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ABSTRACT

Recent advances in visual reinforcement learning (RL) have led
to impressive success in handling complex tasks. However, these
methods have demonstrated limited generalization capability to
visual disturbances, which poses a significant challenge to their
real-world application and adaptability. Though normalization tech-
niques have demonstrated huge success in supervised and unsuper-
vised learning, their applications in visual RL are still scarce. In this
paper, we explore the potential benefits of integrating normaliza-
tion into visual RL methods with respect to generalization perfor-
mance. We find that, perhaps surprisingly, incorporating suitable
normalization techniques is sufficient to enhance the generaliza-
tion capabilities, without any additional special design. We utilize
the combination of two normalization techniques, CrossNorm and
SelfNorm, for generalizable visual RL. Extensive experiments are
conducted on DMControl Generalization Benchmark, CARLA, and
ProcGen Benchmark to validate the effectiveness of our method.
We show that our method significantly improves generalization
capability while only marginally affecting sample efficiency. In par-
ticular, when integrated with DrQ-v2, our method enhances the
test performance of DrQ-v2 on CARLA across various scenarios,
from 14% of the training performance to 97%. Our project page:
https://sites.google.com/view/norm-generalization-vrl/home
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1 INTRODUCTION

Visual reinforcement learning (RL), which leverages high-dimensional
visual observations as inputs, has shown potential in a wide range
of tasks, such as playing video games [34, 49] and robotic manipu-
lation [27]. However, generalization remains a major challenge for
visual RL methods. Even slight alterations, such as color or back-
ground changes, can result in considerable performance degrada-
tion in the testing environment, which in turn limits the real-world
utility of these algorithms. It is vital to develop techniques that can
improve the generalization capabilities of visual RL algorithms.
Existing literature mainly enhances the generalization capability
of visual RL via data augmentation [13, 17, 50, 56] and domain
randomization [36, 37, 47], aiming at learning policies invariant to
the changes in the observations. However, recent studies [26, 55]
show that certain data augmentation techniques may lead to a
decrease in sample efficiency and even cause divergence. Other
recent works improve the generalization performance by leveraging
pre-trained image encoder [57] or segmenting important pixels
from the test environment [2], etc. Unfortunately, most of them rely
on knowledge or data from outer sources, e.g., ImageNet [10]. We
deem that an ideal method for zero-shot generalization should be
able to achieve robust performance without relying on any out-of-
domain data or prior knowledge of the target domain, and should
be able to adapt effectively to a wide variety of environments.
Normalization techniques have achieved huge success in com-
puter vision [45, 48, 52] and natural language processing [1, 51, 53].
Numerous normalization-related methods are proposed to improve
the generalization capabilities of deep neural networks [14, 21, 41,
43]. Despite their popularity, normalization techniques have not
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received enough attention in deep RL community. Though previous
studies have investigated the effectiveness of normalization meth-
ods, e.g., layer normalization [20, 35] and spectral normalization
[5, 16, 32, 33], in deep RL algorithms, to the best of our knowledge,
it is still unclear whether normalization can aid generalization in
visual RL. We hence ask the following question:

Can we develop a visual RL agent that employs normalization
techniques and does not rely on prior knowledge and out-of-domain
data, enabling it to generalize more effectively to unseen scenarios?

This inquiry drives our exploration of CrossNorm and SelfNorm
[45], two normalization methods that have been proven to enhance
generalization in computer vision tasks under distribution shifts.
Since visual RL algorithms always rely on the encoder to output
representations for policy learning, we need to ensure that the
learned representation can generalize to unseen scenarios. To fulfill
that, we propose to modify the encoder structure of the base visual
RL algorithm by incorporating CrossNorm and SelfNorm for the
downstream tasks. Our proposed normalization module is plug-and-
play, and can be combined with any existing visual RL algorithms.
We assess the effectiveness of our approach using three bench-
marks: DeepMind Control Generalization Benchmark [18], a bench-
mark designed for evaluating generalization capabilities in robotic
control tasks; CARLA [11], a realistic simulator for autonomous
driving; and ProcGen [8], which features procedurally-generated
environments to directly measure an agent’s generalization ca-
pability. Extensive experimental results demonstrate that when
combined with DrQ [55], DrQ-v2 [54], and PPO [42], our proposed
normalization module significantly improves their generalization
capabilities without requiring any task-specific modifications or
prior knowledge. Furthermore, our proposed module demonstrates
compatibility and synergy with other generalization algorithms in
visual RL (e.g., SVEA [17]), thereby further enhancing their general-
ization. This indicates the flexibility of our proposed module and its
potential to be a valuable addition to the toolset for improving gen-
eralization in visual RL tasks. We believe this work offers another
chance that allows visual RL algorithms to exhibit greater adapt-
ability and robustness across diverse and dynamic environments.
We aspire to propel the field of visual RL forward and broaden the
scope of the potential applications of normalization techniques.

