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ABSTRACT
The theoretical underpinnings of multi-agent learning have recently

attracted much attention. In this paper, we study the learning dy-

namics of the softmax policy gradient (PG) algorithm in multi-agent

environments in the context of evolutionary game theory. We re-

visit the previous analyses based on mean dynamics and observe

that previous models fail to characterize the effect of stochasticity.

To this end, we propose a stochastic dynamics model to analyse the

learning dynamics of PG under symmetric games. We model the

parameter dynamics of the learning agent as a multidimensional

Wiener process. Applying the Itô’s lemma, we obtain the corre-

sponding policy dynamics for the agent. From that, we study the

convergence behaviour of the policy dynamics under the self-play

training scheme for learning in games. We work out the sufficient

conditions for the stochastic stability of the pure Nash equilibrium

strategy, and we evaluate the sufficient conditions for the exis-

tence of stationary distribution for strictly stable games. Moreover,

we express the dynamics of the parameter distribution with the

Fokker-Planck equation. In the experiments, we demonstrate that

our stochastic dynamics model always provides a significantly more

accurate description of the actual learning dynamics than the mean

dynamics model across different games and settings.
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1 INTRODUCTION
Multi-agent learning (MAL) has recently received much atten-

tion [3, 24, 25], with the theoretical foundation being far from

well understood. Notably, the research in evolutionary game the-

ory (EGT) [37, 38] and dynamical systems [36] have provided

∗
Corresponding Author

†
Part of the research reported in this paper was done when the third author was with

The Chinese University of Hong Kong.

This work is licensed under a Creative Commons Attribution

International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org).

useful tools, by which one can study various properties, such

as evolutionary stable strategy (ESS) and asymptotic stability, in

various game environments. For example, in their seminal work,

Tuyls et al. [42, 43] formally model the dynamics of Q-learning [44]

in the 2-player game setting; moreover, the mean dynamics of Q-

learning and some other learning algorithms [1, 20, 23] have been

shown to be variants of the replicator dynamics in the MAL setting.

Policy Gradient (PG) [45] is a popular technique in reinforcement

learning. The PG algorithmworks on the policy space,
1
in which the

policy is parameterized with a parameter vector. Researchers have

developed different variants of PG, such as the A3C [33], DDPG [29]

and SAC [11] algorithms.

Recently, Bernasconi et al. [2] have succeeded in establishing

the equivalence between the mean dynamics of the softmax policy

gradient in multi-agent settings and that of the replicator dynamics.

While this represents a significant step in the research into the

evolutionary dynamics of policy gradient, we note that only the

mean evolutionary dynamics are considered and studied, as in

many of the other related research [12, 39]. The mean dynamics

approach effectively assumes that the agents are all learning from

a deterministic environment, in which agents learn only based on

the expected payoff they receive. However, in real situations, the

learning environment is generally stochastic, and agents receive

stochastic rewards. This is because the exploration mechanism

of the PG algorithm presupposes that the choice of actions for

agents is stochastic. In the existence of stochasticity, however, an

agent’s actual payoff, being stochastic, generally deviates from

the expected payoff at every time step. Such discrepancies will

accumulate over time, and it can, as we shall show in Section 5,

lead to inconsistency between the actual evolutionary dynamics

and the theoretical predictions.

To tackle this inadequacy, in this paper, we develop a model that

captures stochasticity in the learning dynamics of PG under multi-

agent settings. Specifically, we explicitly characterize the random

factors during learning under the PG algorithm and model the pa-

rameter dynamics of an agent as amultidimensionalWiener process.

Hence, we obtain the policy dynamics using the Itô’s lemma. From

that, we study the convergence behaviour of the policy dynamics

under the popular “self-play” training scheme for learning in games.

Analysis of the policy dynamics shows that the fully mixed Nash

equilibrium strategy is never stochastically stable, and this rectifies

the conclusions from the previous studies [2], which shows that a

fully mixed ESS is asymptotically stable. In addition, we also work

out the sufficient conditions for stochastic asymptotic stability of

1
The terms “policy,” “strategy,” and “action selection probabilities” are used inter-

changeably in this paper.
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the pure Nash equilibrium strategy. In particular, it requires the

strategy to be evolutionarily stable, with an appropriate learning

rate and baseline. When the game is strictly stable, we work out

sufficient conditions for the existence of the stationary distribution

in the policy dynamics. Finally, we express the dynamics of the

parameter distribution with the Fokker-Planck equation.

We conduct experiments using six canonical 2-player symmetric

games, namely, Prisoner’s Dilemma, stag hunt, hawk-dove, standard

rock-paper-scissors, good rock-paper-scissors, and bad rock-paper-

scissors. Results obtained from agent-based simulations show that

the mean dynamics models are unable to depict the actual learning

dynamics in stochastic environments, and our stochastic dynamics

model always provides a significantly more accurate description of

the actual learning dynamics across different games and settings.

2 RELATED RESEARCH
Learning Dynamics. In their seminal work, Tuyls et al. [42, 43]

formally model the dynamics of Q-learning in 2-player games and

develop the selection-mutation model. Based on this model, Kian-

ercy and Galstyan [21] provide a comprehensive characterization

of the rest point structure for different 2-player games. Gomes and

Kowalczyk [10] develop another formal model for Q-learning with

𝜖-greedy exploration in 2-player games. Wunder et al. [46] show
that when 𝜖-greedy exploration is applied, the Q-learning dynamics

may exhibit chaotic behaviours. Researchers have shown that the

policy dynamics of agents that apply other learning methods can

also be characterized by replicator equations, examples including

lenient learning [34], infinitesimal gradient ascent [19], regret min-

imization [23], SARSA [1], etc. We refer interested readers to [3]

for a more thorough review of this line of research.

Recently, the study in MAL dynamics has also looked into popu-

lation games. Hu et al. [14, 15] model the dynamics of Q-learning

agents learning under the concurrent learning protocol. Usingmean

field theory, the authors capture the population dynamics by a

system of three equations. Leung et al. [28] further consider the
stochastic factors in population games and modelled the dynamics

of Q-learning agents learning under the generalized social learning

protocol. Leonardos and Piliouras [27] focus on the exploration-

exploitation trade-off problem in Q-learning in weighted potential

games. Using catastrophe theory, they show that the change in ex-

ploration hyperparameters can lead to phase transitions of a system,

where the number and stability of equilibria change radically.

