
Factor Graph Neural Network Meets Max-Sum:
A Real-Time Route Planning Algorithm for Massive-Scale Trips

Yixuan Li
Key Laboratory of New Generation
Artificial Intelligence Technology and
Its Interdisciplinary Applications,
School of Computer Science and
Engineering, Southeast University,

Nanjing, China
yixuanli@seu.edu.cn

Wanyuan Wang∗
Key Laboratory of New Generation
Artificial Intelligence Technology and
Its Interdisciplinary Applications,
School of Computer Science and
Engineering, Southeast University,

Nanjing, China
wywang@seu.edu.cn

Weiyi Xu
Key Laboratory of New Generation
Artificial Intelligence Technology and
Its Interdisciplinary Applications,
School of Computer Science and
Engineering, Southeast University,

Nanjing, China
wxu79631@gmail.com

Yanchen Deng
School of Computer Science and

Engineering, Nanyang Technological
University, Singapore
ycdeng@ntu.edu.sg

Weiwei Wu
School of Computer Science and
Engineering, Southeast University

Nanjing, China
weiweiwu@seu.edu.cn

ABSTRACT
Global route planning (GRP) is a typical combinatorial optimization
problem that has been solved for a variety of industrial purposes,
such as traffic flow management, network routing, and conflict
prevention. The goal of the GRP is to find a route for each trip
query such that all queries have a minimum global travel time. The
GRP problem is NP-hard and computationally challenging, even for
medium-sized instances. However, in real-world GRP applications,
such as Google Maps-based vehicle route guidance systems, there
are always massive-scale trips issued simultaneously, and real-time
response is required. Existing mathematical programming-based
exact methods and heuristics struggle to balance the extremes of
optimality and scalability. Considering that many closed-related
GRP instances must be solved repeatedly, this paper explores a deep
learning approach to learn real-time and efficient solutions for GRP.
This paper first proposes a novel route-query factor graph (RQ-FG)
to model the GRP problem, where the message-passing damped
Max-sum (DMS) algorithm can be exploited to generate high-quality
approximate solutions. A hybrid pruning method is proposed to
accelerate solving the DMS. We further devise a route-query factor
graph neural network (RQ-FGNN) based on the RQ-FG, which
has the ability to return solutions in milliseconds. Experiments
demonstrate that our method can generate high-quality solutions
in massive-scale GRP instances in real-time.
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1 INTRODUCTION
The global route planning (GRP) problem is defined in terms of a
traffic-aware road network and a set of trip queries, each query
consists of a pair of source and destination locations. The travel
time on each road is related to the number of vehicles. The goal of
the GRP is to generate a travel route for each query such that the
sum of travel times for all queries is minimized [20, 21]. This kind
of combinatorial optimization (CO) problem has a broad range of
applications, including traffic management in urban road networks
[13, 25], network routing in computer networks [37], and conges-
tion reduction for warehouses with large numbers of robots [18, 33].
Nonetheless, the GRP problem in the real world is challenging for
two reasons: 1) it is NP-hard to solve and computationally expen-
sive even for medium-sized instances, and 2) with the increasing
use of private cars, there might be massive-scale users issuing query
trips simultaneously or within a short period of time.

The GRP problem has been extensively investigated in the Opera-
tions Research community, where mathematical programming such
as Mixed Integer Programming (MIP) can be used to model GRP
with different objectives, such as minimizing global travel time [20–
22] and minimizing individual delay [9]. Based on mathematical
programming, exact solutions by commercial solvers (e.g., Gurobi
[11]) or approximate solutions by Lagrangian relaxations [23] can
only apply to small-scale instances (e.g., tens of queries) within a
limited time. To alleviate the computation cost, Li et al. [20, 21]
recently proposed a depth-first search heuristic, and Luo et al. [24]
proposed a hierarchical Monte Carlo Tree Search (MCTS) algorithm
to generate routes for queries. These online search-based heuristics
struggle to balance these extremes of optimality and efficiency and
scale poorly to scenarios with massive-scale concurrent trips.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1165

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


In practical settings, the closed-related GRP instances sharing
similar patterns (e.g., the same road network and the set of candi-
date paths for each query is invariant) must be solved repeatedly.
Therefore, the idea of learning the input-output mapping of the
combinational optimization problem is promising for both optimal-
ity and scalability [3, 28]. The success of deep learning methods
relies on a collection of historical data, including instance formula-
tions and their ground truth solutions. However, the GRP problem
is NP-hard, and it is a time-consuming and resource-intensive pro-
cess to generate the instance data. For example, modeling the GRP
problem as an MIP and generating the exact solutions for learning
is infeasible because of time constraints [27, 35, 40]. On the other
hand, learning the solutions returned by approximations may be in-
herently more difficult because these approximations may produce
radically different solutions [15]. Moreover, these approximations
might require domain experts, which cannot be generalized.