2 RELATED WORK

Generalization in Visual RL. Over the past few years, consider-
able strides have been made towards narrowing the generalization
gap in visual RL. An elementary strategy for improving general-
ization is to employ regularization techniques, initially developed
for supervised learning [29]. These techniques include ¢, regu-
larization [15], entropy regularization [60], and dropout [19]. Un-
fortunately, these conventional regularization techniques exhibit
limited effectiveness in improving generalization of visual RL and,
in some cases, they may even have a negative impact on sample
efficiency [9, 22]. As a result, recent studies have shifted their focus
towards learning robust representations by leveraging bisimulation
metrics [24, 58], multi-view information bottleneck (MIB) [12], pre-
trained image encoder [57], etc. From an orthogonal perspective,
data augmentation has demonstrated significant efficacy in enhanc-
ing generalization by leveraging prior knowledge as an inductive
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bias for the agent [17, 26, 31, 56]. However, the effectiveness of
data augmentation-based techniques is significantly constrained
by their highly task-specific nature and the requirement for sub-
stantial expert knowledge [25, 38]. On the one hand, applying ap-
propriate data augmentation techniques demands domain-specific
knowledge, which limits their applicability to unfamiliar or novel
environments. On the other hand, these techniques face challenges
in generalizing to new domains due to their reliance on the align-
ment between augmentations and domain characteristics. In this
study, our objective is to explore the utilization of normalization
techniques to enhance the generalizability of visual RL, without
relying on specific prior knowledge of the shift characteristics be-
tween the train and test environments. We note that two recent
studies [25, 31] present a comprehensive analysis of the generaliza-
tion challenges in RL and the application of data augmentation in
visual RL, which can be a nice reference.
Normalization. Normalization techniques play a crucial role in
training deep neural networks [30, 39, 52]. They notably enhance
optimization by normalizing input features, which is particularly
advantageous for first-order optimization algorithms such as Sto-
chastic Gradient Descent [6, 62], known to excel in more isotropic
landscapes [7]. Batch Normalization [4, 23, 40] (BN) is a method
that normalizes intermediate feature maps using statistics com-
puted from mini-batch samples. It has been found to significantly
aid in the training of deep networks. Drawing inspiration from the
success of BN, a variety of normalization techniques have since
been introduced to accommodate different learning scenarios, e.g.,
layer normalization [1, 44, 59], spectral normalization [28, 33], etc.
Despite the huge success and wide applications of normalization
techniques, they are not commonly employed in deep RL. This is
largely attributed to the online learning nature of RL, which leads to
a non-independent and identically distributed (non-i.i.d) input data
distribution. Such distribution does not align with the requirements
of many normalization techniques. [3] shows that direct application
of BN and LN proves to be ineffective for RL. Instead, it introduces
cross-normalization, which computes mean feature subtraction
using both on-policy and off-policy state-action pairs, leading to
better sample efficiency. Moreover, spectral normalization has been
found to be effective in stabilizing the training process of RL [5, 16].
It is interesting to ask: since normalization techniques have
shown benefits for generalization to new tasks in computer vision,
then whether normalization techniques have the potential to en-
hance the generalization ability of the visual RL algorithms. To the
best of our knowledge, none of the prior work explores this issue,
and our goal in this work is to answer this question.

3 PRELIMINARY

3.1 Visual Reinforcement Learning

We consider learning in a Partially Observable Markov Decision
Processes (POMDPs) specified by the tuple M : (S,0, A, P, r,y),
where § is the state space, O is the observation space, A is the
action space, P(:|s,a) : S X A + R is the transition probability,
r(s,a) : S X A — Ris the scalar reward function, y € [0, 1) is the
discount factor. In the context of the generalization setting, we have
a set of such POMDPs M = { My, My, ..., My} while our agent
only has access to one fixed POMDP among them, denoted as M.
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Figure 1: The pipeline of our method. CrossNorm is positioned after the convolutional layer and is followed by SelfNorm. Each
CrossNorm layer is randomly activated during training and becomes inactive during testing. Instead, SelfNorm is adopted
during training and remains functional during testing. Our method notably does not introduce new learning objectives or
utilize out-of-domain (OOD) data. A comprehensive visualization is available in Appendix A for further details.