Learning Dynamics of Policy Gradient. Policy Gradient (PG) [45]

is one of the most popular techniques in reinforcement learning.

There have beenmultiple attempts to study the evolutionary dynam-

ics of PG in multi-agent games. In particular, Srinivasan et al. [39]
present the mean dynamics (all actions updates) of PG under the

2-players symmetric games. Focusing on the mean dynamics, the

authors show that for two players in zero-sum games, the regret

of an agent is bounded linearly in the order of the number of itera-

tions. They also compare the mean dynamics with the replicator

dynamics in certain games. Bernasconi et al. [2] establish the formal

connections between softmax PGmean dynamics and the replicator

dynamics and study various system behaviours in the context of

EGT. They show that under the PG mean dynamics, the asymptotic

convergence to the best response is proved when playing with a

fixed agent. For general symmetric games, the asymptotic stability

for the ESS is proved. Omidshafiei et al. [12] obtain insights from the

PG dynamics and propose the NeuRD algorithm. They also show

that the replicator dynamics belongs to the Hedge algorithm [8, 30].

Efforts have also been made to study the convergence behaviours

for the gradient-based algorithms in multi-agent environments

based on asymptotic analysis. Daskalakis et al. [5] show that the

time average expected reward converges to the minimax value of

the game in 2-player zero-sum games under the REINFORCE [45] al-

gorithm. Leonardos et al. [26] focus on the multi-agent coordination

scenario, in which convergence is proved for stochastic PG under

the Markov Potential Games (MPG). Zhang et al. [48] prove the
local convergence property of strict Nash equilibrium in stochastic

games learning under the exact gradient play algorithm.

Our work studies the stochastic extension of previous works

in mean dynamics for softmax policy gradient (PG) [2, 39], where

we model the stochastic learning dynamics for PG under softmax

exploration as a multidimensional Wiener process.

Stochastics Replicator Dynamics. The concept of Evolutionary
Game Theory (EGT) originated from Smith and Price [37, 38] who

developed the concept of evolutionary stable strategy (ESS) to study

the evolution of a population of animals under natural selection.

Later, Taylor and Jonker [41] proposed the replicator dynamics to

model the evolution of the population strategy under 2-player sym-

metric games with randommatching. Foster and Young [7] consider

the stochastic nature of natural selection and model the replicator

dynamics based on a stochastic differential equation. They have

shown that the asymptotic behaviour of the population can be af-

fected by the existence of randomness. Since then, research has

been conducted to study the characteristics and behaviours of the

population strategy under various stochastic replicator dynamics.

Fudenberg and Harris [9] and Imhof [16] study the population

dynamics where the payoffs of agents are subjected to aggregate

shocks. Under such cases, the dynamics of population size for differ-

ent strategies are modelled as a Wiener process with independent

random factors, where the converging behaviour such as stochastic

stability and extinction of dominated strategies are studied. Hof-

bauer and Imhof [13] further analyse the limiting behaviour of

the time averages of the above process. Mertikopoulos and Mous-

takas [32] study the policy dynamics where players learn under the

exponential learning scheme, where the payoffs are subjected to

independent random perturbations.

Although research in EGT has analysed the stochastic evolution-

ary dynamics in various situations, there has not been research

which studies the stochastic effects arising from the exploration

behaviour of the RL agents.

3 PRELIMINARIES
Throughout this paper, we denote a column vector 𝒙 ∈ ℜ𝑑

as

(𝑥1, ..., 𝑥𝑑 ).

3.1 Symmetric Games and Replicator Dynamics
Conventionally, a 2-player-𝑑-action normal-form game involves a

row player and a column player, each of which has a set of 𝑑 avail-

able actions to choose from. During game plays, the two players

simultaneously choose an action and receive an immediate payoff
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(or reward) based on their joint actions. Formally, a 2-player-𝑑-

action game can be represented by two payoff matrices (𝑨row and

𝑨
column

) as

𝑨row =


𝐴11 · · · 𝐴

1𝑑

.

.

.
. . .

.

.

.

𝐴𝑑1 · · · 𝐴𝑑𝑑

 ,𝑨column
=


𝐵11 · · · 𝐵

1𝑑

.

.

.
. . .

.

.

.

𝐵𝑑1 · · · 𝐵𝑑𝑑


where each element represents the immediate payoff of the row or

column player given joint action choices. The game is symmetric

if (i) both the players have the same set of available actions, and

(ii) the resulting payoffs depend not on the roles of the players,

but only on their joint action choices, i.e. 𝑨row = 𝑨⊤
column

. Define

𝑨 B 𝑨row = 𝑨⊤
column

. For any player, suppose it chooses action 𝑎𝑖
and its opponent chooses action 𝑎 𝑗 , then its immediate payoff is

given by

𝑟 = 𝒆⊤𝑖 𝑨𝒆 𝑗 (1)

where 𝒆𝑖 and 𝒆 𝑗 represent basis vectors such that 𝒆𝑖 = (0...1...0)
with the 𝑖th element equaling 1.

Consider a population of pure strategy agents evolving through

random matching, where the population growth is proportional to

the payoff of the agents relative to the population policy 𝝅 governed

by the symmetric game (𝑟 = 𝒆⊤
𝑖
𝑨𝝅 ), the (mean) replicator dynamics

[41] is derived as

𝜕𝑡𝝅𝑘 = 𝝅 (𝒆⊤
𝑘
𝑨𝝅 − 𝝅⊤𝑨𝝅)𝑑𝑡

3.2 Policy Gradient
Softmax Policy gradient (PG) [45] is a reinforcement learning algo-

rithm. It is defined in a Markov decision process (MDP) ⟨𝑆,𝐴,𝑇 , 𝑅⟩,
where 𝑆 is a set of states, 𝐴 is a set of the available actions, 𝑇 :

