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ABSTRACT
Probabilistic Serial (PS) is a well-studied allocation rule used for

distributing resources among multiple agents. Although it satisfies

certain notable fairness and welfare properties, it is not truthful.

This means that agents have incentives to misreport their prefer-

ences in order to influence the allocation in their favor. An interest-

ing research question is to understand the extent to which an agent

can gain from manipulation. A widely-accepted concept employed

for this exploration is the incentive ratio, defined as the supreme

ratio, across all instances of the problem, between the utility an

agent obtains by employing an optimal manipulation strategy and

the utility they receive when being truthful. Wang et al. [AAAI,

2020] examined the incentive ratio of PS for the setting when the

number of items𝑚 equals the number of agents 𝑛 and proved that

the incentive ratio is 1.5. In this paper, we study the general scenario

in which𝑚 and 𝑛 can be arbitrary. We prove that in this case, the

tight incentive ratio of PS is 2 − 1

2
𝑛−1 .
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1 INTRODUCTION
The problem of fairly and efficiently distributing resources (called

items in this paper) among agents has attracted significant atten-

tion in the field of computer science, artificial intelligence, and

multi-agent systems [8, 10, 20, 21]. Many variants of this problem

have been studied, and one of most popular settings is that the

agents’ preferences can be expressed as cardinal additive valuation

functions over the items. An allocation rule decides who gets what

based on the preferences reported by the agents. The fairness of an

allocation is usually measured by, for example, envy-freeness [26]

and proportionality [22], and the efficiency is measured by Pareto

optimality [30]. An allocation is envy-free if every agent prefers

her own bundle than any other agent’s, and is proportional if every

agent’s utility is at least the average of her utility over all items. A

Pareto optimal allocation ensures that nobody can get better off

without hurting the other agents.
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Various allocation rules have been proposed and investigated

towards meeting the desired properties. Several well-known ones

include Picking Sequence [11], Envy-graph Procedure [20], Top

Trading Cycles[1], and Probabilistic Serial [9]. In particular, Prob-

abilistic Serial (SP) Rule is among the most prominent ones with

appreciable properties on fairness and efficiency, including all the

aforementioned envy-freeness, proportionality and Pareto optimal-

ity. The PS Rule was initially developed for the scenario where

the number of agents and items are equal. Nonetheless, it can be

naturally extended to the setting where there are more items than

the agent [4, 18], preserving the fairness and efficiency guarantees.

The (extended) PS Rule operates as follows. First, each agent

submits a ranking over all items. Then at the start of the PS Rule,

every agent simultaneously begins to consume or “eat” her favorite

item based on the reported ranking, all at the same rate. Multiple

agents can eat one single item at the same time. Items are assumed

to have a common capacity (without loss of generality, normalized

to 1), and when an item is depleted, agents eating the item will

move on their next available most preferred item. The PS Rule ends

when all the items are exhausted. The bundle assigned to an agent

is the set of fractional items that she has consumed in the procedure.

In the context of allocating indivisible items, the fraction of an item

consumed by some agent can also be interpreted as the probability

of assigning the item to the agent.

Let us implement the PS Rule on an instance with two agents

and three items denoted as {𝑜1, 𝑜2, 𝑜3}. The cardinal valuation of

agents on every item is presented in Table 1 below where 𝜖 > 0 is

arbitrarily small.

𝑜1 𝑜2 𝑜3

Agent 1 1 1 − 𝜖 0

Agent 2 0 1 1 − 𝜖

Table 1: Cardinal Valuations of Agents

The valuations induce the following ranking: agent 1 likes 𝑜1 the

most and prefers 𝑜2 to 𝑜3; agent 2 likes 𝑜2 the most and prefers 𝑜3
to 𝑜1. Suppose that the consumption rate of both agents is 1, that

is, it takes 1 unit of time for an agent to consume a whole item. We

now simulate the procedure of the PS Rule. At the beginning, each

agent starts to consume their most preferred item, that is, agent 1

starts to consume the item 𝑜1 and agent 2 starts consuming 𝑜2. At

timestamp 1, both agents finish consuming their item; therefore,

they start to consume their next most preferred item. For agent 1,

her next most preferred item is 𝑜2. However, 𝑜2 has already been

consumed, so agent 1 consumes the next available most preferred

item, namely 𝑜3. For agent 2, the next most preferred item for her is

𝑜3, so she also starts consuming 𝑜3. Now, both agents are consuming

the same item, so after 0.5 unit of time 𝑜3 is consumed. That is, at
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timestamp 1.5, all items are consumed and the mechanism ends.

Upon termination, agent 1 (resp., agent 2) receives the entire 𝑜1
(resp., 𝑜2) and both agents receive 0.5 fraction of 𝑜3.

On top of fairness and efficiency, truthfulness (also known as

strategyproofness and incentive compatibility) is also highly de-

sired when allocating resources. Unfortunately, the PS Rule is not

truthful. An allocation rule is truthful if no agent can increase

their utilities by lying. Thus, if an allocation rule is not truthful,

strategic agents may have incentives to manipulate the resulting

allocation by misreporting their preferences. This manipulation

can compromise the overall performance of the mechanism.

Recall the example in Table 1. If both agents report their true

preferences, we obtain the aforementioned allocation. Now, given

that agent 2 continues to report truthfully, let us consider an alter-

native strategy of agent 1: she prefers 𝑜2 the most and then prefers

𝑜1 to 𝑜3. Then the PS Rule returns the following allocation: agent

1 (resp., agent 2) receives the entire 𝑜1 (resp., 𝑜3) and both agents

receive a fraction 0.5 of 𝑜2. With this manipulation strategy, agent

1 is strictly better off. Note that agent 1’s utility is still assessed by

her true preference as shown in Table 1.

In general, retaining truthfulness together with other desired

properties has been observed to be difficult or even impossible [2, 9].

For example, truthful, symmetric, and ex-ante Pareto optimality

cannot be satisfied simultaneously as proved in [30], and truthful,

equal treatment of equals, and ordinal efficient cannot be satisfied

simultaneously as proved in [9]. Therefore, instead of pursing truth-

fulness on the top of fairness and efficiency, we want to understand

the extent to which an agent can gain frommanipulation in a partic-

ular allocation rule. On the one hand, such an understanding helps

us analyze and predict agents’ behaviors in different mechanisms,

which can be further used to assess other quantitive properties such

as price of anarchy [19]. On the other hand, if an agent cannot gain

significantly from misreporting, it can be understood as the agent

either finds it bothersome or lacks strong incentives to compute a

manipulation strategy to manipulate the allocation. As a result, the

mechanisms can still be considered satisfactory to some degree.

Therefore, in this paper, our goal is to quantify how much agents

can benefit by misreporting in the PS Rule.

1.1 Our Contribution
To quantify the extent to which an agent can gain from manipulat-

ing in the PS Rule, we consider the commonly used notion, incentive
ratio. The incentive ratio of an allocation rule is the supreme ratio

between the utility an agent receives when employing the optimal

manipulation strategy and the utility they receive when behaving

truthfully, considering all possible allocation instances [14]. This

problem has been partially addressed in the literature. Wang et al.

[27] proved that the incentive ratio is 1.5 when the number of items

𝑚 is at most the number of agents 𝑛. However, in many real-life

resource allocation problems, the number of resources exceeds that

of agents. Our work completely resolves this question by provid-

ing the tight bound of the incentive ratio of the PS Rule when the

number of items and of agents can be arbitrary.