We aim to train an RL agent to learn a policy mg(-|s) parameterized
by the parameter 6 in My, with the objective of maximizing the ex-
pected cumulative return J(0) = Eq, 7, (.|s,),5,~P [ZtTIO Yir(s, ar)l
across the entire set of POMDPs in a zero-shot manner, where T is
the horizon of the POMDP.

3.2 CrossNorm and SelfNorm

CrossNorm and SelfNorm [45] were initially introduced to improve
generalization capabilities in the face of distribution shifts within
computer vision tasks. To expand the training distribution, Cross-
Norm interchanges the mean and standard deviation between chan-
nels. Specifically, given a batch of feature maps, for each feature
map x, randomly select another feature map y. For each channel i
within both x and y, we define ‘channel X’ from x and ‘channel Y’
from y to be the corresponding channels. The mean and standard
deviation of channel X are represented as yx and o, respectively.
Similarly, for channel Y, they are denoted as 1y and oy. Essen-
tially, CrossNorm replaces the y and o values of channels X with
those of Y, as delineated in the subsequent equation 1:

X -
ATHRX
ox

X =0y 1y 1)
While CrossNorm enlarges the training distribution, the motivation
of SelfNorm is to bridge the train-test distribution gap. To that end,
SelfNorm replaces X with recalibrated mean ,u:\, = flux. ox)ux
and standard deviation 0'3( =g(px,ox)ox, where f and g are the

attention functions. The adjusted feature becomes as Equation 2:

o X —px
X=c "Xy,
X, THx

@

As f and g learn to scale py and oy based on their values, the
method adapts to the specific characteristics of the data. While
CrossNorm expands the data distribution, SelfNorm aims to em-
phasize the discriminative styles shared by both training and test
distributions while de-emphasizing the insignificant styles.
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4 METHOD
4.1 Enhancing Generalization in Visual RL via
Normalization

The primary challenge in visual RL generalization stems from dis-
tribution shifts in observations. This issue is particularly prominent
due to the diverse and dynamic nature of environments in RL tasks.
Recognizing the proven effectiveness of CrossNorm and SelfNorm
in bolstering generalization under distribution shift in computer
vision tasks, we explore the possibilities of these normalization tech-
niques in visual RL. By integrating CrossNorm and SelfNorm, we
aim to enhance the generalization capability of visual RL, fostering
the learning of more robust and generalizable representations.

Although computer vision tasks and visual RL tasks both involve
the representation learning of visual input, their respective data
distributions can be quite different. While CrossNorm is inspired by
the observation that computer vision datasets are typically rich and
diverse, stemming from a variety of sources, visual RL generally
involves training the agent within a single task and environment.
This situation results in a notably limited data distribution. In other
words, the difference between the mean and standard deviation
of channel X and channel Y tends to be small, thus diminishing
the effect of the CrossNorm. Hence, it becomes crucial to further
diversify and expand the data distribution. To achieve this, we
utilize random cropping during the computation of the channel’s
mean p and standard deviation o, as illustrated in Equation 3. This
technique can result in a wider distribution of the mean and the
standard deviation values, further contributing to its ability to adapt
to various data distributions.

HFX
X' = Ocrop(Y) 7

We present the pipeline of our proposed method in Figure 1, where
our core contribution is the proposal of a plug-and-play module that
is equipped with cropped CrossNorm and SelfNorm. Notably, we ar-
range CrossNorm immediately after the convolution layer, followed
by SelfNorm. This sequence is designed to optimally leverage the

+ Herop(Y) 3
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effects of these two operations, with CrossNorm augmenting the
feature diversity before SelfNorm performs intra-instance normal-
ization. Considering their characteristics, CrossNorm is activated
only during the training phase, whereas SelfNorm is used during
the training phase and remains functional during the testing phase.