𝑆 × 𝐴 × 𝑆 → [0, 1] is a state transition probability function, and

𝑅 : 𝑆 ×𝐴 → ℜ is a function of immediate payoff. A learning agent

aims to find a policy 𝜋 (𝑎 |𝑠) that maximizes the expected sum of dis-

counted rewards 𝐽 . The PG method searches for the optimal policy

by applying stochastic gradient ascent repeatedly over a parameter

space 𝒚 ∈ ℜ𝑚
. To be specific, let 𝜋 (·|𝑠,𝒚) be the parameterized

policy evaluated as

𝜋 (𝑎𝑘 |𝑠,𝒚) =
exp(𝑓𝑘 (𝑠;𝒚))∑𝑑
𝑙=1

exp(𝑓𝑙 (𝑠;𝒚))

where 𝒇 = (𝑓1 (𝑠;𝒚), . . . , 𝑓𝑑 (𝑠;𝒚)) : 𝑆 → ℜ𝑑
is the parameterized

function approximator of the values of the actions in state 𝑠 . Con-

sider an episode of learning at iteration 𝑡 , the gradient ascent is

applied to the parameter vector 𝒚(𝑡) in the direction of the approx-

imated gradient ∇𝒚�𝐽 (𝒚(𝑡)),
𝒚(𝑡 + 1) = 𝒚(𝑡) + 𝛼∇𝒚�𝐽 (𝒚(𝑡))

where 𝛼 is the learning rate, and
�𝐽 (𝒚(𝑡)) is the episode reward at

time 𝑡 .

3.3 Gradient of PG in Symmetric Games
We consider the case of a symmetric game, where there is only

a single state (hence each episode lasts for only 1 step). Let the

parameter vector be defined in the full action space (the tabular

case) 𝒚 = (𝑦1, ..., 𝑦𝑑 ) ∈ ℜ𝑑
. We drop the state notation 𝑠 , hence

we have 𝑓𝑘 (·;𝒚) = 𝑦𝑘 . Let 𝑦𝑘 B 𝑦𝑘 (𝑡) be the parameter value

of action 𝑎𝑘 at 𝑡 th iteration of learning. The corresponding agent

policy writes

𝜋𝑘 B 𝜋 (𝑎𝑘 |𝒚(𝑡)) =
exp(𝑦𝑘 )∑𝑑
𝑙=1

exp(𝑦𝑙 )
(2)

Given that at iteration 𝑡 , let 𝑎𝑖 and 𝑎 𝑗 be the actions performed

by the learning agent and its opponent, let the episode reward be

𝑟 := 𝑟 (𝑡) = �𝐽 (𝒚(𝑡)), it can be shown [40] that the approximated

gradient is ∇𝒚 𝐽 (𝒚) = (𝑟 − 𝑏) (𝒆𝑖 − 𝝅), where 𝑏 := 𝑏 (𝑡) ∈ ℜ is a

baseline.
2
The change in parameter vector writes

𝜕𝑡𝒚 B 𝒚(𝑡 + 1) −𝒚(𝑡) = 𝛼 (𝒆⊤𝑖 𝑨𝒆 𝑗 − 𝑏) (𝒆𝑖 − 𝝅) (3)

4 THE STOCHASTIC DYNAMICS OF POLICY
GRADIENT

In this section, we first model the dynamics of parameter 𝒚 of

gradient descent as a stochastic process described by a system of

stochastic differential equations (SDE). The policy dynamics are

then obtained by applying the Itô’s lemma. Based on the derived

models, we work out the sufficient conditions for the stochastic

stability for the pure strategy Nash equilibria, and the sufficient con-

ditions for the existence of stationary distribution for strictly stable

games. Finally, we express the dynamics of parameter distribution

by a Fokker-Planck equation (FPE).

4.1 Parameter Dynamics of PG
Let 𝝅 be the policy of the agent with parameter 𝒚, and 𝝓 := 𝝓 (𝑡) be
the policy of the opponent. Previous works of Bernasconi et al. [2]
and others [12, 39] have performed the analysis based on the mean

dynamics model which assumes expected gradient update. The

parameter dynamics 𝜕𝑡𝒚 under the mean dynamics model is as

follows:

𝜕𝑡𝒚 = 𝝁𝑑𝑡 (4)

where 𝝁 B 𝝁 (𝒚, 𝑡) = E[𝜕𝑡𝒚] = (𝜇1, . . . , 𝜇𝑑 ) is the mean vector, in

which

𝜇𝑘 = 𝛼𝜋𝑘 (𝒆⊤𝑘 𝑨𝝓 − 𝝅⊤𝑨𝝓)
However, due to the exploration mechanism of PG, the agents’

choices of actions 𝑎𝑖 and 𝑎 𝑗 , and thus the parameter dynamics 𝜕𝑡𝒚
are not deterministic. The mean square distance of the parameter

dynamics to the expected gradient is evaluated as

E[(𝜕𝑡𝒚 − 𝝁)2] = 𝚺(𝒚, 𝑡) = [𝜎𝑘𝑙 ] ∈ ℜ𝑑×𝑑
(5)

in which

𝜎𝑘𝑘 =𝑉𝑎𝑟 (𝜕𝑡𝑦𝑘 )
=𝛼2𝜋𝑘 [𝒆⊤𝑘 𝑨 ◦𝑨𝝓 − 2𝑏𝒆⊤

𝑘
𝑨𝝓 + 𝑏2] + 𝛼2𝜋2

𝑘
[−(𝒆⊤

𝑘
𝑨𝝓)2

+ 2(𝒆⊤
𝑘
𝑨𝝓) (𝝅⊤𝑨𝝓) − 2𝒆⊤

𝑘
𝑨 ◦𝑨𝝓 − (𝝅⊤𝑨𝝓)2 + 𝝅⊤𝑨 ◦𝑨𝝓

+ 𝑏 (4𝒆⊤
𝑘
𝑨𝝓 − 2𝝅⊤𝑨𝝓) − 𝑏2]

𝜎𝑘𝑙 =𝐶𝑜𝑣 (𝜕𝑡𝑦𝑘 , 𝜕𝑡𝑦𝑙 )
=𝛼2𝜋𝑘𝜋𝑙 [−(𝒆⊤𝑘 𝑨𝝓) (𝒆

⊤
𝑙
𝑨𝝓) + (𝒆⊤

𝑘
𝑨𝝓) (𝝅⊤𝑨𝝓) + (𝒆⊤

𝑙
𝑨𝝓) (𝝅⊤𝑨𝝓)

− 𝒆⊤
𝑘
𝑨 ◦𝑨𝝓 − 𝒆⊤

𝑙
𝑨 ◦𝑨𝝓 − (𝝅⊤𝑨𝝓)2 + 𝝅⊤𝑨 ◦𝑨𝝓 + 𝑏 (2𝒆⊤

𝑘
𝑨𝝓

+ 2𝒆⊤
𝑙
𝑨𝝓 − 2𝝅⊤𝑨𝝓) − 𝑏2]

