using dynamics discrepancy to correct the reward during training

the policy. However, these works rely on a full support condition,

that the source domain must contain all possible transitions in the

target domain, which rarely holds in real-world scenarios, thus

preventing handling the large dynamics gap problems. Our study

takes advantage of the reward correction but relaxes the full support

condition.

Mixup in RL:MixUp was first introduced in [32] in the super-

vised learning setting as a novel data augmentation method that

improves the generalizability of the deep learning models by train-

ing them on convex linear combinations of dataset samples. In the

RL problems, [13, 21, 28, 33] have demonstrated that MixUp helps

to improve the generalizability and sample efficiency of the learned

policy. From a different perspective, we employ MixUp to expand

the support of the source domain to cover the support of the target

domain, reducing the support deficiency problem.

Deficient support in Off-policy Bandits: The deficient sup-
port problem has been explored in off-policy bandit settings, where

it refers to the lack of data for certain actions under the logging

policy compared to the target policy [7, 18, 20, 27]. However, this

existing work focuses primarily on the policy space. In contrast,

our work tackles the novel challenge of deficient support in the

context of off-dynamics policy learning for reinforcement learning.

We address the gap between the source and target transition dy-

namics distributions, which is a critical issue for effective policy

adaptation in RL.

3 PROBLEM SETTING AND PRELIMINARIES
Background: In this section, we introduce our notation and a for-

mal definition of off-dynamics online policy learning. We consider

two infinite-horizon Markov Decision Processes (MDPs)M𝑠𝑟𝑐 :=

(S,A, 𝑃𝑠𝑟𝑐 , 𝑟 , 𝛾, 𝜌0) andM𝑡𝑎𝑟 := (S,A, 𝑃𝑡𝑎𝑟 , 𝑟 , 𝛾, 𝜌0) representing
source domain and target domain, respectively. In our setting, we

assume that the two domains share the same state space S, action
spaceA, reward function 𝑟 : S×A → R, discount factor 𝛾 ∈ [0, 1),
and the initial state distribution 𝜌0 : S → [0, 1]; the only difference
between two domains is in their transition dynamics, 𝑃𝑠𝑟𝑐 (𝑠′ |𝑠, 𝑎)
and 𝑃𝑡𝑎𝑟 (𝑠′ |𝑠, 𝑎).

A policy 𝜋 : S → P(A) is defined as a map from states to a

probability distribution over actions. Then, we denote the probabil-

ity that the policy 𝜋 encounters state 𝑠 at the time step 𝑡 in an MDP

M as P
𝜋
M,𝑡
(𝑠), and the normalized state-action occupancy of state-

action pair (𝑠, 𝑎) inM is 𝜌𝜋M (𝑠, 𝑎) := (1 − 𝛾)
∑∞
𝑡=0 P

𝜋
M,𝑡
(𝑠)𝜋 (𝑎 |𝑠).

The performance of a policy 𝜋 in theMDPM is defined as𝜂M (𝜋) =
E𝑠,𝑎∼𝜌𝜋M [𝑟 (𝑠, 𝑎)]. The value function on the MDPM and policy 𝜋

is defined as 𝑉 𝜋M (𝑠) := E𝜋,𝑃
[∑∞

𝑡=0 𝛾
𝑡𝑟 (𝑠𝑡 , 𝑎𝑡 ) | 𝑠0 = 𝑠

]
.

We focus on the Off-Dynamics Online (ODO) policy learning,

which is formally defined as follows:

Definition 1 (Off-Dynamics Online Policy Learning). Given
a source domain represented byM𝑠𝑟𝑐 and a target domain represented
byM𝑡𝑎𝑟 with distinct dynamics functions, our goal is to leverage
source interactions and a small number of target interactions to derive
a good policy that achieves high reward inM𝑡𝑎𝑟 .

Wehighlight that the previousmethods often require the assump-

tion of a full support condition, that implies every possible transition

in the target domainM𝑡𝑎𝑟 is covered by the source domainM𝑠𝑟𝑐 .

We formally define the full support condition as follows:
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Figure 1: Off-dynamics online policy learning with deficient support. Given the source domain and target domain with limited
online interaction, we propose skewing the source dynamics, which enables us to sample the source transitions that are closely
aligned with the target dynamics and employ MixUp procedure to expand the source support set towards the target support set.
Then we adopt the Reward correction to compensate the policy with an additional reward for encouraging dynamic-consistent
behaviors.