To this end, this paper first proposes a general route-query factor
graph (RQ-FG) to model the GRP problem, in which each query is
modeled as a variable and a road is modeled as a factor function.
Based on the RQ-FG, the message-passing Max-sum algorithm can
be used to generate high-quality solutions, which can be used di-
rectly in time-insensitive scenarios while simultaneously collecting
historical data. We further develop a route-query factor graph neu-
ral network (RQ-FGNN) to represent the characters of the RQ-FG
[41]. The RQ-FGNN learns the operation of the Max-sum algorithm,
which can parameterize the Max-sum approximation, and is able
to solve problems solvable by Max-sum in a real-time manner.

In summary, the contributions of this paper can be summarized
as follows: (1) We first propose a generalized RQ-FG model for the
GRP problem and extend the message-passing Max-sum algorithm
to generate high-quality solutions (i.e., routes for queries). (2) By
exploiting the structure of the GRP problem, an innovative hybrid
pruning technique is proposed to accelerate the Max-sum algo-
rithm. (3) We extend the Factor Graph Neural Network (RQ-FGNN)
to learn representations of factors and variables in the RQ-FG. (4)
Finally, experiments show that, compared to state-of-the-art bench-
marks, the Max-sum method can provide better solutions after a
few iterations, and RQ-FGNN can provide efficient solutions in
real-time.

2 RELATEDWORK
Heuristics forGlobal Route Planning.With the continued prolif-
eration of GPS-enabled online map-based services (e.g., vehicle nav-
igation systems), optimal route planning is extensively investigated
to meet a user-specified preference for a single query [5, 19, 39].
Existing studies of achieving global route planning goals to reduce
global traffic congestion can be regarded as the flow assignment
problem by a probabilistic path choice [1, 22], where the routes are
pre-defined and they search for an optimal flow assignment to each
route. To minimize the global travel time, an iterative depth-first
route search heuristic [20, 21] and a hierarchical Monte Carlo Tree
Search (MCTS) heuristic [24] are proposed to generate routes for
queries. However, these online search methods cannot apply to
massive-scale scenarios with thousands of queries issued simulta-
neously.

Deep Learning for Combinatorial Optimization (CO). By
exploiting shared structure among instances in the historical data,
deep learning offers to automatically construct better heuristics
from the data for CO [6, 27, 40]. However, deep learning-based
CO relies on a collection of pre-solved instances, which is often a
time-consuming process [15]. For example, the naive supervised-
learning approach [10, 16] needs the ground truth, i.e., an actual
optimal solution for each instance that can be obtained by solving
the problem with an optimization solver, as the labels with the
objective of deep learning. Existing CO models based on mathemat-
ical programming (e.g., mixed-integer linear programming (MILP))
may not be practical since the data augmentation process that uses
an optimization solver can be very time-consuming [28, 34]. In
contrast, this paper proposes a factor graph to model the global
route planning problem, where the Max-sum algorithm can pro-
vide high-quality approximate solutions, which will simplify the
learning process.

Graph neural network (GNN), due to its favourable properties,
has recently been successfully used as a suitable model to represent
dependencies between variables, objectives, and constraints in CO
[6]. The proposed factor graph structure (FGNN) extends GNN to
capture higher-order dependencies of multiple variables [41]. FGNN
has recently been proposed for marginal probability inference in
Probabilistic Graph Models [17, 32], while in this paper, FGNN is
extended to Max-sum for optimizing a set of factor objectives.

3 PROBLEM FORMULATION
Road Network. The road network can be represented as a con-
nected graph𝐺 (𝑉 , 𝐸𝑔). Here,𝑉 = {𝑣1, 𝑣2, . . . , 𝑣𝑛} denotes the set of
vertices in the network, each representing an intersection within
a city’s road system. 𝐸𝑔 = {𝑒 (𝑣𝑖 , 𝑣 𝑗 )}𝑣𝑖 ,𝑣𝑗 ∈𝑉 represents the set of
edges, each 𝑒

(
𝑣𝑖 , 𝑣 𝑗

)
corresponds to a road segment starting from

𝑣𝑖 and ending at 𝑣 𝑗 . A route is denoted as 𝜋 , which is defined as a
finite sequence of vertices ⟨𝑣1, 𝑣2, . . . , 𝑣𝑘 ⟩.