During each forward pass in the training process, a predeter-
mined number of CrossNorm layers are randomly activated. For
these activated layers, each instance in the mini-batch has its y
and o values for every channel swapped with those of the same
channels of another randomly chosen instance. The remaining
CrossNorm layers stay inactive during this process. Generally, how
many CrossNorm layers can be activated strongly depends on how
many hidden layers the encoder of the base algorithm has. We allow
a dynamic utilization of the CrossNorm layers because unlike su-
pervised learning, where the model usually has a strong supervised
signal and various methods can be applied to learn task-relevant
representations, visual RL lacks sufficient supervised signals. It is
thus difficult for it to effectively capture important knowledge from
the pixels. As a result, the training process in visual RL is often more
fragile and susceptible to disruptions. By selecting an appropriate
number of active CrossNorm layers during the training process, we
can effectively manage the learning difficulty, ensuring more stable
training dynamics in the learning process.

The role of CrossNorm can be seen as a form of data augmenta-
tion. However, unlike traditional data augmentation methods that
have been used in visual RL, CrossNorm operates directly on the
feature maps rather than the raw observations. This distinction al-
lows CrossNorm to facilitate more diverse alterations. On the other
hand, similar to traditional data augmentation methods, CrossNorm
improves generalization at the cost of sample efficiency, while Self-
Norm aims to offset this trade-off, thereby ensuring a more stable
learning process. Our method does not introduce new learning ob-
jectives or require any out-of-domain data or prior knowledge. This
makes it a self-contained and flexible approach to generalization.
Moreover, our method is not only compatible with standard RL
algorithms but can also be seamlessly integrated with other tech-
niques aimed at enhancing the generalization of visual RL, and can
further improve the robustness of these methods. This versatility
further underscores the generality of our approach.

5 EXPERIMENTS

Our experiments are aimed to investigate the following questions:
(a) Does our method enhance the generalization capabilities of
vanilla visual RL methods and to what extent does it impact the
training performance? (b) Is our proposed method general enough
to be integrated with existing generalization methods in visual RL
to further enhance their capability?

5.1 Generalization on CARLA Autonomous
Driving Tasks

5.1.1 Experimental setup. To assess our method in realistic scenar-
ios and better gauge its effectiveness and generalization capabil-
ities, we evaluate the performance of our method in the CARLA
autonomous driving simulator, which offers realistic observations
and complex driving scenarios.
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We build our method upon DrQ-v2 [54] and compare the gen-
eralization ability of DrQ-v2+CNSN with state-of-the-art methods
and strong baselines: DrQ-v2 [54]: our base visual RL algorithm,
which is the prior state-of-the-art model-free visual RL algorithm
in terms of sample efficiency. It demonstrates superior performance
on a variety of tasks while maintaining high sample efficiency, mak-
ing it a suitable foundation for our research in developing more
generalizable visual RL methods. SVEA [17]: the previous state-of-
the-art data augmentation based method for generalization, which
achieves improved performance by reducing Q-variance through
the use of an auxiliary loss.

Our experimental setup in CARLA is adapted from [58]. Specif-
ically, we employ three cameras mounted on the vehicle’s roof,
each offering a 60-degree field of view. To train the RL agent and
evaluate the final performance across various methods, we define
the reward function as given in Equation 4:

©

where Veg, is the velocity vector of the ego vehicle, projected onto
the highway’s unit vector Gp;ghway, and multiplied by the time dis-
cretization At = 0.05 to measure highway progression in meters.
Collisions result in impulses, measured in Newton-seconds. A steer-
ing penalty is also applied, with steer € [—1, 1]. The weights used
in the reward function are A; = 10™% and A = 1.

Due to the fact that the encoder in DrQ-v2 has four hidden
layers, the maximum number of activated CrossNorm modules in
DrQ-v2+CNSN is four. In CARLA experiments, all four CrossNorm
layers are activated during the training phase. All agents are trained
under one fixed weather condition for 200,000 environment steps.
Their performance is then assessed across various other weather
conditions within the same map and task, as shown in Figure 2.
Moreover, it’s worth noting that not only the visual observations
change with different weather conditions, but also the dynamics of
POMDP might vary due to factors like rain.