Definition 2 (Full support). We say that a source domainM𝑠𝑟𝑐

has full support for a target domainM𝑡𝑎𝑟 if every transition with non-
zero probability in the target domainM𝑡𝑎𝑟 also has a non-zero proba-
bility in the source domainM𝑠𝑟𝑐 : 𝑃𝑡𝑎𝑟 (𝑠′ |𝑠, 𝑎) > 0⇒ 𝑃𝑠𝑟𝑐 (𝑠′ |𝑠, 𝑎) >
0,∀𝑠, 𝑠′ ∈ S, 𝑎 ∈ A .

In the ODO policy learning with the full support condition holds,

the target performance can be guaranteed as follows:

Proposition 3 (Performance bound). LetM𝑠𝑟𝑐 andM𝑡𝑎𝑟 are
the source domain and target domain with different dynamics 𝑃𝑠𝑟𝑐
and 𝑃𝑡𝑎𝑟 respectively. The performance difference of any policy 𝜋 in
M𝑠𝑟𝑐 andM𝑡𝑎𝑟 can be bounded as follows:��𝜂𝑀𝑡𝑎𝑟

(𝜋) − 𝜂𝑀𝑠𝑟𝑐
(𝜋)

��
≤ 𝛾𝑟𝑚𝑎𝑥

(1 − 𝛾)2
·
√︃
2E𝜌𝜋𝑡𝑎𝑟 [𝐷𝐾𝐿 (𝑃𝑡𝑎𝑟 (.|𝑠, 𝑎), 𝑃𝑠𝑟𝑐 (.|𝑠, 𝑎))]︸                                               ︷︷                                               ︸

(𝑎)

. (1)

The performance bound, as outlined in Proposition 3, depends

on the dynamics discrepancy term (𝑎). A recent approach called

DARC [6] uses the dynamics discrepancy between source and target

domains as an incremental reward, to prevent the policy from

exploiting areas in the source that have a high dynamics mismatch

with the target domain.

However, the full support condition is stringent and might not

hold in many real-world scenarios. When this condition is not met,

it results in the challenge of deficient support, which we formally

define as:

Definition 4 (Deficient support). We say source MDPM𝑠𝑟𝑐

has support deficiency for target MDP M𝑡𝑎𝑟 if there exists a set

{(𝑠′, 𝑠, 𝑎)} ≠ ∅ such that for each transition (𝑠′, 𝑠, 𝑎) belongs to it, we
have 𝑃𝑡𝑎𝑟 (𝑠′ |𝑠, 𝑎) > 0 but 𝑃𝑠𝑟𝑐 (𝑠′ |𝑠, 𝑎) = 0.

The deficient support assumption does not require the source

domain to encompass all potential target transitions. Thus, when

deficient support happens, it poses a challenge due to the uncovered

target areas. In this paper, we relax the full support assumption and

propose amethod for the off-dynamics online (ODO) policy learning

with deficient support.
Under the deficient support problem, we derive the performance

bound as follows:

Proposition 5 (Performance bound under Defficient Sup-

port). LetM𝑠𝑟𝑐 andM𝑡𝑎𝑟 are source domain and target domain
with different dynamics 𝑃𝑠𝑟𝑐 and 𝑃𝑡𝑎𝑟 respectively. For each state-
action pair 𝑠, 𝑎, denote 𝑆0𝑠,𝑎 = {[𝑠′

0𝑖
, 𝑠′
0𝑗
]} contains intervals where

𝑃𝑠𝑟𝑐 (.|𝑠, 𝑎) = 0, and 𝑆1𝑠,𝑎 = {[𝑠′
1𝑖
, 𝑠′
1𝑗
]} includes intervals where

𝑃𝑠𝑟𝑐 (.|𝑠, 𝑎) > 0, and 𝑆0𝑠,𝑎 ∪ 𝑆1𝑠,𝑎 = 𝑠𝑢𝑝𝑝 (𝑃𝑡𝑎𝑟 (.|𝑠, 𝑎)). The perfor-
mance difference of any policy 𝜋 inM𝑠𝑟𝑐 andM𝑡𝑎𝑟 can be bounded
as follows:

|𝜂𝑡𝑎𝑟 (𝜋) − 𝜂𝑠𝑟𝑐 (𝜋) |

≤ 𝛾𝑟𝑚𝑎𝑥

(1 − 𝛾)2
· E𝜌𝜋𝑡𝑎𝑟 (𝑠,𝑎)