Our main contribution is the analysis of the tight incentive ra-

tio of 2 − 1

2
𝑛−1 , where 𝑛 represents the number of agents. We first

observe that the worst-case (i.e., the agent can gain highest pos-

sible utility by manipulation) happens when the manipulator has

dichotomous valuations; that is, the items can be categorized as

large (with value 1) and small (with value 0). Then we present a re-

duction; that is, when bounding the incentive ratio, we can focus on

the situation where all large items are ordered before small items in

the reported ordinal preference of the manipulator. To upper bound

the utility gain of the manipulator, we formalize a modified version

of the PS Rule, where, except for the manipulator, other agents may

stop consuming items before all items are exhausted. Based on the

modified version of the PS Rule, we establish a sequence of upper

bounds of the optimal value of the manipulator in the original PS

Rule. The desired incentive ratio is established via computing the

optimal objective value of a maximization problem.

1.2 Related works
Probabilistic serial rule. The Probabilistic Serial Rule was origi-

nally designed to address the house assignment problem [29], which

involves 𝑛 agents and 𝑛 items, with each agent being assigned ex-

actly one item. Bogomolnaia and Moulin [9] discusses the possible

generalization of the PS Rule, where there can be more items than

agents, but the constraint of each agent receiving only one item still

applies. In a later work, Kojima [18] introduced the generalization

where all items are consumed, which is the setting studied in our

paper. The PS Rule can also be used to allocate indivisible items

where the fraction of each item an agent receives is the probability

she gets the item as a whole. This randomized algorithm ensures

that the expected value of each agent’s lottery is the best among all

lotteries (bundles). However, the PS Rule has no ex-post fairness

guarantee. Regarding this problem, Aziz [3] proposed a polynomial-

time algorithm that has the same ex-ante behavior as the PS Rule

while guaranteeing ex-post envy-freeness up to one item (EF1).

Although the PS Rule is susceptible to manipulation, computing

the optimal manipulation strategy can be challenging. Aziz et al. [5]

proved that computing the best response under lexicographic valu-

ation can be done in polynomial time, but is NP-hard under general

additive valuations. Aziz et al. [4] further proved that a pure Nash

equilibrium always exists under the PS Rule, and verifying whether

a given profile is a pure Nash equilibrium is coNP-complete.

Notions related to strategic behaviors. The concept of the incen-
tive ratio was first used in the context of the Fisher Market [14]

and then was generalized to other mechanisms, such as Resource

Sharing [15] and Housing Markets [25]. Recently, Tao and Yang

[24] and Xiao and Ling [28] respectively proved that the incentive

ratio of the Round Robin algorithm for allocating indivisible re-

sources is 2. Tao and Yang [24] also considered other mechanisms

such as Maximum-Nash-Welfare and Envy-Graph Procedure. In

particular, in this work, it is shown that the incentive ratio of MNW

in general is unbounded. Later, Bei et al. [7] proved that if the items

are homogeneously divisible, then MNW can achieve an incentive

ratio of 2.

Several other notions related to strategic behaviors are consid-

ered in the literature, such as maximin strategy-proofness [12],

risk-averse truthfulness [23], and price of anarchy [19]. Instead of

considering individual manipulation potential, the price of anar-

chy concentrates on the potential loss of social welfare. Although
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it is generally challenging to achieve truthfulness, fairness, and

efficiency simultaneously, there exist specific scenarios where fa-

vorable outcomes can be achieved. For example, regarding dichoto-

mous valuations, Babaioff et al. [6] and Halpern et al. [16] respec-

tively proposed truthful mechanisms that satisfy several fairness

and social welfare properties.

Simultaneous work. It is worth mentioning that, in a recent inde-

pendent work by Huang et al. [17], which is the extended journal

version of the prior work by Wang et al. [27], the result of the in-

centive ratio of the PS Rule when𝑚 = 𝑛 is generalized to the setting

when𝑚 > 𝑛. They proved a bound of 2, which is close to our result.

Our paper involves a more fine-grained analysis, resulting in an

additional improvement of
1

2
𝑛−1 .

2 PRELIMINARIES
For any 𝑡 ∈ N+, denote by [𝑡] = {1, 2, . . . , 𝑡}. We consider the model

of allocating a set 𝑂 = {𝑜1, . . . , 𝑜𝑚} of𝑚 divisible goods to a set

𝑁 = {1, 2, . . . , 𝑛} of 𝑛 agents. Each agent 𝑖 is associated with a strict

ordinal preference ≻𝑡
𝑖
over items, and 𝑜 𝑗 ≻𝑡𝑖 𝑜𝑘 refers to that agent 𝑖

prefers 𝑜 𝑗 over 𝑜𝑘 . Throughout the paper, ≻𝑡𝑖 always represents the
true ordinal preference of agent 𝑖 . Each agent 𝑖 is also associated

with additive cardinal valuation function 𝑣𝑖 : 2
𝑂 → R≥0, that is,

𝑣𝑖 (𝑆) =
∑
𝑜∈𝑆 𝑣𝑖 (𝑜) for all 𝑆 ⊆ 𝑂 . For any 𝑖 ∈ [𝑛], the cardinal

valuation function 𝑣𝑖 (·) is required to be consistent with ≻𝑡
𝑖
, in the

sense that 𝑣𝑖 (𝑜𝑡 ) ≥ 𝑣𝑖 (𝑜𝑘 ) if and only if 𝑜𝑡 ≻𝑡
𝑖
𝑜𝑘 . Moreover, for

simplicity, we scale the cardinal valuations such thatmax𝑗 𝑣𝑖 (𝑜 𝑗 ) =
1,∀𝑖 ∈ [𝑛]. The underlying instance can then be represented as

I = ⟨𝑁,𝑂, {≻𝑡
𝑖
}, {𝑣𝑖 }⟩.

An allocation is written in the form of a 𝑛 × 𝑚 matrix X =

(X1,X2, . . . ,X𝑛)𝑇 where the 𝑖-th row vector X𝑖 = (𝑥𝑖1, . . . , 𝑥𝑖𝑚)
refers to the (fraction of) items allocated to agent 𝑖 , that is, a fraction

𝑥𝑖 𝑗 of 𝑜 𝑗 is assigned to agent 𝑖 in the allocationX. With slight abuse

of notation, X𝑖 also refers to the set of fractional items assigned

to agent 𝑖 . Given an allocation X, agent 𝑖’s cardinal value on the

received bundleX𝑖 is 𝑣𝑖 (X𝑖 ) =
∑

𝑗∈[𝑚] 𝑥𝑖 𝑗𝑣𝑖 𝑗 . SinceX𝑖 ’s are vectors,

operations such as summation and difference also apply to them.

We will use the vector-wise calculation several times in the paper.

We also let |X𝑖 | =
∑

𝑗∈[𝑚] 𝑥𝑖 𝑗 , denoting the total size of the bundle

X𝑖 .

In this work, following the convention, we study the extent to

which individuals’ value can be increased by unilateral deviation,
in the sense that only one agent can misreport. Denote by PS({≻𝑗

} 𝑗∈[𝑛] , 𝑁 ,𝑂) the Probabilistic Serial algorithm with agent set 𝑁 ,

item set 𝑂 and the reported ordinal preferences {≻𝑗 } 𝑗∈[𝑛] (which
may differ from their true preferences) as inputs. If the underlying

inputs are clear from the context, we simply write PS. Since only
one agent canmanipulate, we often write the input of 𝑃𝑆 as (≻𝑖 , ≻−𝑖
, 𝑁 ,𝑂) where ≻𝑖 is the reported preference of the agent 𝑖 who can

manipulate; ≻−𝑖 is the collection of reported preferences of all other
agents (except agent 𝑖). Expression X = PS(≻𝑖 , ≻−𝑖 , 𝑁 ,𝑂) refers
to that X is the allocation returned by PS with the corresponding

input.

2.1 Incentive ratio
In order to quantify the extent to which individuals can benefit

themselves through strategic play, we adopt the notion of incentive

ratio (R) [13, 14]. The incentive ratio of an allocation mechanism

is defined as the supreme ratio over all problem instances between

the largest possible value achieved by an agent through behaving

strategically and the value received by that agent when she reveals

the true information. The formal definition is presented below.