Since we employ DrQ-v2 as our base visual RL algorithm and
baseline method, we also adapt and reimplement SVEA using the
DrQ-v2 structure to ensure a fair comparison. We then train the two
variations of SVEA on CARLA, one applying random convolution
as data augmentation and the other employing random overlay
with images from Places365 dataset [61], respectively.

ry = V;—goﬁhighway - At — A; - impulse — A - |steer|

5.1.2  Generalization performance. The generalization performance
results are shown in Table 1. The results indicate that DrQ-v2
cannot adapt to new weather with different lighting, humidity, etc.
However, by combing it with CNSN, DrQ-v2+CNSN is enough to
generalize well on most of the unseen complicated scenes without a
performance drop. Notably, DrQ-v2+CNSN significantly improves
the test average performance from DrQ-v2’s 14% of the training
performance to 97% of the training performance.

Moreover, it can be seen that both variants of SVEA, using ran-
dom convolution and random overlay respectively, exhibit a signif-
icant performance drop in unseen weather conditions. For exam-
ple, SVEA(conv) trained under HardRainNoon achieves an average
return of 53 when tested under WetNoon, while DrQ-v2+CNSN
attains an average performance of 173, despite the fact that DrQ-
v2+CNSN has lower training performance than SVEA(conv). The
primary reason for the significant performance drop of SVEA is that



Full Research Paper

Generalize

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

Test Environments

SoftRainNoon

Figure 2: In CARLA autonomous driving simulator, agents are trained under one fixed weather condition. Then they are
evaluated on unseen weather conditions in a zero-shot manner. These weather conditions vary in aspects such as lighting,
humidity, and other factors, leading to differences not only in visual observation but also in the dynamics of the environment.

Table 1: CARLA generalization results. Training and testing performance (episode return) of methods trained in one fixed
weather and evaluated on other 6 unseen weather conditions. We separately conduct training under two distinct weather
conditions: WetCloudySunset (WCS) and HardRainNoon (HRN). SVEA(conv) refers to the variant of SVEA that utilizes random
convolution for data augmentation, while SVEA(overlay) denotes the variant that employs random overlay for data augmen-
tation. For a fair comparison, we have reimplemented these two versions of SVEA using DrQ-v2. The results presented are
performance averaged over 5 random seeds, with each seed corresponding to 50 evaluation episodes for each weather condition.

Method DrQ-v2 DrQ-v2+CNSN || SVEA(conv) SVEA(overlay)
Training Weather WCS  HRN WCS HRN || WCS HRN WCS HRN
Training 249123 249:34  225:11  225:14 || 221x25  243:28  173:s7  204xn1
WetCloudySunset =~ 249+23 11843 225:11  211x9 || 221x25 184x18 173x87  30x21
MidRainSunset 184+18  —2+11  233+32  208+11 || 184444 59491  160+24  68+22
HardRainSunset 36+26  —3x10 230421 221+16 || 169+41 79493  148+31  87+18
WetNoon 246 5+4 210+9  173+43 8285 51453 1+6 —1z2
SoftRainNoon —2x7 —6+8  232+40 20519 || 101£90 59469 5750 1426
MidRainyNoon 89+38 =3x8 237x27 21517 || 19038  69x95  143x29 166+36
HardRainNoon 145+20 249434 237+25 225+14 || 190+36 243128 146+25 204=+11
Average test return = 76+74 18+49  230+29 206127 || 15375 81x88  109+67 6161

the two data augmentation techniques it employs do not align well
with the test environments. Consequently, these augmentations do
not provide sufficient generalization capability for unseen weather
conditions, which ultimately limits SVEA’s robustness in these sce-
narios. This finding underscores the necessity for more adaptable
and versatile visual RL techniques that can effectively cope with the
dynamic and intricate nature of real-world environments. Instead,
our method does not rely on any task-specific data augmentation
or prior knowledge, and can lead to more robust performance in a
wide range of real-world scenarios.

5.2 Generalization on DMControl
Generalization Benchmark

5.2.1 Experimental setup. We also assess our method on the Deep-
Mind Control Generalization Benchmark (DMC-GB) [18], a well-
established benchmark for evaluating the generalization capabili-
ties of visual RL algorithms, based on DeepMind Control Suite [46].
In DMC-GB, agents are trained in standard DeepMind Control
environments and subsequently evaluated in visually disturbed
environments. These disturbances include changes in color (color
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hard) and the replacement of backgrounds with moving videos
(video easy, video hard), as shown in Figure 3.