∑︁
𝑆1𝑠,𝑎

�����∫ 𝑠′
1𝑗

𝑠′
1𝑖

𝑃𝑡𝑎𝑟 (𝑠′ |𝑠, 𝑎) − 𝑃𝑠𝑟𝑐 (𝑠′ |𝑠, 𝑎)𝑑𝑠′
�����

+ 𝛾

1 − 𝛾 · E𝜌
𝜋
𝑡𝑎𝑟 (𝑠,𝑎)


∑︁
𝑆0𝑠,𝑎

∫ 𝑠′
0𝑗

𝑠′
0𝑖

𝑃𝑡𝑎𝑟 (𝑠′ |𝑠, 𝑎) ·
��𝑉 𝜋𝑠𝑟𝑐 (𝑠′)��𝑑𝑠′︸                                                           ︷︷                                                           ︸

support deficiency

.

(2)
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Proposition 5 highlights the gap between𝜂M𝑡𝑎𝑟
(𝜋) and𝜂M𝑠𝑟𝑐

(𝜋)
due to support deficiency. Notably, the In Eq (1) emerges as a special

instance of In Eq (2) when full support is assumed. In this special

case, the support deficiency term in (2), which quantifies the target

value𝑉𝑡𝑎𝑟 on the unsupported set, vanishes. Based on Proposition 5,

guaranteeing performance on the target domain hinges on minimiz-

ing both the dynamics discrepancy within the supported region and

the support deficiency. With this dual objective in mind, the next

section introduces our method aimed at simultaneously reducing

both terms to ensure robust performance guarantees.

4 PROPOSED METHOD
In this section, we introduce a novel approach to address the chal-

lenge of off-dynamics policy learning in the presence of support

deficiency. Our method aims to create a modified source domain

that has minimum source deficiency w.r.t to the target. Our method

has three primary steps: (1) skewing the source transitions to maxi-

mize its support overlap with the target domain; (2) extrapolating

the source transitions to extend the source support all the way up

to the target domain. This is done using the MixUp procedure by

creating new synthetic transitions between the source transitions

and the target transitions via their convex combinations; and (3)

combining the source and MixUp transitions to form a modified

source transition set, adjusting their rewards similarly to [6], and

use these modified transitions to train the target policy. Our method

is depicted in Figure 1. Our approach aims to minimize the second

and third terms in the performance bound in In Eq (2). The sec-

ond term is minimised by iteratively skewing the source support

towards the target. The third term in the performance bound is

minimized by extending the source support toward the target via

mix up as it can generate the samples in the unsupported region.

4.1 Skewing Source Dynamics
We present the skewing source dynamics strategy, which enables

us to sample the source transitions that are closely aligned with

the target dynamics. Specifically, we learn a dynamics distribu-

tion 𝑃 (𝑠′ |𝑠, 𝑎) that is close to the target dynamics distribution

𝑃𝑡𝑎𝑟 (𝑠′ |𝑠, 𝑎) but not significantly far from the source dynamics

𝑃𝑠𝑟𝑐 (𝑠′ |𝑠, 𝑎), measured in terms of the KL divergence. This is formu-

lated as the following constrained function optimization problem:

min

𝑃∈P
𝐷KL (𝑃 (.|𝑠, 𝑎) | |𝑃𝑡𝑎𝑟 (.|𝑠, 𝑎)) ∀𝑠 ∈ S, 𝑎 ∈ A .

s.t 𝐷KL (𝑃 (.|𝑠, 𝑎) | |𝑃𝑠𝑟𝑐 (.|𝑠, 𝑎)) ≤ 𝜖 ∀𝑠 ∈ S, 𝑎 ∈ A .∫
𝑠′
𝑃 (𝑠′ |𝑠, 𝑎)𝑑𝑠′ = 1 ∀𝑠 ∈ S, 𝑎 ∈ A .