Definition 1 (Incentive ratio). The incentive ratio of agent 𝑖
with respect to an assignment rule M is defined as

RM
𝑖 = sup

I=⟨𝑁,𝑂,{𝑣𝑖 },{≻𝑡
𝑖
}⟩
sup

≻−𝑖

sup≻𝑖
𝑣𝑖 (M𝑖 (≻𝑖 , ≻−𝑖 ), 𝑁 ,𝑂)

𝑣𝑖 (M𝑖 (≻𝑡𝑖 , ≻−𝑖 ), 𝑁 ,𝑂)
,

where M𝑖 (·) refers to the bundle assigned to agent 𝑖 in the allocation
returned by M. The numerator is the largest possible value achieved
by agent 𝑖 when she unilaterally misreports the preference, while the
denominator is the value of agent 𝑖 when she reports truthfully. The
incentive ratio of M is then RM = max𝑖∈[𝑛] RM

𝑖
.

We remark that for a given 𝑖 ∈ [𝑛], the incentive ratio RM
𝑖

indeed does not depend on 𝑣 𝑗 and ≻𝑡
𝑗
for all 𝑗 ≠ 𝑖 , but for complete-

ness, we keep these cardinal and ordinal valuations in the above

fraction. By definition, the incentive ratio of an assignment ruleM
is at least one, and if it is equal to one, then no agent can increase

their value in M by misreporting. Throughout the paper, without

loss of generality, let agent 1 be the agent to manipulate and her

true preference be 𝑜1 ≻𝑡
1
𝑜2 ≻𝑡

1
· · · ≻𝑡

1
𝑜𝑚 . Moreover, as ≻𝑡−1 does

not affect RM
𝑖

, thereafter, when bounding the incentive ratio, we

further assume that agents except agent 1, report their true ordinal

preferences.

We below use a concrete example to further illustrate the mean-

ing of the incentive ratio. Let us again look the example presented

in Introduction Section with two agents and three items {𝑜1, 𝑜2, 𝑜3}
and valuation functions are presented in Table 1. Note that agent 1

is the manipulator. Recall that if agent 1 reports her true preference,

the returned allocation of PS is: X1 = (1, 0, 0.5),X2 = (0, 1, 0.5).
Then, the value of agent 1 is equal to 1 × 1 + 0.5 × 0 = 1. Next

we analyze the case where agent 1 manipulates her preference as

≻′
1
: 𝑜2 ≻1 𝑜1 ≻1 𝑜3. We demonstrate the running process of the PS

Rule on this new preference profile (≻′
1
, ≻𝑡

2
): At time 0, the most

preferred item of both agents is 𝑜2, and thus it takes 0.5 unit of

time to finish consuming it. Then, the next preferred item of agent

1 is 𝑜1, while that of agent 2 is 𝑜3. Therefore, they will start to

consume different items and finish them after 1 unit of time. The

returned allocation is X′
1
= (1, 0.5, 0),X′

2
= (0, 0.5, 1). This time,

agent 1 receives a bundle of a value 1× 1+ 0.5× (1−𝜖) = 1.5− 0.5𝜖 .

Indeed, this is the largest possible value agent 1 can get regardless

of the reported preference of agent 2. Therefore, for this simple

instance, the incentive ratio of agent 1 is
1.5−0.5𝜖

1
≈ 1.5 when 𝜖

approaches 0. That is, agent 1 can increase her value by nearly 50%

by misreporting her preference.

3 REDUCTIONS
In this section, we introduce two reductions that are helpful in

finding the incentive ratio. The first one is an instance reduction

that shrinks the space of worst-case instance, and hence enables

us to concentrate on a specific class of instances. This reduction is

established in [27], and states that when computing the incentive
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ratio of PS, it suffices to concentrate solely on dichotomous pref-
erence instance, that is, for any 𝑜 ∈ 𝑂 , the value of 𝑜 of agent 1

𝑣1 (𝑜) is either close to 1 or close to 0, and formally, for any 𝑜 ∈ 𝑂 ,

𝑣1 (𝑜) ∈ {1 − 𝑜 (𝜖), 𝑜 (𝜖)} where 𝜖 > 0 is arbitrarily small.

Lemma 1 (Lemma 1 of Wang et al. [27]). Given any truthful
profile (≻𝑡

1
, ≻−1) and agent 1’s cardinal valuation 𝑣1 that is com-

patible with the ordering ≻𝑡
1
, denote by ratio 𝑐 =

𝑢′
1

𝑢1

where 𝑢′
1
(resp.

𝑢1) is agent 1’s maximum value attainable by manipulation (resp.
truthful reporting). Then one can always construct a corresponding
dichotomous valuation 𝑏𝑖 that is compatible with ≻𝑡

1
, such that the

ratio 𝑐 is no less than before.

Thereafter, agent 1’s cardinal valuations is always assumed to be

dichotomous. According to the dichotomous preference reduction,

in agent 1’s true ordinal preference, items that agent 1 is interested

in (with a value close to 1) are ordered before the items that agent 1

is not interested in (with a value close to 0). Throughout the paper,

denote by 𝑂 the set of items in which agent 1 is interested, and

assume |𝑂 | = 𝑘 ; that is, 𝑂 = {𝑜1, 𝑜2, . . . , 𝑜𝑘 }.
Now we present the second reduction, that is, when bounding

the worst-case incentive ratio, we can focus on the case where the

set of the first 𝑘 items in agent 1’s reported preference is identical

to 𝑂 . We introduce an extra notation; given a ≻1, let 𝐶 (≻1) be the
number of items that are both in the first 𝑘 elements in ≻1 and in

𝑂 . The reduction replies on the following lemma.

Lemma 2. For any ≻1, ≻−1, if𝐶 (≻1) < 𝑘 , then there exists another
ordinal preference ≻′

1
satisfying the following two properties:

(1) 𝐶 (≻′
1
) = 𝑘 ;

(2) 𝑣1 (X1) − 𝑣1 (X′
1
) ≤ 𝑂 (𝜖) where X1 and X′

1
are the bundles as-

signed to agent 1 in PS(≻1, ≻−1, 𝑁 ,𝑂) and PS(≻′
1
, ≻−1, 𝑁 ,𝑂)

respectively.

Proof. First, we construct ≻′
1
: we repeatedly find the first item

in ≻1 that is not in 𝑂 , and put this item to the last position on the

preference profile, until the first 𝑘 items in the profile all belong to

𝑂 . The resulting profile ≻′
1
ensures that𝐶 (≻′

1
) = 𝑘 , and the relative

order of those 𝑘 items remains the same as in ≻1.

Before showing the second property, we will use a paused allo-
cation to bridge the comparison between X1 and X′

1
. If an agent is

paused amid an allocation, she stops consuming any items, while

the other non-paused agents continue eating as usual. Once the

agent’s pause is over (or she is resumed), she will come back and

select the highest-ranked item on her preference profile that is still

available, following the PS Rule.

Now we construct the paused allocation, where agent 1 is the

only agent that would be paused. Her bundle in this scenario is de-

noted as X𝑝

1
. The preference profile used by agent 1 in this scenario

is ≻′
1
, which contains 𝑂 in its first 𝑘 elements. To have an intuitive

idea of the construction of the paused scenario, assume that we be-

gin the paused allocation and the base allocation PS(≻1, ≻−1, 𝑁 ,𝑂)
at the same time, and pause agent 1 whenever she is eating some

item 𝑜 ∉ 𝑂 in PS(≻1, ≻−1, 𝑁 ,𝑂). Formally, let 𝑡1 be the earliest

timestamp when agent 1 starts eating an item 𝑜 ∈ 𝑂 in the process

of PS(≻1, ≻−1, 𝑁 ,𝑂), and let 𝑡 ′
1
be the earliest time stamp after 𝑡1

when agent 1 starts eating an item 𝑜 ∉ 𝑂 . Then, let 𝑡2 be the first

timestamp after 𝑡 ′
1
when agent 1 starts eating an item 𝑜 ∈ 𝑂 , etc.