For the easy tasks in DeepMind Control Suites, we utilize DrQ
as our base visual reinforcement learning algorithm. For medium
tasks that DrQ struggles to solve, we employ DrQ-v2 due to its
capability to address complex locomotion tasks using pixel observa-
tions, providing a more effective solution for these more challenging
tasks. To ensure a fair comparison, we have re-implemented SVEA
using DrQ-v2 as its base algorithm for medium tasks, consider-
ing that the original SVEA was implemented based on DrQ. Our
experimental setting mainly follows that of SVEA [17]. For the
easy tasks, all agents were trained for 500,000 steps in the vanilla
training environments without visual alteration. Meanwhile, for
the medium tasks, the training process is extended to 1,500,000
steps for all methods. Note that DrQ contains 11 hidden layers
in its encoder while DrQ-v2 only has 4. Across our experiments,
we randomly activate 5 out of 11 CrossNorm layers in DrQ-CNSN
during the training phase and activate all 4 CrossNorm layers for
DrQ-v2. Furthermore, we recognize PIE-G [57] as a state-of-the-art
baseline, particularly effective in addressing the challenging video
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Figure 3: Examples of training and testing environments in DMC-GB. From left to right: training environment, color hard test
environment, video easy test environment, and video hard test environment.

Table 2: DMC-GB generalization results. Performance on video easy and video hard testing environments. SVEA refers to the
implementation of SVEA that utilizes random overlay as data augmentation method. All the results are averaged over 5 random

seeds. color hard results can be found in Appendix A.

Easy tasks-video easy || DrQ  +CNSN || SVEA +CNSN || PIE-G +CNSN || RAD  SODA
Walker Walk 68289  792x67 || 819x71 84258 || 917x15 923z 60663 63548
Walker Stand 873x83  957x12 9618 9676 961+7 9569 || 745+146 90356

Cartpole Swingup 485+105  498+26 || 782x27 75226 || 421+76 35340 373+72  474+143
Ball in cup Catch 318+157  584x83 || 871x106 913+45 || 854+54  892x43 || 481x26 539111
Medium tasks-video easy || DrQ-v2 +CNSN || SVEA +CNSN || PIE-G +CNSN || RAD  SODA
Cheetah Run 42119 274+35 || 408x78 40429 || 327+54  347:34 203+1 31737
Walker Run 124131 452+22 || 61120 60918 || 520+16  541+17 || 178+11  505:38

Easy tasks-video hard || DrQ  +CNSN || SVEA +CNSN || PIE-G +CNSN || RAD  SODA
Walker Walk 10422 16628 || 37793  480:46 633159 66942 80+10  312x32
Walker Stand 289+49  492x62 || 834x46  871x23 || 90238  856+38 || 229x45 736:132

Cartpole Swingup 138+9 171+13 39345 417131 285+45  309+19 || 152%29 40317
Ball in cup Catch 92+23 199138 || 403+174 69172 || 741108 72147 98+40  381:163
Medium tasks-video hard || DrQ-v2 +CNSN || SVEA +CNSN || PIE-G +CNSN || RAD  SODA
Cheetah Run 215 49z+4 689 889 153140  162x23 23x10  66+13
Walker Run 242 43+2 1208 1488 25247 28115 40+3  111x24

hard scenarios. We utilize the ResNet+CNSN pre-trained model,
deactivating all CrossNorm and SelfNorm during the RL agent’s
training. For PIE-G+CNSN, a ResNet50+CNSN pre-trained model
from [45] is employed. Meanwhile, for PIE-G, we use a ResNet50
pre-trained model from the torchvision package.

5.2.2  Generalization performance. To further assess the effective-
ness and flexibility of the CrossNorm and SelfNorm in aiding the
generalization ability of the visual RL policies, we build Cross-
Norm and SelfNorm on top of four visual RL algorithms, DrQ,
DrQ-v2, SVEA, and PIE-G. We activate 5 out of 11 CrossNorm lay-
ers for SVEA on easy tasks and all 4 CrossNorm layers for SVEA
(like DrQ-v2) on medium tasks. We assess the testing performance
of DrQ+CNSN, DrQ-v2+CNSN, SVEA+CNSN, and PIE-G+CNSN
across the following settings: color hard, video easy, and video hard,
where color hard tasks have randomly jittered color, video easy and
video hard tasks replace the background with the unseen moving
videos. Notably, the most challenging one is video hard, where the
reference plane of the ground is also removed. We adopt SVEA with
random overlay for all these settings and baselines, since it performs
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better than SVEA(conv) on video easy and video hard environments.
This enables us to investigate whether our module (CrossNorm
and SelfNorm) can further enhance generalization when integrated
with strong data augmentation-based approaches. Additionally, for
comparison purposes, we present the results of two other gener-
alization methods in visual RL, namely RAD [26] and SODA [18].
As illustrated in Table 2, incorporating CrossNorm and SelfNorm
significantly improves test performance in most of the testing en-
vironments compared to the original methods, while maintaining
comparable performance in the remaining situations. In particular,
when applied to DrQ and DrQ-v2, our method achieves substantial
improvements in video easy and video hard environments, with
average performance improvement of 155% and 80%, respectively.
Additionally, when combined with SVEA, our method yields notable
improvements across most environments. Similarly, in combination
with PIE-G, our approach registers significant advancements in
video hard scenarios. These results further substantiate the efficacy
and adaptability of our proposed method.
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Figure 4: Training and testing performance of DrQ+CNSN against DrQ. The red line is DrQ and blue one is DrQ+CNSN. The test
performance is calculated as the average across the three test settings of DMC-GB, i.e., color hard, video easy, video hard.