(3)

where P is a family of all transition dynamics distributions and

we have 𝑃𝑡𝑎𝑟 (.|𝑠, 𝑎) ∈ P and 𝑃𝑠𝑟𝑐 (.|𝑠, 𝑎) ∈ P. The first constraint
with KL divergence and the parameter 𝜖 regularizes the dynamics

function 𝑃 (𝑠′ |𝑠, 𝑎) to stay close to the source dynamics 𝑃𝑠𝑟𝑐 (𝑠′ |𝑠, 𝑎),
while the second constraint is to ensure 𝑃 (𝑠′ |𝑠, 𝑎) is a valid proba-

bility density function.

To solve the constrained optimization problem, we create a

Lagrangian-based objective function and then solve for the op-

timal transition dynamics 𝑃∗ (𝑠′ |𝑠, 𝑎) by taking a derivative and

equating it to zero. With a few steps of analysis, we obtain the

optimal skewed dynamics function 𝑃∗ (𝑠′ |𝑠, 𝑎) as follows:

𝑃∗ (𝑠′ |𝑠, 𝑎) ∝ 𝑃𝑠𝑟𝑐 (𝑠′ |𝑠, 𝑎) exp[
1

1 + 𝜇 log

𝑃𝑡𝑎𝑟 (𝑠′ |𝑠, 𝑎)
𝑃𝑠𝑟𝑐 (𝑠′ |𝑠, 𝑎)

] . (4)

The parameter 𝜇 serves as the Lagrange multiplier linked to the KL

constraint in (3), and it essentially dictates the degree of constraint

strength or how far the optimal solution can deviate from the source.

The full derivation is provided in the Appendix.
To effectively sample the skewed distribution 𝑃∗, we leverage the

existing source domain data 𝑃𝑠𝑟𝑐 . We achieve this by re-weighting

samples from 𝑃𝑠𝑟𝑐 based on the density ratio between the skewed

transition dynamics and the original (source) transition dynamics.

In particular, we propose a sampling approach where source tran-

sitions (𝑠, 𝑎, 𝑠′) are chosen with probabilities proportional to the

density ratio𝑤 (𝑠, 𝑎, 𝑠′) as follows:

𝑤 (𝑠, 𝑎, 𝑠′) = exp

[
1

1 + 𝜇 (log
𝑃𝑡𝑎𝑟 (𝑠′ |𝑠, 𝑎)
𝑃𝑠𝑟𝑐 (𝑠′ |𝑠, 𝑎)

)
]

∝ 𝑃∗ (𝑠′ |𝑠, 𝑎)/𝑃𝑠𝑟𝑐 (𝑠′ |𝑠, 𝑎).
(5)

Concretely, we define the sampling probability of the 𝑖-th source

transition (𝑠, 𝑎, 𝑠′) as follows:

𝑝𝑖 (𝑠, 𝑎, 𝑠′) = 𝑤𝑖 (𝑠, 𝑎, 𝑠′)∑
𝑘 𝑤

𝑘 (𝑠, 𝑎, 𝑠′)
. (6)

where𝑤𝑖 (𝑠, 𝑎, 𝑠′) is the priority weight of source transition 𝑖 .

Estimating the ratio of source and target transition dynam-
ics: Calculating the sampling probability of each source transition

requires estimating the density ratio between the target dynamics

and the source dynamics for each source transition. Similar to [6],

we adopt the probabilistic classification technique [24] to estimate

this density ratio. Specifically, we use a pair of binary classifiers,

𝑞𝜃𝑆𝐴𝑆
(.|𝑠, 𝑎, 𝑠′) and 𝑞𝜃𝑆𝐴 (.|𝑠, 𝑎), which distinguish whether a tran-

sition (𝑠, 𝑎, 𝑠′) (or a state-action pair (𝑠, 𝑎)) comes from the source

or target domain. The density ratio is computed as follows:

log

𝑃𝑡𝑎𝑟 (𝑠′ |𝑠, 𝑎)
𝑃𝑠𝑟𝑐 (𝑠′ |𝑠, 𝑎)

= log

𝑞𝜃𝑆𝐴𝑆
(target|𝑠, 𝑎, 𝑠′)

𝑞𝜃𝑆𝐴𝑆
(source|𝑠, 𝑎, 𝑠′)

+ log
𝑞𝜃𝑆𝐴 (source|𝑠, 𝑎)
𝑞𝜃𝑆𝐴 (target|𝑠, 𝑎)

.