The sequence of timestamps will be used to describe the paused al-

location: At the beginning of the allocation, agent 1 is paused. Then,

at timestamp 𝑡1, resume agent 1, and pause her again at timestamp

𝑡 ′
1
. Repeat this pattern until the allocation ends or the items in 𝑂

are exhausted. When there is no item left in 𝑂 , we pause agent 1

indefinitely. This regulation ensures that agent 1 only consumes

valuable items in the (process of) paused allocation.

After the construction of the paused allocation, we will show that

𝑣1 (X1) and 𝑣1 (X𝑝

1
) differ by 𝑂 (𝜖). First, we illustrate the following

claim:

Claim 1. At any timestamp, for any item, its remaining amount
in the paused allocation is no less than that in the base allocation.

Proof of Claim 1. Presume there exists a contradiction. Let 𝑡

be the earliest time, when there exists an item 𝑜 , whose remain-

ing amount in the paused allocation is less than that in the base

allocation. Since 𝑡 is the earliest time, there must be more agents

consuming 𝑜 in the paused allocation within time (𝑡, 𝑡 + 𝜖). Let the
agent consuming 𝑜 in the paused allocation but not consuming it in

the base allocation be 𝑗 . Suppose that agent 𝑗 is consuming item 𝑜′

in the base allocation at time 𝑡 . We first discuss the situation where

𝑗 ≠ 1, then, either 𝑜 ≻𝑗 𝑜
′
or 𝑜′ ≻𝑗 𝑜 since any agent other than

agent 1 reports the same preference profile in the two allocations.

Suppose it is the former case, then agent 𝑗 not eating item 𝑜 in the

base allocation means that there is no item 𝑜 left at time 𝑡 in the

base allocation. However, 𝑜 is still available in the paused allocation,

which contradicts the assumption that the remaining amount of 𝑜 in

the pause allocation at 𝑡 is less. Taking into account the latter case,

𝑗 not eating 𝑜′ in the paused allocation means that 𝑜′ is already
exhausted at time 𝑡 in the paused allocation but is still available

in the base allocation, contradicting the assumption that 𝑡 is the

earliest time when some item has less amount left in the paused

allocation. Hereby the proof for 𝑗 ≠ 1 is complete, and we consider

the situation where 𝑗 = 1. Since agent 1 is consuming items in

the paused allocation, it means that she is consuming a valuable

item in the base allocation at this time, that is, 𝑜′ ∈ 𝑂 .Because 𝑜 is

also in 𝑂 due to the construction of the paused allocation, we can

derive that the relative order of those two items in the two profiles

is consistent. That is, either 𝑜 ≻1 𝑜
′
or 𝑜′ ≻1 𝑜 for both paused and

base allocations. From here, we can use the same arguments as in

the case where 𝑗 ≠ 1 to prove this situation. □

By Claim 1, it is not hard to see that agent 1 is either consuming

a valued item or is paused in the paused allocation, and she will

not be paused as long as 𝑂 is not exhausted in the base allocation.

Therefore, we can say that agent 1 spends the same amount of time

consuming items in 𝑂 in both allocations. Since the valuation is

dichotomous, value of items 𝑂 for agent 1 only differs by at most

𝑂 (𝜖). Consequently, the difference between 𝑣1 (X1) and 𝑣1 (X𝑝

1
) is

at most 𝑂 (𝜖).
Now, to prove Lemma 2, it suffices to show 𝑣1 (X𝑝

1
) − 𝑣1 (X′

1
) ≤

𝑂 (𝜖). For convenience, we name PS(≻′
1
, ≻−1, 𝑁 ,𝑂) the reduced

allocation. It is not hard to see that the paused allocation is the

reduced allocation with some pauses. The intuition here is to show

that pausing does not increase agents’ value. We show this by first

presenting a similar claim.
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Claim 2. In the paused allocation, given any timestamp 𝑡 , let 𝑃 (𝑡)
be the total amount of time that agent 1 is paused in the time range
(0, 𝑡). Given any timestamp 𝑡 and item 𝑜 , the remaining amount of 𝑜
at time 𝑡 − 𝑃 (𝑡) in the reduced allocation is no less than its remaining
amount at time 𝑡 in the paused allocation.

Proof of Claim 2. Assume for contradiction, 𝑡 is the earliest

time, when there exists an item 𝑜 whose remaining amount in

the reduced allocation at time 𝑡 − 𝑃 (𝑡) is less than that in the

paused allocation at time 𝑡 . Since 𝑡 is the earliest time, there must

be more agents consuming 𝑜 in the reduced allocation within time

(𝑡 − 𝑃 (𝑡), 𝑡 + 𝜖 − 𝑃 (𝑡 + 𝜖)). This implies that agent 1 is not paused

in the paused allocation at time 𝑡 , otherwise the time range will

have a length of 0. Let 𝑗 be the agent consuming 𝑜 at time 𝑡 − 𝑃 (𝑡)
in the reduced allocation but consuming item 𝑜′ in the paused

allocation at 𝑡 . Suppose 𝑜 ≻𝑗 𝑜
′
, then 𝑜 is unavailable at time 𝑡 in

the paused allocation. However, 𝑜 is still available at time 𝑡 − 𝑃 (𝑡)
in the reduced allocation, leading to a contradiction. For the case of

𝑜′ ≻𝑗 𝑜 , item 𝑜′ is already exhausted at time 𝑡 −𝑃 (𝑡) in the reduced

allocation, meaning that 𝑡 is not the earliest timestamp with the

assumed property, a contradiction. □

We now continue proving Lemma 2. Suppose that the last times-

tamp when agent 1 is eating an item (which is valuable) in the

paused scenario is 𝑡𝑝 , that is, agent 1 spends 𝑡𝑝 − 𝑃 (𝑡𝑝 ) time con-

suming valuable items in the paused allocation. By Claim 2, we

know that agent 1 is consuming valuable items from time 0 to

𝑡𝑝 − 𝑃 (𝑡𝑝 ) in the reduced allocation. Since the rest of the reduced

allocation will not decrease her valuation, we can conclude that

𝑣1 (X𝑝

1
) − 𝑣1 (X′

1
) ≤ 𝑂 (𝜖). As we already have 𝑣1 (X1) − 𝑣1 (X𝑝

1
) ≤

𝑂 (𝜖), combining these two inequalities gives the second property

in the statement of Lemma 2. □

Recall that we have scaled the valuation function of agent 1

such that max𝑗∈[𝑚] 𝑣1 (𝑜 𝑗 ) = 1. Thus, if agent 1 reports the true

preference, she receives a value of at least
1

𝑛 ≫ 𝑂 (𝜖), making the

term 𝑂 (𝜖) not affect the incentive ratio. Therefore, when bounding

the worst-case incentive ratio, we can further assume that the first

𝑘 items in agent 1’s reporting are always (a permutation of) 𝑂 .

4 THE INCENTIVE RATIO OF PS RULE
In this section, we establish the incentive ratio of the PS rule. Recall

that Wang et al. [27] proved that when 𝑛 ≥ 𝑚, the incentive ratio

of the PS Rule is bounded by 1.5. As we target the ratio of 2 − 1

2
𝑛−1 ,

greater than 1.5 for any 𝑛 ≥ 2, it suffices to focus solely on the case

of𝑚 > 𝑛. We first remark that the incentive ratio is monotonically

non-decreasing regarding the number of items, that is, the incentive

ratio of instances with 𝑘 + 1 items should be at least as large as that

of instances with 𝑘 items for all 𝑘 > 𝑛. The reason behind this is

that if on the worse case instance with the 𝑘 item, we add a new

item 𝑜𝑘+1 such that 𝑜𝑘+1 is the least preferred item for any agent

in the new instance, then it is not hard to verify that the incentive

ratio of the new instance with 𝑘 + 1 items should be no less than

that of the 𝑘-item instance. As a consequence, when bounding the

incentive ratio, we can further assume𝑚 ≫ 𝑛.