2
Note that the baseline does not affect the expected value of the approximated gradient.
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where 𝑘 ≠ 𝑙 . Here,𝑿 ◦𝒀 represents the element-wise multiplication

of matrices 𝑿 and 𝒀 .
Considering the random factors as a stochastic perturbation of

the dynamical system [22], we model the parameter dynamics as a

Wiener process as below:

𝜕𝑡𝒚 = 𝝁𝑑𝑡 +
√
𝚺𝑑𝑾𝑡 , (6)

where 𝑾𝑡 B 𝑾 (𝑡) = (𝑊1, ...,𝑊𝑑 ) is the standard 𝑑-dimensional

Wiener process, and 𝚺 B 𝚺(𝒚, 𝑡). Note that the model effectively

assumes the sequence of parameter vector 𝒚(𝑡) is strongly mixed

so that the central limit theorem [18] applies.

Note that the main difference between our model and that of the

previous model is that the second term of equation (6) is completely

missing in the previous model. Consequently, previous studies

failed to model the diffusion of the system, which is now captured

in our new equation. The discrepancy between the mean dynamics

(without diffusion) and the stochastic dynamics (with diffusion) will

accumulate over time. As we shall see, experimental results (see

Figure 1 and 2) show that such discrepancies indeed accumulate

and lead to results inconsistent with the true dynamics. This can

even lead to counter-intuitive conclusions when we consider the

convergence behaviour of the system (see Theorem 4.5 and 4.8).

4.2 Policy Dynamics of PG
For ease of presentation, we simplify the expression of the covari-

ances in 𝜕𝑡𝒚 as follows:

𝜎𝑘𝑘 := 𝛼2 (𝜋𝑘Λ𝑘+𝜋2𝑘 𝜒𝑘𝑘 ) := 𝛼2Ψ𝑘𝑘 𝜎𝑘𝑙 := 𝛼2𝜋𝑘𝜋𝑙 𝜒𝑘𝑙 := 𝛼2Ψ𝑘𝑙

Applying the Itô’s lemma [17], we derive the change in the agent’s

policy over time (equation (7)) from the process of equation (6). The

policy dynamics 𝜕𝑡𝝅 is evaluated as

𝜕𝑡𝝅 = 𝝁𝝅𝑑𝑡 + 𝑮𝝅𝑑𝑾𝑡 := (𝝁𝝅𝐴 + 1

2

𝝁𝝅𝐵)𝑑𝑡 + 𝑮𝝅𝑑𝑾𝑡 (7)

where 𝝁𝝅𝐴 = (𝜇𝜋1𝐴, ..., 𝜇𝜋𝑑𝐴), 𝝁𝝅𝐵 = (𝜇𝜋1𝐵, ..., 𝜇𝜋𝑑𝐵), and 𝚺𝝅 =

𝑮𝝅𝑮⊤
𝝅 = [𝜎𝜋𝑘𝑙 ], in which

𝜇𝜋𝑘𝐴 =𝛼𝜋𝑘 [𝜋𝑘 (𝒆⊤𝑘 𝑨𝝓 − 𝝅⊤𝑨𝝓) −
∑︁
𝑖

𝜋2𝑖 (𝒆
⊤
𝑖 𝑨𝝓 − 𝝅⊤𝑨𝝓)]

𝜇𝜋𝑘𝐵 =𝛼2𝜋𝑘 [Ψ𝑘𝑘 + 2𝝅⊤Ψ𝝅 − 𝝅⊤𝑑𝑖𝑎𝑔(Ψ) − 2𝝅⊤ (Ψ𝑘 ·)]

=𝛼2𝜋𝑘 [2
∑︁
𝑖

∑︁
𝑗

𝜋2𝑖 𝜋
2

𝑗 𝜒𝑖 𝑗 −
∑︁
𝑖

𝜋3𝑖 𝜒𝑖𝑖 − 2𝜋𝑘

∑︁
𝑖

𝜋2𝑖 𝜒𝑘𝑖 + 𝜋2
𝑘
𝜒𝑘𝑘

+
∑︁
𝑖

(2𝜋3𝑖 − 𝜋2𝑖 )Λ𝑖 + (𝜋𝑘 − 2𝜋2
𝑘
)Λ𝑘 ]

𝜎𝜋𝑘𝑘 =𝛼2𝜋2
𝑘
[Ψ𝑘𝑘 + 𝝅⊤Ψ𝝅 − 2𝝅⊤ (Ψ𝑘 ·)]

=𝛼2𝜋2
𝑘
[
∑︁
𝑖

∑︁
𝑗

𝜋2𝑖 𝜋
2

𝑗 𝜒𝑖 𝑗 − 2𝜋𝑘

∑︁
𝑖

𝜋2𝑖 𝜒𝑘𝑖 + 𝜋2
𝑘
𝜒𝑘𝑘 +

∑︁
𝑖

𝜋3𝑖 Λ𝑖

+ (𝜋𝑘 − 2𝜋2
𝑘
)Λ𝑘 ]

𝜎𝜋𝑘𝑙 =𝛼
2𝜋𝑘𝜋𝑙 [Ψ𝑘𝑙 + 𝝅⊤Ψ𝝅 − 𝝅⊤ (Ψ𝑘 ·) − 𝝅⊤ (Ψ𝑙 ·)]

=𝛼2𝜋𝑘𝜋𝑙 [
∑︁
𝑖

∑︁
𝑗

𝜋2𝑖 𝜋
2

𝑗 𝜒𝑖 𝑗 − 𝜋𝑘

∑︁
𝑖

𝜋2𝑖 𝜒𝑘𝑖 − 𝜋𝑙

∑︁
𝑖

𝜋2𝑖 𝜒𝑙𝑖

+𝜋𝑘𝜋𝑙 𝜒𝑘𝑙 +
∑︁
𝑖

𝜋3𝑖 Λ𝑖 − 𝜋2
𝑘
Λ𝑘 − 𝜋2

𝑙
Λ𝑙 ]

where Ψ = [Ψ𝑘𝑙 ] ∈ ℜ𝑑×𝑑
, 𝑑𝑖𝑎𝑔(Ψ) = (Ψ11, . . . ,Ψ𝑑𝑑 ), (Ψ𝑘 ·) =

(Ψ𝑘1, . . . ,Ψ𝑘𝑑 ) and 𝑘 ≠ 𝑙 .