(7)

The two classifiers 𝑞𝜃𝑆𝐴𝑆
(.|𝑠, 𝑎, 𝑠′) and 𝑞𝜃𝑆𝐴 (.|𝑠, 𝑎) are learned with

the standard cross-entropy loss using the source and target data.

4.2 Extending Source Support
The deficient support presents the existence of uncovered target

areas. Our idea is to extend the source support toward the target

support by employing the MixUp procedure, thus filling the un-

covered target support. Specifically, we utilize the skewing source

transitions from the previous step and mix them up with target

transitions to create MixUp transitions. While we should ideally be

mixing up 𝑠′ from source and target domains conditioned on the

same state-action pair (𝑠, 𝑎), since we deal with continuous state

and action spaces, it is challenging to find an identical pair. Even a

nearest neighbor approach can result in fairly distant (𝑠, 𝑎) pairs
from the source and target domains. To avoid this problem, we mix

up the quadruples (𝑠, 𝑎, 𝑟, 𝑠′) of the source with those of the target.

Given a source transition 𝑥𝑠𝑟𝑐 = (𝑠, 𝑎, 𝑟, 𝑠′)𝑠𝑟𝑐 (obtained from

the skewing step) and a target transition 𝑥𝑡𝑎𝑟 = (𝑠, 𝑎, 𝑟, 𝑠′)𝑡𝑎𝑟 , we
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use MixUp to generate a synthetic transition by taking convex

combination between 𝑥𝑠𝑟𝑐 and 𝑥𝑡𝑎𝑟 as follows:

𝑥𝑚𝑖𝑥 = 𝜆𝑥𝑠𝑟𝑐 + (1 − 𝜆)𝑥𝑡𝑎𝑟 (8)

where 𝜆 is sampled from a Beta distribution as 𝜆 ∼ 𝐵(𝛼, 𝛼), with 𝛼 >

0. As suggested by [32], we set 𝛼 = 0.2. Note that if either source

or target transition encounters a terminal state, we do not employ

interpolation, and simply use the target transition instead. This is

mainly done to avoid non-binary terminal signal [21].

Let {𝑥𝑖𝑠𝑟𝑐 = (𝑠, 𝑎, 𝑟, 𝑠′)𝑖𝑠𝑟𝑐 }𝑁𝑖=1 be a batch of 𝑁 source transitions

sampled from the source data 𝐷𝑠𝑟𝑐 with probabilities 𝑝𝑖 (𝑠, 𝑎, 𝑠′)
as in Eq (6). We sample uniformly 𝑁 target transitions {𝑥𝑖𝑡𝑎𝑟 =

(𝑠, 𝑎, 𝑟, 𝑠′)𝑖𝑡𝑎𝑟 }𝑁𝑖=1 from the target data 𝐷𝑡𝑎𝑟 . We then sample a batch

{𝜆𝑖 }𝑁𝑖=1 from a Beta distribution, and perform MixUp using each

pair of source and target transitions.

4.3 Reward modification
While the modified source now supports the target transitions bet-

ter, the transition probability densities of the modified source and

target domain still may be different. Thus, following the scheme

in [6], we adjust the reward for each transition by adding an incre-

mental term Δ𝑟 , as follows:

Δ𝑟 (𝑠, 𝑎, 𝑠′) = log 𝑃𝑡𝑎𝑟 (𝑠′ |𝑠, 𝑎) − log 𝑃𝑚𝑠𝑟𝑐 (𝑠′ |𝑠, 𝑎) (9)

where 𝑃𝑚𝑠𝑟𝑐 (𝑠′ |𝑠, 𝑎) denotes the transition dynamics of the mod-

ified source. In practice, to obtain Δ𝑟 (𝑠, 𝑎, 𝑠′) for each transition

(𝑠, 𝑎, 𝑠′), we employ a similar density ratio estimate as in section

4.1, using two binary classifiers 𝑞𝜙𝑆𝐴𝑆
(.|𝑠, 𝑎, 𝑠′) and 𝑞𝜙𝑆𝐴 (.|𝑠, 𝑎) as

follows:

Δ𝑟 (𝑠, 𝑎, 𝑠′) = log

𝑞𝜙𝑆𝐴𝑆
(target|𝑠, 𝑎, 𝑠′)

𝑞𝜙𝑆𝐴𝑆
(modified source|𝑠, 𝑎, 𝑠′)

+ log
𝑞𝜙𝑆𝐴 (modified source|𝑠, 𝑎)

𝑞𝜙𝑆𝐴 (target|𝑠, 𝑎)
.