Table 3: ProcGen generalization results. All the results are
averaged over 5 random seeds.

|| PPO train  +CNSN train || PPO test +CNSN test

Jumper 8.5+0.2 8.6+0.2 5.2+03 6.7+0.2
Starpilot 31.1:25 31.0:33 27.8+3.2 28.5:3.4
Caveflyer 6.8+0.4 7.3+0.5 5.4+03 5.8+0.5

5.2.3  Sample efficiency and generalization gap. We present the
learning curves of DrQ and DrQ+CNSN on four tasks in Figure 4.
One can find that the generalization gap is significantly reduced
by incorporating CrossNorm and SelfNorm. Despite that adopting
normalization techniques harms the sample efficiency in the train-
ing environments, such sacrifice is tolerable since the difference in
the training curves on most of the tasks are marginal, while the
generalization capability of the agent is largely boosted.

5.3 Generalization on ProcGen Benchmark

To further validate our method’s efficacy, we experimented on the
ProcGen benchmark [8]. Unlike prior experiments, ProcGen envi-
ronments utilize discrete action spaces. We adopted Proximal Policy
Optimization (PPO) [42] as our baseline and evaluated on three
ProcGen environments: Jumper, Starpilot, and Caveflyer. We placed
three CNSN modules after the convolutional layers, each activated
with a probability p = 0.5 during training. The results, averaged
across five runs, are presented in Table 3. Evidently, the integration
of our CNSN technique with PPO resulted in a 13% performance
enhancement on average across the three environments, without
compromising the performance in training environments. These
findings underscore the adaptability of our method in environments
characterized by discrete action spaces.

5.4 Ablation Study

To validate the essentiality of the design choices incorporated into
our method, we perform a series of ablation studies to delve deeper
into the understanding of our proposed approach.

Ablation of CrossNorm and SelfNorm. Our proposed module
is a combination of (cropped) CrossNorm (CN) and SelfNorm (SN).
To investigate the individual contributions of CN and SN to gener-
alization capability, we evaluate DrQ+CN and DrQ+SN on several
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tasks from the DMC-GB and CARLA. This analysis will help us un-
derstand the impact of each component on the overall performance
of our method. The results are shown in Table 4.

Unlike computer vision datasets that originate from diverse
sources, visual RL agents typically train in a single environment,
leading to a relatively narrow data distribution. Therefore, it’s un-
derstandable that using SelfNorm alone aids computer vision tasks
but could reduce the robustness of visual RL. The p and o of the fea-
ture maps tend to be relatively stable, causing SelfNorm to overfit,
which ultimately leads to a decrease in generalization performance.

It seems that using CrossNorm alone upon DrQ sometimes re-
sults in comparable test performance against DrQ+CNSN. However,
in more complex autonomous driving scenarios, we observe that
relying solely on CrossNorm does not yield performance as good as
using both CrossNorm and SelfNorm. The results suggest that Self-
Norm may only be effective in visual RL tasks with the existence of
CrossNorm. Furthermore, the empirical results in CARLA scenarios
also validate that. It is interesting to note here that it seems that
for complex real-world applications, it is beneficial to combine the
above two normalization techniques.

Ablation on the random cropping of CrossNorm. We also in-
vestigate how random cropping of CrossNorm (Equation 3) helps
the generalization in DMC-GB tasks, as shown in Table 4. The
results show that the inclusion of random cropping when calculat-
ing p and o in CrossNorm significantly improves generalization
performance compared to cases without cropping.