Looking at the policy dynamics, we see that the random factor 𝚺

in the parameter dynamics 𝜕𝑡𝒚 contributes to the drift term 𝝁𝝅𝑑𝑡
in policy dynamics 𝜕𝑡𝝅 through 𝝁𝝅𝐵 . If we ignore the randomness

in 𝜕𝑡𝒚, the drift term of 𝜕𝑡𝝅 will be (incorrectly) equal to 𝝁𝝅𝐴 only,

which is the result calculated in [2] under the mean dynamics, and

that is equivalent to the replicator dynamics associate with a non-

linear transformation to the original game. Therefore, the stochastic

policy dynamics are far more complicated than the mean policy

dynamics, and previous analysis on the asymptotic behaviour of

the learning would have to be re-evaluated.

4.3 Stochastic Stability Analysis of PG under
Self-Play

Learning by self-play is a popular training scheme for multi-agent

games. By self-play, the agent plays against a copy of itself during

training, which corresponds to 𝝓 = 𝝅 in the equation (6). In the fol-

lowing, we study the convergence behaviour of a PG agent training

under self-play.

Stability is one of the most important characteristics of a dy-

namical system, which refers to the insensitivity of the stationary

points of a system under perturbation. For a stochastic process

𝜕𝑡𝒙 (𝑡) = 𝝁𝒙𝑑𝑡 + 𝑮𝒙𝑑𝑊𝑡 , we say that it has a zero solution if and

only if zero is a stationary point, that is, 𝜕𝑡𝒙 ≡ 0 when 𝒙 = 0.
Hence, stationary points are conventionally synonymous with zero

solutions. The definitions for various types of stochastic stability

of a zero solution are given as follows [31][Definition 4.2.1].

Definition 4.1. Let 𝒙 (𝑡) be a continuous time stochastic process
with 𝜕𝑡𝒙 = 𝝁𝒙𝑑𝑡 + 𝑮𝒙𝑑𝑊𝑡 that has a zero solution.
i. The zero solution is said to be stochastically stable (SS) if for
every pair of 𝜖 ∈ (0, 1) and 𝑟 > 0, there exists a 𝛿 > 0 such that

𝑃𝑟 {|𝒙 (𝑡) | < 𝑟 ∀𝑡 ≥ 0} ≥ 1 − 𝜖

whenever |𝒙 (0) | < 𝛿 .
ii. The zero solution is said to be stochastically asymptotically stable

(SAS) if it is stochastically stable and, moreover, for every 𝜖 ∈
(0, 1), there exists a 𝛿0 > 0 such that

𝑃𝑟 { lim
𝑡→∞

𝒙 (𝑡) = 0} ≥ 1 − 𝜖

whenever |𝒙 (0) | < 𝛿0.
iii. The zero solution is said to be globally stochastically asymptot-

ically stable (GSAS) if it is stochastically stable and, moreover,
for all 𝒙 (0) ∈ ℜ𝑑

𝑃𝑟 { lim
𝑡→∞

𝒙 (𝑡) = 0} = 1

The stochastic stabilities (SS, SAS, GSAS) are important proper-

ties that define the local convergence behaviour to the zero solution

of a stochastic process, which can be shown with the following

stochastic Lyapunov theorem [31][Theorems 4.2.2, 4.2.3, 4.2.4].

Lemma 4.2. Let 𝒙 (𝑡) be a continuous time stochastic process with
𝜕𝑡𝒙 = 𝝁𝒙𝑑𝑡 + 𝑮𝒙𝑑𝑊𝑡 that has a zero solution. Let 𝑆ℎ = {𝒙 ∈ ℜ𝑑

:

|𝒙 | < ℎ}. Let there be a positive definite function 𝑉 (𝒙) : 𝑆ℎ ↦→ ℜ+

such that

𝐿𝑉 (𝒙) :=
𝑑∑︁
𝑖=1

𝜕𝑉

𝜕𝑥𝑖
𝜇𝑥𝑖 +

1

2

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝜕2𝑉

𝜕𝑥𝑖 𝜕𝑥 𝑗
[𝑮𝒙𝑮

⊤
𝒙 ]𝑖 𝑗
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i. If 𝐿𝑉 (𝒙) ≤ 0 for all 𝒙 ∈ 𝑆ℎ , then the zero solution of 𝒙 (𝑡) is
stochastically stable (SS).

ii. If 𝐿𝑉 (𝒙) < 0 for all 𝒙 ∈ 𝑆ℎ , then the zero solution of 𝒙 (𝑡) is
stochastically asymptotically stable (SAS).

iii. If 𝐿𝑉 (𝒙) < 0 for all 𝒙 ∈ ℜ𝑑 , then the zero solution of 𝒙 (𝑡) is
globally stochastically asymptotically stable (GSAS).

The above lemma specifies that if one can identify a function

𝑉 (𝑥) that is decreasing in 𝑥 ∈ 𝑆ℎ , then the stability of 𝒙 (𝑡) at
𝒙 = 0 will follow. We consider the stochastic stability of the Nash

equilibria (NE) of the game. Due to the exploration behaviour of the

PG algorithm, the dynamics 𝜕𝑡𝒚 of parameter 𝒚 of any non-pure

strategy 𝝅 must be nonzero. This is because if 𝝅 is non-pure, then

𝜋𝑘 is nonzero for at least an action 𝑎𝑘 , hence by equation (5), 𝚺

will be nonzero, and consequently by equation (6) the dynamics

𝜕𝑡𝒚 is nonzero. We can express this result formally in the following

Theorem.

Theorem 4.3. All non-pure Nash equilibrium strategies are not
stochastically stable under PG dynamics.