(10)

Then each transition in the batch of modified source transitions is

modified as (𝑠, 𝑎, 𝑟 + Δ𝑟, 𝑠′) and used to train the target policy.

4.4 Algorithm
We summarize the above steps as our proposed method in Al-

gorithm 1. We perform the skew operation in Lines 8 and 9, and

the MixUp procedure in Line 11. We perform reward correction in

Line 12 and learn two pairs of domain classifiers in Lines 13 and

14. Finally, in Line 15, we use a standard RL algorithm for policy

learning. In our experiment, we use Soft Actor-Critic (SAC) [8] algo-

rithm. To simplify the algorithm, we find that simply using a fixed

constant for the Lagrange multiplier 𝜇 is also effective, rather than

adaptively updating 𝜇. In the implementation, to sample efficiently

from Eq (6), we employ the sum-tree data structure similar to [22],

which allows 𝑂 (log𝑁 ) complexity for updates and sampling.

Discussion:We discuss the key signficance of our two opera-

tions: Skew and Extension. Skewing source transitions shifts their
probability mass towards the target transitions without changing

the source domain’s support or generating any new samples. Unlike

skewing, extension of source support using MixUp can generate

new synthetic samples from outside the source support closer to

the target domain. Both schemes have their individual strengths

Algorithm 1 Online Dynamics Adaptation with Deficient Support

in RL (DADS)

1: Input: Source MDPM𝑠𝑟𝑐 and targetM𝑡𝑎𝑟 ; ratio 𝑟 of experi-

ence from source vs. target; the batch size 𝑁 .

2: Initialize: The source data D𝑠𝑟𝑐 and the target data D𝑡𝑎𝑟 ;
policy 𝜋 ; parameters 𝜃 for classifiers that distinguish source

and target domain 𝑞𝜃𝑆𝐴𝑆
, 𝑞𝜃𝑆𝐴 ; and parameters 𝜙 for classifiers

that distinguish modified source and target domain 𝑞𝜙𝑆𝐴𝑆
, 𝑞𝜙𝑆𝐴 .

3: for 𝑡 = 1, . . . , num iterations do
4: D𝑠𝑟𝑐 ← D𝑠𝑟𝑐 ∪ ROLLOUT(𝜋,M𝑠𝑟𝑐 ).
5: if 𝑡 mod 𝑟 == 0 then
6: D𝑡𝑎𝑟 ← D𝑡𝑎𝑟 ∪ ROLLOUT(𝜋,M𝑡𝑎𝑟 ).
7: end if
8: Sample 𝑁 source transitions {(𝑠, 𝑎, 𝑟, 𝑠′)𝑖𝑠𝑟𝑐 }𝑁𝑖=1 with each

transition’s probability 𝑝𝑖 (𝑠, 𝑎, 𝑠′) computed via Eq (6) from

D𝑠𝑟𝑐 .
9: Update transition priority in 𝐷𝑠𝑜𝑢𝑟𝑐𝑒 via Eq (7).

10: Sample 𝑁 target transitions {(𝑠, 𝑎, 𝑟, 𝑠′)𝑖𝑡𝑎𝑟 }𝑁𝑖=1 uniformly

from D𝑡𝑎𝑟 .
11: Create MixUp transitions {(𝑠, 𝑎, 𝑟, 𝑠′)𝑖

𝑚𝑖𝑥
}𝑁
𝑖=1

←
MixUp({(𝑠, 𝑎, 𝑟, 𝑠′)𝑖𝑠𝑟𝑐 }𝑁𝑖=1, {(𝑠, 𝑎, 𝑟, 𝑠

′)𝑖𝑡𝑎𝑟 }𝑁𝑖=1) via Eq

(8).