In order to establish the tight incentive ratio, we propose the

algorithm PS′ that can be viewed as a generalization of the canon-

ical PS Rule. The algorithm PS′ takes as input a set of agents 𝐷 ,

a set of fractional items 𝐸, and partial ordinal preferences (POP)
of agents over 𝐸 and returns an allocation of (a subset of) 𝐸 over

agents 𝐷 . The size of an item 𝑜 ∈ 𝐸 can be smaller than 1 and the

POP allows agents to have an incomplete preference list, that is,

not every 𝑜 ∈ 𝐸 is required to appear on the reported preference

list. Given an item 𝑜 ∈ 𝐸, let 𝑠 (𝑜) be the size of item 𝑜 (contained in

𝐸) and naturally 𝑠 (𝑜) ∈ [0, 1] for all 𝑜 ∈ 𝐸.

The PS′ also utilizes the idea of the PS Rule, while different from
the latter, if some item 𝑜 ∈ 𝐸 does not appear in the reported POP

list of agent 𝑖 , then agent 𝑖 never eats 𝑜 . The formal description of

PS′ (≻1, ≻−1, 𝐷, 𝐸) is as follows (see Algorithm 1). We also use an

example to demonstrate how PS′ executes.

Algorithm 1 PS′: The Modified Probabilistic Serial Rule

Input: Agent set 𝐷 , item set 𝐸 and POP profile {≻1, ≻−1}.
1: All agents start to consume 𝐸 at time 0 with the same rate of 1.

2: At any moment, each agent consumes the most preferred non-

exhausted item appearing on her POP.

3: For an agent 𝑗 , once all the items appearing in her POP are

exhausted, she stops and receives the set of fractional items

she consumed.

4: The algorithm ends if either all agents stop or all items are

exhausted.

Example 1. Consider an instance with two agents 𝐷 = {1, 2} and
four items 𝐸 = {𝑜1, 𝑜2, 𝑜3, 𝑜4} with sizes 𝑠 (𝑜1) = 1

2
and 𝑠 (𝑜 𝑗 ) = 1 for

𝑗 ≥ 2. Suppose that the reported POP of agents 1 and 2 are 𝑜1 ≻1 𝑜3
and 𝑜1 ≻2 𝑜3 ≻2 𝑜4, respectively. Then, at the end, agent 1 gets a
fraction 1

4
of 𝑜1 and a fraction 1

2
of 𝑜3; agent 2 gets a fraction 1

4
of 𝑜1,

a fraction 1

2
of 𝑜3 and the entire 𝑜4. Item 𝑜2 is left unassigned.

We remark that at the termination of the canonical PS Rule, all

items are exhausted or assigned, while in PS′, some item can be

left unallocated.

4.1 The upper bound of the incentive ratio
In this subsection, we prove that incentive ratio of the PS rule is at

most 2 − 1

2
𝑛−1 . We now fix an instance I = ⟨𝑁,𝑂, {≻𝑡

𝑖
}, {𝑣𝑖 }⟩ and

a collection of other agents’ reported preferences ≻−1= {≻𝑖 }𝑖≥2.
According to Lemma 1, we can focus on the case where function

𝑣1 (·) is dichotomous. Let 𝑇 be the moment when 𝑂 is eaten up in

PS(≻𝑡
1
, ≻−1, 𝑁 ,𝑂); recall that 𝑂 is the set of items valued by agent

1. Moreover, denote by X = (X1, . . . ,X𝑛) the partial allocation

returned by PS(≻𝑡
1
, ≻−1, 𝑁 ,𝑂) at moment 𝑇 and by X =

∑
𝑖∈[𝑛] X𝑖

the set of items consumed in PS by moment 𝑇 . Note that for vector

X = (𝑥1, 𝑥2, . . . , 𝑥𝑚), every element 𝑥 𝑗 is at most one. For an item

𝑜 𝑗 , if 𝑥 𝑗 = 1, then we say 𝑜 𝑗 is an integral item of X; otherwise, we
say 𝑜 𝑗 is a fractional item ofX. It is worthwhile to note that in agent

1’s true ordinal preference ≻𝑡
1
, each item 𝑜 ∈ 𝑂 is ranked before any

𝑜′ ∈ 𝑂 \𝑂 . Accordingly, by the construction of X, bundle X1 only

contains items from 𝑂 . Moreover, as function 𝑣1 is a dichotomous,

we have 𝑣1 (X1) = |X1 | = 𝑇 , the received value of agent 1 when

reporting the true preference. Note that since term 𝑂 (𝜖) does not
affect the incentive ratio, for simplicity, thereafter the dichotomous

valuation function 𝑣 (·) is assumed to be 𝑣 (𝑜) ∈ {0, 1} for all 𝑜 .
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In the following, we establish upper bounds of 𝑇 . Suppose that,

for PS(·, ≻−1, 𝑁 ,𝑂), agent 1’s optimal strategy is to report ≻𝑜
1
, and

by doing so, she receives a value ofOPT(1). Naturally,OPT(1) ≥ 𝑇 .

Our first step is to provide an upper bound ofOPT(1), and the high-
level idea is that if we can (virtually) let other agents stop at some

moment earlier than 𝑇 , then agent 1 would have opportunities to

consume more of her valued items. Meanwhile, we also want to

control or limit the additional value of agent 1 caused by the earlier

stopping time of other agents. Therefore, we implement PS′ (·) in
another instance I1 where the underlying items and agents are X
and 𝑁 , respectively. The cardinal valuation of agent 1 now becomes

𝑣 ′
1
(𝑜) = 1 for all 𝑜 contained inX, that is, instead of𝑂 , agent 1 values

every item in X. For any 𝑖 ≥ 2, valuation 𝑣 ′
𝑖
remains unchanged, i.e.,

𝑣 ′
𝑖
(·) = 𝑣𝑖 (·). The partial ordinal preferences of the agents {≻𝑋𝑖 }𝑖∈𝑁

regarding I1 is constructed as follows:

• for agent 1, the partial ordinal preference ≻𝑋
1
contains all

items of X. Her favorite 𝑘 items and their order are identical

to that of ≻𝑜
1
and all other items of X are ordered arbitrarily

afterward.

• for agent 𝑖 ≥ 2, let 𝑜 𝑗𝑖 be the item that agent 𝑖 is eating at mo-

ment 𝑇 in PS(≻𝑡
1
, ≻−1, 𝑁 ,𝑂). The partial ordinal preference

≻𝑋
𝑖
only contains items 𝑜 𝑗 ≻𝑖 𝑜 𝑗𝑖 and 𝑜 𝑗𝑖 , and their relative

orders are consistent with ≻𝑖 .
To help understand, we provide an example of ≻𝑋

𝑖
for 𝑖 ≥ 2. Suppose

X contains items 𝑜1, . . . , 𝑜5 and agent 𝑖’s preference over X is 𝑜5 ≻𝑖
𝑜3 ≻𝑖 𝑜1 ≻𝑖 𝑜4 ≻𝑖 𝑜2. Item 𝑜4 is the last one received by agent 𝑖 ,

then ≻𝑋
𝑖
becomes 𝑜5 ≻𝑋

𝑖
𝑜3 ≻𝑋

𝑖
𝑜1 ≻𝑋

𝑖
𝑜4. Note that based on the

definition of ≻𝑋
𝑖
, agent 2, in PS′ (·, ≻𝑋−1, 𝑁 ,X), never consumes item

𝑜2. In other words, when 𝑜5, 𝑜3, 𝑜1, 𝑜4 are exhausted, agent 𝑖 stops.

We now present propositions regarding the integral and fractional

items of X.