Theorem 4.3 above shows that non-pure Nash equilibrium strate-

gies can never be stochastically stable. So we consider the stochastic

stability of pure NE strategies, i.e. 𝝅 ∈ {𝒆1, ..., 𝒆𝑑 }. We find that

the sufficient condition for pure Nash equilibrium strategy to be

stochastically stable is that it is an evolutionary stable strategy

(ESS) [36] and that the learning rate used in PG must not be too

large. The definition of an ESS is as follows:

Definition 4.4. In symmetric game 𝑨, policy 𝝅∗ is an evolutionary

stable strategy (ESS) if there exists a neighbourhood O (𝝅∗) of 𝝅∗

such that

(𝝅 − 𝝅∗)⊤𝑨𝝅 < 0 ∀𝝅 ∈ O (𝝅∗) \ 𝝅∗

We formally summarize the sufficient conditions of various types

of stochastic stability of pure Nash equilibrium strategy in the

following theorem.

Theorem 4.5. Let 𝒆𝑖 (action 𝑎𝑖 ) be an ESS. Define 𝛼0 as

𝛼0 =
2[𝜋0𝑖𝒆⊤𝑖 𝑨𝝅0−𝜋0𝑖𝝅

⊤
0
𝑨𝝅0 − 𝝅2

0

⊤
𝑨𝝅0 + (𝝅⊤

0
𝝅0)𝝅⊤

0
𝑨𝝅0]

𝝅⊤
0
𝑑𝑖𝑎𝑔(Ψ) − 𝝅⊤

0
Ψ𝝅0

=

2

∑
𝑘≠𝑖 [𝜋0𝑖 (1 − 𝜋0𝑖 )𝜋0𝑘
+ 𝜋2

0𝑘
] (𝐴𝑖𝑖 −𝐴𝑘𝑖 )] +

∑
𝑗,𝑘,𝑙≠𝑖 𝑂 (𝜋0𝑗𝜋0𝑘𝜋0𝑙 )∑

𝑘≠𝑖 [𝜋3
0𝑑
(1 − 𝜋

0𝑑 )𝜋0𝑘 + 𝜋2
0𝑘

− 2𝜋2
0𝑑
𝜋2
0𝑘
] (𝐴𝑘𝑖 − 𝑏)2 +∑

𝑗,𝑘,𝑙≠𝑖 𝑂 (𝜋0𝑗𝜋0𝑘𝜋0𝑙 )
(8)

where 𝝅0 = (𝜋01, ..., 𝜋0𝑑 ) for 𝝅0 ∈ O (𝒆𝑖 ), and 𝝅2

0
= (𝜋2

01
, ..., 𝜋2

0𝑑
).

i. If 𝛼 ≤ 𝛼0, then the pure strategy of choosing 𝑎𝑖 is stochastically
stable (SS).

ii. If 𝛼 < 𝛼0, then the pure strategy of choosing 𝑎𝑖 is stochastically
asymptotically stable (SAS).

iii. If 𝛼 < 𝛼0 and 𝑎𝑖 is a strictly dominant strategy, then the pure
strategy of choosing 𝑎𝑖 is globally stochastically asymptotically
stable (GSAS).

Therefore, a pure ESS with a small enough learning rate will

satisfy the stochastic stability conditions. Looking into equation (8),

for the pure strategy 𝑎𝑖 to be stochastically stable, the magnitude of

the learning rate is restricted by a value 𝛼0 that can be intuitively

interpreted as the weighted sum of losses (𝐴𝑘𝑖 −𝐴𝑖𝑖 ) of performing

alternative actions 𝑎𝑘 , 𝑘 ≠ 𝑖 when the opponent uses action 𝑎𝑖 and

the baseline is 𝑏. A larger value of the learning rate can be used (to

facilitate a potentially higher speed of learning, for example) if we

can carefully choose a suitable baseline 𝑏 so that the major term in

the denominator is minimized.

We note that in the work of Bernasconi et al. [2], the authors
show that if only the mean dynamics is considered, a fully mixed

strategy is asymptotically stable for PG if it is an ESS for a symmetric

game. That is to say, the stability is fully determined by the type of

strategy, but it is independent of the learning rate and the baseline.

Such a conclusion is counterintuitive and generally flawed. In real-

life situations, the learning rate should be low enough to ensure

the learning converges, together with an appropriate baseline. This

is reflected in the conclusions in Theorem 4.5.

4.4 Existence of Stationary Distribution of PG
under Self-Play

We have shown that all non-pure NE strategies are not stochas-

tically stable. However, we can still investigate other convergent

behaviours such as the convergence to a stationary (invariant) distri-

bution. The existence of a stationary distribution indicates that the

stochastic process will finally stabilize to some distribution, which

can be proven with the following theorem [4][Theorem 5.31].

Lemma 4.6. Let 𝒙 (𝑡) be a continuous time stochastic process with
𝜕𝑡𝒙 (𝑡) = 𝝁𝒙𝑑𝑡 +𝑮𝒙𝑑𝑊𝑡 , 𝚺 = [𝜎𝑖 𝑗 ] = 𝑮𝒙𝑮⊤

𝒙 , assume that there exist
bounded domains 𝐷 ⊂ ℜ𝑑 with a smooth boundary, such that

i for a suitable 𝑀 > 0,
∑𝑑
𝑖 𝑗=1 𝜎𝑖 𝑗 𝜉𝑖𝜉 𝑗 ≥ 𝑀 |𝝃 |2 for all 𝒙 ∈ 𝐷 ,

𝝃 ∈ ℜ𝑑 ;
ii there exist a non-negative function 𝑉 such that 𝑖𝑛𝑓 |𝒙 |>𝑅𝑉 (𝒙) →
∞ as 𝑅 → ∞ and 𝐿𝑉 (𝒙) ≤ −𝐶 for all 𝒙 ∈ ℜ𝑑 \𝐷 , for a suitable
𝐶 > 0.

Then there exist an invariant distribution 𝑃 such that for any function
𝑓 integrable with respect to 𝑃 :∫

𝑝 (𝑡, 𝒙, 𝑑𝒚) 𝑓 (𝒚) 𝑡→∞−−−−→
∫

𝑃 (𝑑𝒚) 𝑓 (𝒚)

Our conditions for the existence of stationary distribution require

the following concept of stable games [36].

Definition 4.7. The symmetric game 𝑨 is a stable game if

(𝝅 − 𝝓)⊤𝑨(𝝅 − 𝝓) ≤ 0 ∀𝝅 , 𝝓 ∈ [0, 1]

If the inequality holds strictly whenever 𝝅 ≠ 𝝓, then 𝑨 is a strictly
stable game. If the inequality always binds, then 𝑨 is a null stable
game.