12: Modify the reward for each transition in source and mixup

batch with Δ𝑟 via Eq (10).

13: Train the source-target classifiers 𝜃 ← 𝜃 −
𝜂∇𝜃Cross-entropyLoss(D𝑠𝑟𝑐 ,D𝑡𝑎𝑟 , 𝜃 ).

14: Train the modified_source-target classifiers 𝜙 ← 𝜙 −
𝜂∇𝜙Cross-entropyLoss(D𝑠𝑟𝑐 ,D𝑡𝑎𝑟 , 𝜙).

15: Train the policy 𝜋 with modified source and mixup tran-

sitions using any standard policy learning algorithm (e.g.

SAC).

16: end for
17: return 𝜋 .

and limitations. In particular, the skewing operation boosts the

sampling of source transitions that are close to the target domain.

However, these transitions can not fill the uncovered target areas

in the source domain. On the other hand, the MixUp operation

can generate novel synthetic samples that can expand the source

support to cover unseen target transitions and thus can bring signif-

icant improvement in target policy learning. However, a downside

can be that randomly mixing up a target transition with any source

transition may lead to synthetic samples that do not lie in the target

transition manifold, which could at times degrade the performance.

In our case, when we use skewing and MixUp together, skewing

helps to improve the performance of MixUp by rejecting the source

transitions that are unlikely to occur in the target domain before

mixing them. Thus, both skewing and Mixup have independent

and effective roles in our algorithm. We empirically demonstrate

their effectiveness in Section 5.
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Figure 2: Visualization of the source and target noise dis-
tributions in Walker benchmark in three distinct deficient
support levels.

5 EXPERIMENTS
In this section, we provide an empirical analysis of our proposed

approach across different levels of deficient support: small sup-

port overlap (small), medium support overlap (medium), and large

support overlap (large). Furthermore, through ablation studies, we

delve deeper into the significance of each component in our method.

Environments: We use four simulated robot benchmarks from

Mujoco Gym [2, 26]: Ant, HalfCheetah, Hopper and Walker. For

each benchmark, we establish three levels of deficient support be-

tween the source and target domains: small overlapping, medium

overlapping, and large overlapping. More specifically, for each

benchmark, we first sample the noise 𝜉 from a pre-defined dis-

tribution 𝑝𝜉 and then add it to 𝑠′ as follows:

𝑠′ ← 𝑠′ + 𝜉, where 𝜉 ∼ 𝑝𝜉 . (11)

We then update the value of the next state 𝑠′ in the environment.

By adding noises from distinct distributions with different support

sets, we simulate different levels of support deficiency between the

source and the target domain. Specifically, the noise applied to the

source domain only partially overlaps with the noise introduced to

the target domain. Thus, after adding different noises to the source

and target, the source dynamics has the support deficiency w.r.t the

target dynamics. Moreover, we adjust this overlapping region to

create three different levels of support deficiency. Figure 2 illustrates

the noises added to the source and the target domain at three

deficient support levels in theWalker environment. Comprehensive

details regarding the environments are provided in the Appendix.
Baselines: We compare our algorithm with six baselines. DARC

[6], which uses the additional reward term to encourage the policy

to not use source transitions with low likelihood. GARAT [4] that

learns the grounded source environment obtained via action trans-

formation and then trains the policy on the learned environment.

The Finetune baseline first trains a policy on the source domain

and then finetunes it with the limited transitions from the target

domain. The IW (Importance Weighting) baseline trains the policy

on importance-weighted samples from the source domain. Finally,

the RL on Target trains the policy only using the target samples

and can serve as Oracle. RL on Source trains the policy only using

source samples. We run all algorithms with the same five random

seeds. More details about the baseline settings are in the Appendix.

5.1 Off-dynamics Policy Evaluation
In Figure 3, we illustrate the off-dynamics policy performance of

all methods across four Mujoco environments for the three support

deficiency levels. Across all tasks, the performances of RL on Source
are considerably lower than RL on Target performances, suggesting

that directly transferring trained policies from the source to the

target domain yields unsatisfactory performance when support

deficiency is present.