Proposition 1. If item 𝑜 𝑗 appears in some ≻𝑋
𝑖
and 𝑜 𝑗 is not the

least preferred in ≻𝑋
𝑖
, then 𝑜 𝑗 is an integral item of X.

Proof. As 𝑜 𝑗 is not the least preferred in ≻𝑋
𝑖
, agent 𝑖 must re-

ceive some fraction of another item 𝑜 𝑗 ′ with 𝑜 𝑗 ≻𝑋𝑖 𝑜 𝑗 ′ in X𝑖 . Note

that item 𝑜 𝑗 must be completely consumed before agent 𝑖 starts

eating 𝑜 𝑗 ′ . Thus, 𝑥 𝑗 = 1 holds where 𝑥 𝑗 is the 𝑗-th element of vector

X, and in other words,𝑜 𝑗 is an integral item of X. □

Proposition 2. Every item 𝑜 ∈ 𝑂 is an integral item of X.

Proof. The proof directly follows from Proposition 1 and the

construction of 𝑂 and of X. □

Next, we analyze PS′ (≻𝑋
1
, ≻𝑋−1, 𝑁 ,X) and compare agent 1’s

value in the allocation returned by PS′ (≻𝑋
1
, ≻𝑋−1, 𝑁 ,X) andOPT(1).

Lemma 3. In the allocation returned by PS′ (≻𝑋
1
, ≻𝑋−1, 𝑁 ,X), agent

1 has a value, with respect to 𝑣 ′
1
, of at least OPT(1).

Proof. For ease of representation, in this proof, we use PS′

and PS to represent PS′ (≻𝑋
1
, ≻𝑋−1, 𝑁 ,X) and PS(≻𝑜

1
, ≻−1, 𝑁 ,𝑂), re-

spectively. According to Proposition 2, every 𝑜 ∈ 𝑂 is an integral

element of X, and agent 1 values every 𝑜 ∈ X. Then, it suffices to

show that for any integral item 𝑜 𝑗 of X, from time 𝑡 ≥ 0 to the

moment where 𝑜 𝑗 is eaten (or exhausted), the remaining amount

of 𝑜 𝑗 in PS′ is at least the remaining amount in PS.
For the sake of a contraction, suppose 𝑡 ′ is the earliest moment, af-

ter which there exists an integral item 𝑜 𝑗 ′ whose remaining amount

in PS′ is less than its remaining amount in PS. Accordingly, for
an arbitrarily small amount 𝛿 > 0, at moment 𝑡 ′ + 𝛿 , the number

of agents who are eating 𝑜 𝑗 ′ in PS′ is larger than that number in

PS. Denote by 𝑖′ the agent who, at moment 𝑡 ′ + 𝛿 , is eating 𝑜 𝑗 ′

in PS′ but not in PS. Then, suppose agent 𝑖′, at moment 𝑡 ′ + 𝛿 , is

eating another item 𝑜 𝑗 ′′ in PS. Recall that, at moment 𝑡 ′ + 𝛿 , the

remaining amount of 𝑜 𝑗 ′ is larger than zero, then, agent 𝑖′ prefers
𝑜 𝑗 ′′ to 𝑜 𝑗 ′ (i.e., 𝑜 𝑗 ′′ ≻𝑖′ 𝑜 𝑗 ′ ); otherwise, agent 𝑖′ should eat 𝑜 𝑗 ′ at

that moment. As for PS′, agent 𝑖′ is eating 𝑜 𝑗 ′ at 𝑡 ′ +𝛿 in PS′, which
means, at that time, 𝑜 𝑗 ′′ is eaten up in PS′. However, 𝑜 𝑗 ′′ is not
eaten up in PS at moment 𝑡 ′ +𝛿 as agent 𝑖′ is eating that item. If we

can prove 𝑜 𝑗 ′′ is also an integral item of X, then 𝑡 ′ should not be

the earliest moment, providing a contradiction. As 𝑜 𝑗 ′ appears in

≻𝑋
𝑖′ and 𝑜 𝑗

′′ ≻𝑖′ 𝑜 𝑗 ′ , item 𝑜 𝑗 ′′ is not the least preferred one in ≻𝑋
𝑖′ .

Then, according to Proposition 1, 𝑜 𝑗 ′′ is also an integral item of X,
resulting in the desired contradiction. Up to here, we complete the

proof. □

Denote by ≻𝑜 (𝑋 )
1

the optimal strategy of agent 1 for PS′ (·, ≻𝑋−1
, 𝑁 ,X) and by OPT(2) the value of agent 1 when reporting ≻𝑜 (𝑋 )

1

in PS′ (·, ≻𝑋−1, 𝑁 ,X). It is not hard to see that OPT(2) is at least as
large as the value of agent 1 in PS(≻𝑋

1
, ≻𝑋−1, 𝑁 ,X), and based on

Lemma 3, OPT(2) ≥ OPT(1) holds.

Proposition 3. OPT(2) ≥ OPT(1).

Proof. The proof follows directly from Lemma 3. □

We next present an upper bound of OPT(2) by implementing

PS′ to assign a subset of X. Recall that X = (𝑥1, . . . , 𝑥𝑚) and X1 =

(𝑥11, 𝑥12, . . . , 𝑥1𝑚) represent both vectors and bundles. Our idea

here is to decompose X into two parts: X1 and X−X1 where X−X1

refers to the vector (and hence the corresponding bundle) with its

𝑗-th element being 𝑥 𝑗 − 𝑥𝑖 𝑗 for all 𝑗 ∈ [𝑚]. Then we will directly

assigns X1 to agent 1 for free and then use PS′ to assign X − X1,

which can enhance agent 1’s share on bundle X − X1.

Formally, let I2 be an instance where the underlying items are

X − X1 and the underlying agents are 𝑁 . The cardinal valuation

function of each agent is identical to that in I1, and thus agent 1

values every 𝑜 ∈ X (and hence every 𝑜 ∈ X−X1). Then, we present

the following lemma.

Lemma 4. Given any ≻′
1
over X, for an integral item 𝑜 of X, from

time 𝑡 ≥ 0 to the moment when 𝑜 is eaten up, the remaining amount of
𝑜 in PS′ (≻′

1
, ≻𝑋−1, 𝑁 ,X − X1) is no more than the remaining amount

in PS′ (≻′
1
, ≻𝑋−1, 𝑁 ,X).

Proof. If 𝑜 is not included in X − X1, then the statement is

trivially true. Regarding the case where 𝑜 is also included in X−X1,

the proof is similar to that of Lemma 3. □

Now we are ready to present an upper bound of OPT(2). Define
OPT(3) be the maximum value that can be obtained by agent 1 in

PS′ (·, ≻𝑋−1, 𝑁 ,X − X1).
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Proposition 4. OPT(3) +𝑇 ≥ OPT(2).