A strictly stable game possesses certain good properties such

as having a unique global ESS [36], which is useful in proving the

following result. The following theorem summarises the sufficient

conditions for the existence of stationary distribution.

Theorem 4.8. If the game is strictly stable. Define 𝛼0 as

𝛼0 =
2[𝝅⊤

0
(𝝅0 − 𝝅∗)]𝝅⊤

0
𝑨𝝅0 − 2[𝝅0 ◦ (𝝅0 − 𝝅∗)]⊤𝑨𝝅0

−𝝅⊤
0
𝚿𝝅0 + 𝝅⊤

0
𝑑𝑖𝑎𝑔(Ψ)

(9)
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where 𝝅∗ is the unique Nash equilibrium of the game and 𝝅0 ∈ Δ,
Δ = {𝝅 ∈ [0, 1]𝑑 :

∑
𝑖 𝜋𝑖 = 1}.

If 𝛼 < 𝛼0, then the policy dynamics will converge to a stationary
distribution.

In case of the non-existence of stationary distribution, the pol-

icy 𝝅 will diverge to the boundary as 𝑡 → ∞, therefore we will

expect the policy distribution split and the probability mass will be

scattered among the pure strategies.

Again, the above result is different from the previous result with

mean dynamics approach [2]. Under the mean dynamics model,

any fully mixed ESS is asymptotically stable. If we consider the sto-

chastic dynamics model, a fully mixed ESS will possess a stationary

distribution, under the condition that the game is strictly stable and

the learning rate is small enough.

4.5 Time Evolution of the Probability Density
Function

As the learning dynamics of PG are stochastic, we can study the

parameter dynamics in its distribution. The Fokker–Planck equa-

tion (FPE) [6, 35] is a partial differential equation that describes the

dynamics of the probability density function (PDF) of a diffusion

process. For the parameter dynamics 𝜕𝑡𝒚 in (6), the corresponding

FPE writes

𝜕𝑝 (𝒚)
𝜕𝑡

= −
𝑑∑︁
𝑖=1

𝜕

𝜕𝑦𝑖
[𝜇𝑖𝑝 (𝒚)] +

𝑑∑︁
𝑖=1

𝑑∑︁
𝑗=1

𝜕2

𝜕𝑦𝑖 𝜕𝑦 𝑗
[ 1
2

𝜎𝑖 𝑗𝑝 (𝒚)] (10)

Given the initial parameter distribution 𝑝 (𝒚(0)) of the agent, the
parameter distribution over time 𝑝 (𝒚(𝑡)) can be obtained by solving
the equations (6) and (10) numerically.

5 EXPERIMENTS
In this section, we apply the model to six different 2-player symmet-

ric games. In Section 5.1, we describe the game configurations and

the agent settings. In Section 5.2, we validate our model by com-

paring the expected value of the agent’s strategy with the results

obtained from agent-based simulation. We demonstrate that our

stochastic dynamics model is far more accurate than the mean dy-

namics model. In Section 5.3, we discuss the effect of the expected

policy in the existence of randomness. We also investigate the

agent’s convergence behaviour under stable and unstable games.

5.1 Games and Agents Settings
We consider 6 different 2-player symmetric games: Prisoner’s Dilemma

(PD) game, Stag Hunt (SH) game, Hawk-Dove (HD) game, stan-

dard Rock, Paper, Scissors (standard-RPS) game, good Rock, Paper,

Scissors (good-RPS) game, and bad Rock, Paper, Scissors (bad-RPS)

game. Note that in the standard-RPS, the reward for winning the

game is equal to the punishment for losing the game. In the good-

RPS, the reward of winning is larger than the punishment of losing.

In the bad-RPS, the reward of winning is smaller than the punish-

ment of losing. The payoff bi-matrices of these games are shown in

Table 1 and the summary for Nash equilibria is given in Table 2.

For the PD, SH andHDgames, we consider the learning dynamics

through random matching. Whereas for the standard-RPS, good-

RPS, and bad-RPS games, we adopt self-play as the training scheme.

𝐶 𝐷

𝐶 2, 2 0, 3

𝐷 3, 0 1, 1

(a) Prisoner’s Dilemma

𝑆 𝐻

𝑆 3, 3 0, 1.5

𝐻 1.5, 0 1, 1

(b) Stag Hunt

𝐻 𝐷

𝐻 −2,−2 2, 0

𝐷 0, 2 1, 1

(c) Hawk–Dove

𝑅 𝑃 𝑆

𝑅 0, 0 −1, 1 1,−1
𝑃 1,−1 0, 0 −1, 1
𝑆 −1, 1 1,−1 0, 0

(d) standard Rock, Paper, Scissors

𝑅 𝑃 𝑆

𝑅 0, 0 −1, 2 2,−1
𝑃 2,−1 0, 0 −1, 2
𝑆 −1, 2 2,−1 0, 0

(e) good Rock, Paper, Scissors

𝑅 𝑃 𝑆

0, 0 −2, 1 1,−2
1,−2 0, 0 −2, 1
−2, 1 1,−2 0, 0

(f) bad Rock, Paper, Scissors

Table 1: Payoff bi-matrices of the games considered in our
experiments.

Game Pure strategy

NE

Non-pure strategy NE

(𝛽, 𝛽)
PD (𝐷, 𝐷) -

SH (𝑆, 𝑆), (𝐻,𝐻 ) 𝛽 = (𝑆 (2/5), 𝐻 (3/5))
HD (𝐻,𝐷), (𝐷,𝐻 ) 𝛽 = (𝐻 (1/3), 𝐷 (2/3))

standard-RPS,

good-RPS, bad-RPS

- 𝛽 =

(𝑅(1/3), 𝑃 (1/3), 𝑆 (1/3))
Table 2: Nash equilibria of the games considered in our ex-
periments. The non-pure strategy Nash equilibrium (𝛽, 𝛽)
means that both players take the same strategy 𝛽 .

The agent-based simulation is the ground truth in our experiment.

In the case of random matching, we conduct 100 simulations of

a population of 1, 000 agents training over 500 iterations. In the

case of self-play, we conduct 1, 000 simulations of self-play agents,

within each simulation, an agent is trained over 1, 000 iterations.

The average policy at iteration 𝑡 is evaluated by taking the average

from the simulations.