In cases with substantial support overlap (as seen in large overlap

settings), the performance differences between the methods are not

too high. However, as support overlap decreases (in medium and

small overlap settings), our approach, DADS, consistently excels

in most tasks. Specifically, GARAT performances are significantly

low for all tasks, supporting our intuition that its grounded action

environment can be inaccurate and infeasible for policy learning

under the dynamics mismatch and deficient support problems. The

performances of DARC and IW drop significantly when the support

overlap decreases (from a large level to a small level). Our method

outperforms DARC and IW baselines for most of the tasks. We

surpass the Finetune baseline in nine out of twelve cases, excluding

HalfCheetah. While Finetune performs on par with our method

on large and medium overlapping levels in HalfCheetah, it outper-

forms our method in the small overlap cases. We believe that this

is because the agent never dies in the HalfCheetah environment,

which helps it to transfer any learnings from the source domain to

the target domain without any problem. Nonetheless, our method

stands out as the only approach that asymptotically matches the

performance of RL on Target (i.e. Oracle) and even surpasses RL on
Target in six out of twelve tasks.

5.2 Ablation studies
In this section, we analyze the impact of each component and

hyperparameter in our method. We provide the results for the

Walker environment. The results for the other environments in all

settings are provided in the Appendix.

5.2.1 The impact of Skewing operation: To validate the effect of

the skewing operation, we compared our method to a variant that

does not use this component. As shown in Figure 4, not including

the skewing operation leads to a notable drop in performance and

makes target return unstable, indicating the critical role of this

component in our method.

5.2.2 The impact of MixUp operation: We evaluate the impact of

the MixUp operation by removing it from our approach and retrain-

ing the policy. As shown in Figure 5, excluding MixUp results in

a significant performance drop in target return, especially in the

settings where support deficiencies are large (medium and small

overlap settings). This verifies the effectiveness of MixUp compo-

nent in our method.

Notably, omitting either the Skewing or MixUp operations re-

sults in a significant reduction in target returns. This observation

confirms the effectiveness of both operations.

5.2.3 The impact of 𝜇: Our method only has one hyperparameter 𝜇

that controls the strength of the source dynamics regularization in

Equation 3. We conduct experiments with different source dynam-

ics regularization 𝜇 values (0, 1/3, 2/3, 1, 2, 4), where 𝜇 = 0 mean
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Figure 3: The target return of different methods in four Mujoco benchmarks with different deficient support levels: large
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Figure 4: Comparison between our DADS method, and its
variant without Skewing operation.

that we ignore the source dynamics regularization and increasing

values of 𝜇 indicate higher weight for the source dynamics regular-

ization. The results are shown in Figure 6. We can see that the best

range for 𝜇 is from 2/3 to 1. If we decrease the value of 𝜇 to 0, the

policy performance in the target domain drops significantly. The

reason is that reducing or ignoring the source dynamics regulariza-

tion results in sampling transitions that are too close to the target

domain, which reduces the diversity of samples for the subsequent

MixUp operation. On the other hand, a high value of 𝜇 might also

result in reduced, unstable performance as there are not enough

Small Medium Large0
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4000
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tu

rn

Walker

DADS DADS w/o MixUp

Figure 5: Comparison between our DADS method, and its
variant without MixUp.

source transitions that are close to the target domain. This could

also adversely affect MixUp operations. Thus source dynamics con-

straint is important for the effective performance of our algorithm.

In our experiments, we used 𝜇 = 1 due to the highest target return

values.

6 CONCLUSION
In this paper, we have addressed the problem of off-dynamics RL

under deficient support, which is widely encountered in many real-

world applications. To the best of our knowledge, ours is the first

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1099



0 1/3 2/3 1 2 40

1000

2000

3000

4000

5000

6000

Re
tu

rn

Walker Medium

0 1/3 2/3 1 2 40

1000

2000

3000

4000

5000

6000
Walker Small

0 1/3 2/3 1 2 4

Figure 6: The adaptation performance of DADSwith different
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work on this problem. We proposed DADS, a simple, yet effective

method, that reduces the support deficiency of the source domain

by modifying it through two operations: skewing and extension.

The skewing is learned by solving an optimization problem and the

extension is performed by using a Mixup operation between source

and target transitions. Extensive experiments have demonstrated

the effectiveness of our method compared to the existing state-of-

the-art approaches for off-dynamics RL.
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