Proof. Recall that ≻𝑜 (𝑋 )
1

is the optimal strategy of agent 1 for

PS′ (·, ≻𝑋−1, 𝑁 ,X). For any 𝑖 ≥ 2, let 𝑙∗
𝑖
be the moment when agent 𝑖

stops in PS′ (≻𝑜 (𝑋 )
1

, ≻𝑋−1, 𝑁 ,X), and moreover, let 𝑝∗
𝑖
be the moment

when agent 𝑖 stops in PS′ (≻𝑜 (𝑋 )
1

, ≻𝑋−1, 𝑁 ,X − X1). According to

Lemma 4, we have 𝑙∗
𝑖
≥ 𝑝∗

𝑖
for all 𝑖 ≥ 2. Note that agent 1 values

every item in X, so X is eaten up in both PS′ (≻𝑜 (𝑋 )
1

, ≻𝑋−1, 𝑁 ,X)
and PS′ (≻𝑜 (𝑋 )

1
, ≻𝑋−1, 𝑁 ,X − X1). Consequently, the value of agent

1 is equal to the total size of X, denoted as |X| = ∑
𝑗 𝑥𝑖 𝑗 , minus the

sum of the stopping time of agents {2, 3, . . . , 𝑛}. Thus, we have the
following:

OPT(2) = |X| −
∑︁
𝑖≥2

𝑙∗𝑖 ≤ |X| −
∑︁
𝑖≥2

𝑝∗𝑖

= |X1 | + |X − X1 | −
∑︁
𝑖≥2

𝑝∗𝑖 ≤ |X1 | + OPT(3)

= 𝑣 ′
1
(X1) + OPT(3),

where the last inequality transition is due to the fact that |X −
X1 | −

∑
𝑖≥2 𝑝

∗
𝑖
is the value of agent 1 when reporting ≻𝑜 (𝑋 )

1
in

PS′ (·, ≻𝑋−1, 𝑁 ,X − X1) and the last equality transition is due to the

fact that in 𝑣 ′
1
, agent 1 values all items of X1. Moreover, as 𝑇 =

𝑣1 (X1) = |X1 | = 𝑣 ′
1
(X1), we then have OPT(3) +𝑇 ≥ OPT(2). □

After providing a sequence of upper bounds, at this stage, we

find OPT(3) +𝑇 , the target upper bound of OPT(1) and recall that

OPT(1) is the value received by agent 1 in PS(·, ≻−1, 𝑁 ,𝑂) when
reporting the optimal strategy ≻𝑜

1
. In what follows, we upper bound

OPT(3), which then provides the desired upper bound ratio on the

incentive ratio of the PS rule. Before presenting the main result, we

first state a property of PS′, that is, informally, at any moment 𝑡 ,

eliminating an agent and the set of items currently assigned to her

does not affect the assignment before 𝑡 if one (virtually) re-runs the

algorithm.

Lemma 5. Given any ordinal preferences {≻′
𝑖
}, a set of agents 𝑁 ,

and a set of items 𝐸, suppose that at moment 𝑡 , the partial assignment
of PS′ (≻′

1
, ≻′

−1, 𝐷, 𝐸), is A
𝑡 = (A𝑡

1
, . . . ,A𝑡

𝑛). If we remove agent 𝑖
and A𝑡

𝑖
, then for PS′ (≻−𝑖 , 𝑁 \ {𝑖}, 𝐸 − A𝑡

𝑖
), at moment 𝑡 , the partial

allocation is B𝑡 = (B𝑡
1
, . . . ,B𝑡

𝑖−1,B
𝑡
𝑖+1, . . . ,B

𝑡
𝑛). It holds that A𝑡

𝑗
= B𝑡

𝑗

for any 𝑗 ≠ 𝑖 .

Proof. For the sake of a contradiction, let 𝑡 be the earliest mo-

ment after which A𝑡
𝑗∗ ≠ B𝑡

𝑗∗ for some 𝑗∗ ≠ 𝑖 . Note that the agents

𝑁 \ {𝑖} have identical ordinal preferences in these two scenarios.

Accordingly, after the exhaustion of some item 𝑜 , each agent 𝑗 ≠ 𝑖

will move to the same item in both scenarios. Therefore, if the

allocation of an item 𝑜 has changed at time 𝑡 , it means that some

agents have finished their previous item earlier, contradicting that

𝑡 is the earliest moment that the difference appears. □

Now we are ready to present the main result of this paper: the

incentive ratio of the PS rule is at most 2 − 1

2
𝑛−1 .

Theorem 1. The incentive ratio of Probabilistic Serial is at most
2 − 1

2
𝑛−1 .

Proof. We start from an arbitrary instance I = ⟨𝑁,𝑂, {≻𝑡
𝑖

}, {𝑣𝑖 }⟩ and an arbitrary collection of the reported preference of

other agents ≻−1, and show that OPT(3) + 𝑇 ≥ OPT(1) where
OPT(1) is the optimal value of agent 1 in PS(·, ≻−1, 𝑁 ,𝑂). Note
that the incentive ratio of PS is upper bounded by

OPT(1)
𝑇

where 𝑇

is the value of agent 1 when reporting truthfully in PS(·, ≻−1, 𝑁 ,𝑂)
and further, the incentive ratio of PS is at most

OPT(3)
𝑇

+ 1. In what

follows, we compute an upper bound of
OPT(3)

𝑇
by formulating it

as a maximization problem.

Let ≻𝑜∗
1

be the optimal strategy of agent 1 for PS′ (·, ≻𝑋−1, 𝑁 ,X −
X1), and accordingly, agent 1 receives a value OPT(3) when re-

porting ≻𝑜∗
1

in PS′ (·, ≻𝑋−1, 𝑁 ,X − X1). Now we consider PS′ (≻𝑜∗
1

, ≻𝑋−1, 𝑁 ,X − X1) and fix 𝑆 ⊂ 𝑁 \ {1} as a set of agents. For each
agent 𝑖 ∈ 𝑁 , let �̃�𝑖 be the moment when agent 𝑖 stops. Define

𝑝 = argmax𝑖∈𝑆 �̃�𝑖 and A𝑝

1
the partial assignment of agent 1 at mo-

ment �̃�𝑝 in PS′ (≻𝑜∗
1
, ≻𝑋−1, 𝑁 ,X − X1). By construction, we have the

size |A𝑝

1
| = �̃�𝑝 . Then, consider PS′ (≻𝑋−1, 𝑁 \{1},X−X1−A𝑝

1
) where

agent 1 and her bundle A𝑝

1
are removed. According to Lemma 5, for

any agent 𝑖 ≥ 2 at any time 𝑡 ≤ �̃�𝑝 , the assignment of PS′ (≻𝑜∗
1
, ≻𝑋−1

, 𝑁 ,X−X1) is identical to that of PS′ (≻𝑋−1, 𝑁 \ {1},X−X1−A𝑝

1
). As

a consequence, each agent 𝑖 ∈ 𝑆 , in PS′ (≻𝑋−1, 𝑁 \ {1},X−X1 −A𝑝

1
)

also stops at moment �̃�𝑖 , implying in PS′ (≻𝑋−1, 𝑁 \ {1},X−X1−A𝑝

1
),∑︁

𝑖∈𝑁 \{𝑆∪{1}}
the stopping time of agent 𝑖 = |X − X1 − A𝑝

1
| −

∑︁
𝑖∈𝑆

�̃�𝑖 .

Now consider PS′ (≻𝑋−1, 𝑁 \{1},X−X1). By a similar argument to

Lemma 4, the stopping time of each agent in PS′ (≻𝑋−1, 𝑁 \ {1},X −
X1) should be no less than that in PS′ (≻𝑋−1, 𝑁 \ {1},X − X1 − A𝑝

1
)

as the underlying items in the latter are a subset of the items in the

former. Therefore, in PS′ (≻𝑋−1, 𝑁 \{1},X−X1), the sum of stopping

time over agents 𝑁 \ {𝑆 ∪ {1}} is at least |X − X1 − A𝑝

1
| −∑

𝑖∈𝑆 �̃�𝑖 ,
and accordingly, the sum of the stopping time over agents in 𝑆 is at

most

∑
𝑖∈𝑆 �̃�𝑖 + |A𝑝

1
| because the total size of the item is |X − X1 |

and agent 1 does not participate in PS′ (≻𝑋−1, 𝑁 \ {1},X − X1). By
arguments similar to Lemma 5, each agent 𝑖 ∈ 𝑆 should stop at

moment 𝑇 in PS′ (≻𝑋−1, 𝑁 \ {1},X − X1) due to the construction of

X,X1 and ≻𝑋−1. Therefore, we have the following lower bound∑︁
𝑖∈𝑆

�̃�𝑖 + |A𝑝

1
| =

∑︁
𝑖∈𝑆

�̃�𝑖 + �̃�𝑝 ≥ |𝑆 |𝑇, (1)

which will act as constraints of a linear programming defined later

on.