Ablation on the Placement of CNSN. We further investigate the
effect of CNSN placement within the architecture While our ap-
proach places the CNSN after the convolutional layer, we have also
tested its performance when placed before the convolutional layer,
on two DMCGB tasks. The results are illustrated in Table 5. The
results reveal that positioning the CNSN module post the convolu-
tional layer results in superior performance. Furthermore, during
the Cartpole Swingup task, introducing the CNSN module prior to
the convolutional layer disrupted the training process.
Generalization Performance of Other Normalization Tech-
niques. In addition to CrossNorm and SelfNorm, we investigate
two other normalization techniques prevalent in deep learning:
batch normalization (BN) and spectral normalization (SpecN). We
integrate them into the image encoder of DrQ separately to as-
sess their potential to enhance the generalization performance. BN
layers are positioned after every convolution layer in the image
encoder. When utilizing SpecN, we follow the conclusion from [16]
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Table 4: Ablation study results. This table presents the impact of various components on the performance of our method. w/o
Crop refers to DrQ+CNSN without using random cropping in CrossNorm. The results of the CARLA benchmark were obtained
by training in the WetCloudySunset weather condition and testing in 6 other unseen weather conditions.

Method
Tasks ‘ Setting ‘ ‘ o
\ | Drg  +CN  +SN  +CNSN  w/o Crop

color hard 520491 823121  188x34¢ 815465 634+124
Walker Walk video easy 682+89 82960  207+39 842158 664+121
video hard 104122 196+41  89+24 166428 130435
color hard 770+71  951+27 525166 942119 841150
Walker Stand video easy 873+83  945+33 445x113  957:12 857129
video hard 289+49  461x81 22322 49262 322+46
color hard 586+52 695+38 187+3¢  679+35 560+134
Cartpole Swingup video easy 485+105 51529 13529 498=26 410=89
video hard 138+9 183+4  111s22 171+13 155+20
color hard 365+210 885+73 1746 894+78 46389
Ball in cup Catch video easy 318+157 599x29 16133  584xs3 391116
video hard 92123 146454  75+44  199x138 104435
CARLA ‘ unseen weather H 76+74 183491 71+70 230+29 185494

Table 5: Generalization performance comparison across various normalization techniques and CNSN placements.

h
Tasks ‘ Setting H Method
‘ H DrQ +BN  +SpecN +CNSN(after Conv) +CNSN(before Conv)
color hard || 520+91  257+89 525164 815465 697+211
Walker Walk video easy || 682:89  479+109  739x19 79267 619239

video hard || 104x22 57+12 14520 16628 126435

color hard || 586+52  164+48 512107 679435 114452
Cartpole Swingup | video easy || 485:105 182:66 37514 49826 11730

video hard 13849 113413 1302 171+13 98=+18

that using too many SpecN layers can decrease the capacity of net-
works and be detrimental to learning. Hence, we only place SpecN
layers after the second, third, and fourth convolution layers of the
image encoder. We train these agents on two DMC-GB tasks and
evaluate their generalization performance in three settings.

As shown in Table 5, the results show that both BN and SpecN
do not improve the generalization performance. Furthermore, BN
leads to a significant decrease in generalization capabilities. This
can be attributed to the fact that BN assumes the test data dis-
tribution is the same as the training data distribution, which can
result in performance degradation when facing distribution shift.
Previous literature suggests that SpecN is effective in maintaining
a stable learning process for RL, particularly for very deep neural
networks. Based on our results, It appears that SpecN does not sig-
nificantly affect the generalization performance when faced with
visual disturbances.

6 CONCLUSION

In this paper, we explore the potential benefits of normalization
techniques on the generalization capabilities of visual RL and pro-
pose a novel normalization module containing CrossNorm and
SelfNorm for generalizable RL. By conducting extensive experi-
ments upon different base algorithms across diverse tasks in three
generalization benchmarks, DMC-GB, CARLA autonomous driving
simulator, and ProcGen, we demonstrate that our method is able
to enhance generalization capability without the help of out-of-
domain data and prior knowledge. These characteristics establish
our approach as a self-contained method for achieving generaliz-
able visual RL. Our method can be integrated with any visual RL
algorithm, making it a valuable approach for tackling unpredictable
environments.
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