We set the initial parameter value 𝒚(0) = (0, 0) for PD, SH, HD
game, and 𝒚(0) = (1, 0, 0) for 3 RPS games. The learning rate is set

as 𝛼 = 0.1. The baseline is set as 𝑏 = 0.

5.2 Stochastic Dynamics versus Mean Dynamics
We compare the expected value of the agent’s strategy over time

𝐸 [𝝅 (𝑡)] from 3 different methods. Figure 1 and 2 present the results

of our experiments. The blue line represents the results obtained

with our stochastic dynamics model, the green line plots the results

using the mean dynamics approach, and the red scatter line plots

the results of the agent-based simulation.

For the stochastic dynamics model, we first obtain the PDF

𝑝 (𝒚(𝑡)) by solving equations (6) and (10) with the finite volume

method [47], then we can evaluate the term 𝐸 [𝝅 (𝑡)] with (2). For

the mean dynamics model, we use the same model as in previous

studies [2, 12, 39].
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Figure 1: Expected value of policy 1 𝐸 [𝜋1] over time, initial parameter value 𝒚(0) = (0, 0).

Figure 2: Ternary plot of expected value of policy 𝐸 [𝝅], initial parameter value 𝒚(0) = (1, 0, 0).

Figure 3: Ternary heat-map of probability density of strategy 𝑝 (𝝅) at 𝑡 = 1, 000, initial parameter value 𝒚(0) = (1, 0, 0)

Looking at the results, we can see that the blue and red lines

almost overlapped with each other, meaning that our model can

capture the behaviour of the true dynamics well. On the other hand,

we can see substantial differences between the mean dynamics ap-

proach (green line) and the agent-based simulation, which confirms

our claims in the earlier discussion.
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Figure 4: Mean absolute distance to NE over time for RPS
games

5.3 Discussions on Convergence Behavior
Expected policy in PD, SH and HD games. Looking at Figure 1, we

can see there is a substantial discrepancy between the mean dynam-

ics model and the actual result in the HD game. Failing to consider

the random effects, the mean dynamics model has predicted the

agent’s expected policy converges to the mixed Nash equilibrium

strategy. The reason is that the mean dynamics have only focused

on the expected payoff. However, the payoff variance of a policy

will also affect the agent during learning, which in turn affects the

equilibrium of the dynamical system. The result is aligned with the

previous findings in EGT [7], where the asymptotic behaviour of

the population can be affected by the existence of randomness.

For the PD and SH games, the expected policy of the popula-

tion and the mean dynamics model have converged to the same

pure Nash equilibrium strategy. However, we can still see some

discrepancies in their policy dynamics, especially in the SH game.

The existence of randomness hinders the agents from obtaining

the correct information about the population, and this affects the

speed of convergence in learning. As the mean dynamics model

fails to consider the random effects, it will generally predict a faster

convergence speed compared to the stochastic dynamics model.

Convergence behaviours among RPS games. Looking at figure

2, we can see for the RPS games, the expected behaviours vary

in different payoff settings. For standard-RPS and good-RPS, the

agent’s expected policy converges to the Nash equilibrium, whereas

it converges to some other point in bad-RPS. Note that the good-

RPS game is a strictly stable game, the standard-RPS game is a null

stable game, and the bad-RPS is an unstable game.

According to Theorem 4.8, the policy 𝝅 in good-RPS will con-

verge to a stationary distribution (and thus a stable expected policy)

since good-RPS is strictly stable and 𝛼 = 0.1 < 0.11 = 𝛼0. This

verifies the correctness of the theorem.

However, convergence is not guaranteed in standard-RPS and

bad-RPS. In fact, when we examine the probability distribution of

the agent’s policy, we can see the policy distribution of standard-

RPS and bad-RPS diverge to the boundary (pure strategy). Figure 3

plot the heat-map of 𝑝 (𝝅) at 𝑡 = 1, 000 for 3 RPS games. We can see

for good-RPS, the density is concentrated around the NE strategy

( 1
3
, 1
3
, 1
3
). For standard-RPS, the density has split into 3 parts and

scattered around the pure strategies, although its expected policy

converges to the NE strategy. This illustrates that in standard-RPS,

an agent is unlikely to learn a strategy that is close to the NE

strategy. The divergent behaviour is more intense when we look at

the heat map for bad-RPS. This shows that the policy distribution

𝑝 (𝝅) does not converge to a stationary distribution in standard-RPS
and bad-RPS.

Figure 4 shows the mean absolute distance to NE (𝑀𝐴𝐷𝑁𝐸 ) over

time for 3 RPS games. The𝑀𝐴𝐷𝑁𝐸 is evaluated as

𝑀𝐴𝐷𝑁𝐸 (𝝅) = 𝐸𝒚 [
3∑︁

𝑘=1

|𝜋𝑘 − 1

3

|]

The black dash line (𝑀𝐴𝐷𝑁𝐸 = 4

3
) is the maximum possible value

of𝑀𝐴𝐷𝑁𝐸 , which corresponds to the situation where agents adopt

only pure strategies. We can see for bad-RPS, this value quickly

approaches the maximum value during training, which illustrates

the divergence behaviour of 𝝅 . For standard-RPS, the value goes up
steadily. For good-RPS, the value is stabilized around 0.55, which

confirms the existence of stationary distribution of 𝝅 .

6 CONCLUSIONS
In this paper, we study the learning dynamics of the policy gradient

algorithm in multi-agent environments. We propose a stochastic

dynamics model to analyse the learning dynamics of PG under

symmetric games. We model the parameter dynamics of a learning

agent as a multidimensional Wiener process. Applying the Itô’s

lemma, we obtain the corresponding policy dynamics for the agent.

From that, we study the convergence behaviour of the policy dy-

namics under a self-play training scheme for learning in games.

We work out the sufficient conditions for the stochastic stability

of the pure Nash equilibrium strategy and evaluate the sufficient

conditions for the existence of stationary distribution for strictly

stable games. Moreover, we express the dynamics of the parameter

distribution with the Fokker-Planck equation. In the experiments,

we demonstrate that our stochastic dynamics model always pro-

vides a significantly more accurate description of the actual learning

dynamics than the mean dynamics model across different games

and settings. Future directions include applying the analysis to

other learning algorithms such as Q-learning and SARSA, as well

as extending the analysis to multi-state environments and with

stochastic rewards.
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