Recall that agent 1’s optimal strategy is ≻𝑜∗
1

for PS′ (·, ≻𝑋−1, 𝑁 ,X−
X1) and receives a value of OPT(3) when reporting ≻𝑜∗

1
. By the

construction described above, �̃�𝑖 is the stopping time of agent 𝑖 in

PS′ (≻𝑜∗
1
, ≻𝑋−1, 𝑁 ,X − X1). As agent 1’s partial ordinal preference

list includes every item of X − X1, then �̃�1 ≥ �̃�𝑖 for all 𝑖 ∈ 𝑁 ; note

that OPT(3) = �̃�1. Without loss of generality, assume �̃�2 ≤ �̃�3 ≤
. . . ≤ �̃�𝑛 ≤ �̃�1.

Next, we formulate a linear programming problem where the

goal is to maximize the value of �̃�1. The constraints of the problem

are derived from inequalities (1); by taking 𝑆 = {2}, we have 2̃𝑡2 ≥ 𝑇 ;

by taking 𝑆 = {2, 3}, we have �̃�2 + 2̃𝑡3 ≥ 2𝑇 ; by taking 𝑆 = {2, 3, 4},
we have �̃�2 + �̃�3 + 2̃𝑡4 ≥ 3𝑇 ; and so on. Then, we have the following
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LP formulation:

maximize �̃�1

subject to 2̃𝑡2 ≥ 𝑇

�̃�2 + 2̃𝑡3 ≥ 2𝑇

.

.

.

�̃�2 + �̃�3 + · · · + �̃�𝑛−2 + 2̃𝑡𝑛−1 ≥ (𝑛 − 2)𝑇
�̃�2 + �̃�3 + · · · + �̃�𝑛−1 + 2̃𝑡𝑛 ≤ (𝑛 − 1)𝑇
�̃�1 = �̃�𝑛

�̃�𝑖 ≥ 0, for 𝑖 ∈ 𝑁

where the third last constraint is due to the fact that the total size of

X − X1 is (𝑛 − 1)𝑇 and the second last constraint is due to the fact

that X − X1 can be eaten up by 𝑁 \ {1} under ≻𝑋−1. By rearranging

the first 𝑛 − 2 constraints, it is not hard to verify that the closed

form of the optimal objective value is (1 − 1

2
𝑛−1 )𝑇 . Therefore, we

have OPT(1) ≤ OPT(3) +𝑇 = �̃�1 +𝑇 ≤ (2 − 1

2
𝑛−1 )𝑇 , which further

implies the following,

RPS ≤ OPT(1)
𝑇

≤ 2 − 1

2
𝑛−1 .

Up to here, we complete the proof for the upper bound part. □

4.2 The matched lower bound example
In this subsection, we provide a concrete example, demonstrating

that the upper bound derived in the previous section is indeed tight.

We remark that our example is very similar to the lower bound

instance presented in the simultaneous work [17]. For complete-

ness, we also present our example and analyze the corresponding

incentive ratio. Let us consider an instance with 𝑛 agents and 2𝑛

items. The value of every item for agent 1 is specified in Table 2

where 𝜖 > 0 is arbitrarily small.

𝑜1 𝑜2 · · · 𝑜𝑛−1 𝑜𝑛

1 1 − 𝜖 · · · 1 − (𝑛 − 2)𝜖 1 − (𝑛 − 1)𝜖
𝑜𝑛+1 𝑜𝑛+2 · · · 𝑜2𝑛−1 𝑜2𝑛

(𝑛 − 1)𝜖 (𝑛 − 2)𝜖 · · · 𝜖 0

Table 2: The valuation function of agent 1

According to the valuation function, the set of items valued by

agent 1 is 𝑂 =
⋃𝑛

𝑗=1{𝑜 𝑗 }. Moreover, for any 𝑖 ≠ 1, the ordinal

preference of agents 𝑖 is defined as follows:

≻𝑖 : 𝑜𝑖 ≻𝑖 𝑜2𝑛 ≻𝑖 𝑜2𝑛−1 ≻𝑖 · · · ≻𝑖 𝑜1
The ordinal preference ≻𝑖 , with 𝑖 ≠ 1, is roughly the inverse of ≻𝑡

1
,

and the only difference is that 𝑜𝑖 is now ranked as the top choice.

Recall that each item has size 1 and agents have a consumption

rate of 1. Then the PS Rule will terminate at time 2. Let X1 be the

bundle allocated to agent 1 when she reports truthfully and let X′
1

be the set of items assigned to her when she reports the optimal

ordinal preference with respect to the PS Rule. First consider the

case where agent 1 reports the truthful preference. From time 0

to 1, every agent 𝑖 consumes 𝑜𝑖 . Afterwards, the items left are not

valued by agent 1. Therefore at the termination, agent 1’s value

𝑣1 (X1) is equal to 1 +𝑂 (𝜖).
We now consider a manipulation strategy of agent 1, shown as

follows,

≻′
1
: 𝑜2 ≻1 𝑜3 ≻1 · · ·𝑜𝑛 ≻1 𝑜1 ≻1 𝑜𝑛+1 ≻1 𝑜𝑛+2 ≻1 · · ·

Given the reported preference profile (≻′
1
, ≻−1), agents 1 and 2

consume 𝑜2 simultaneously from time 0 to
1

2
. After that, agent

1 moves on to her next preferred item, 𝑜3. However, agent 3 has

been consuming 𝑜3 since the beginning and has already consumed

half of it. Therefore, from time
1

2
to

3

4
, agent 1 and agent 3 share

𝑜3, with agent 1 consuming only a quarter of it. Agent 1 then

moves on to consume 𝑜4, which only has a quarter left, and this

pattern continues. The consumption of 𝑜𝑛 by agent 1 ends at time

1

2
+ 1

4
+ · · · + 1

2
𝑛−1 = 1 − 1

2
𝑛−1 . After that, agent 1 starts consuming

𝑜1 and we will prove that no other agents will compete with agent

1 on 𝑜1, so that agent 1 consumes all of 𝑜1. According to the ordinal

preferences {≻𝑖 }𝑖≠1, every agent, except agent 1, must complete

the consumption of the final 𝑛 items before moving on to 𝑜1. We

now show that by time 2, the total size of the last 𝑛 items consumed

by agents 2, . . . , 𝑛 is 𝑛 − 1

2
𝑛−1 , less than 𝑛.

Note that agent 2 starts consuming the last 𝑛 items at time
1

2
,

and thus she consumes a size of 1 + 1

2
of the last 𝑛 items by time

2. Similarly, the size of the last 𝑛 items consumed (by time 2) by

agent 3 is 1 + 1

4
, and that of agent 4 is 1 + 1

8
. It can be verified

that the total size of the last 𝑛 items consumed by agents 2, . . . , 𝑛 is

equal to (𝑛 − 1) + 1 − 1

2
𝑛−1 = 𝑛 − 1

2
𝑛−1 , indicating that agent 1 can

consume all 𝑜1 before any other agents move on to 𝑜1. Therefore,

agent 1 can consumes the entire 𝑜1 and receives a value of 𝑣1 (X′
1
) =

2 − 1

2
𝑛−1 + 𝑂 (𝜖) → 2 − 1

2
𝑛−1 as 𝜖 → 0, which implies that the

incentive ratio of the constructed instance is at least 2 − 1

2
𝑛−1 . This

further indicates that the upper bound established in the previous

section is tight.

5 CONCLUSION
In this paper, we proved that the incentive ratio of the PS Rule for

the general setting where the number of items and agents can be

arbitrary is equal to 2− 1

2
𝑛−1 . Our results indicate that the incentive

ratio of the PS Rule is only bounded by the number of agents and not

by the number of items. For further directions, it would be intriguing

to explore the possibility of transforming a PS problem into a round-

robin allocation problem. Additionally, it would be interesting to

discover another allocation rule with a smaller incentive ratio while

maintaining attributes such as efficiency and fairness.
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