Definition 1: Time flow function. Let 𝑡 (𝑒 (𝑣𝑖 , 𝑣 𝑗 )) be the time
required for a vehicle to traverse edge 𝑒 (𝑣𝑖 , 𝑣 𝑗 ) on its route:

𝑡
(
𝑒
(
𝑣𝑖 , 𝑣 𝑗

) )
= 𝑡𝑚𝑖𝑛 (𝑒

(
𝑣𝑖 , 𝑣 𝑗

)
) × (1 + 𝛼𝑒 𝜒𝑒 ) , (1)

where 𝑡𝑚𝑖𝑛 represents the minimum time to traverse a particular
road, i.e., the travel time without traffic congestion. 𝛼𝑒 is a param-
eter related to the width of the road segment, and 𝜒𝑒 denotes the
total number of vehicles on this edge. To simplify the problem, the
minimum travel time 𝑡𝑚𝑖𝑛 is assumed to be proportional to the road
length.

Definition 2: Route travel time. For a route𝜋 = ⟨𝑣1, 𝑣2, . . . , 𝑣𝑘 ⟩,
the travel time 𝑇 (𝜋) is the cumulative travel time for each road
𝑒 (𝑣𝑖 , 𝑣 𝑗 ) within the route:

𝑇 (𝜋) =
∑︁

𝑒 (𝑣𝑖 ,𝑣𝑗 ) ∈𝜋
𝑡
(
𝑒
(
𝑣𝑖 , 𝑣 𝑗

) )
. (2)

Global Route Planning (GRP) Problem. Massive-scale route
planning aims to handle all user queries. Queries can be denoted
as 𝑄 = {𝑞1, 𝑞2, 𝑞3, . . . , 𝑞𝑚}. Each query can be represented as 𝑞𝑖 =
[𝑠𝑖 , 𝑑𝑖 , 𝜏𝑖 ], where 𝑠𝑖 is the source vertex, 𝑑𝑖 is the destination, and
𝜏𝑖 indicates the beginning time of the query, i.e., the moment when
the vehicle is at 𝑠𝑖 . Time is divided into equal intervals, and queries
within the same interval are assumed to be requests at the same
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Figure 1: Visual representation of a road network (left) and a
route-query factor graph corresponding to four queries on
the road network (right). In the factor graph, factor nodes are
shown as squares, and variable nodes are shown as circles.
Each variable node represents a query, and factor nodes con-
nected to variable nodes represent the specific roads within
the candidate routes for the query. The number of candidates
𝐾 in this instance is 2.

moment. The objective of the GRP problem is, given the queries 𝑄 ,
to generate a set of routes Π = {𝜋1, 𝜋2, 𝜋3, . . . , 𝜋𝑚}, such that the
total driving duration 𝐺𝑇 (Π) is minimized:

𝐺𝑇 (Π) =
|Π |∑︁
𝑖=1

𝑇 (𝜋𝑖 ) . (3)

4 FACTOR GRAPH MODEL AND MAX-SUM
ALGORITHM

In this section, we present a novel graphical model for the GRP
problem. Then we use the damped Max-sum algorithm [8] to solve
the problem. Based on the characteristics of the GRP problem, we
design an innovative hybrid pruning method to accelerate the Max-
sum algorithm.

4.1 Route-Query Factor Graph
A factor graph is a bipartite graph model that represents the de-
composition of a global function. Nodes can be categorized into
variable nodes and function (factor) nodes. Variable nodes and fac-
tor nodes are connected if and only if the variable is in the scope of
the function. To solve the GRP problem, we devise a model named
route-query factor graph, where each variable node denotes a query
and each function node denotes a road within the routes. The as-
signments of the variable nodes correspond to the selection of the
routes, and the function nodes correspond to the travel cost, which
provides the basis for route selection. This modeling approach has
the ability to coordinate the route selection strategies for all queries.

To be specific, we model the GRP problem as a factor graph
𝐹𝐺 =

〈
𝑋, 𝐷, 𝐹, 𝐸𝑓 𝑔

〉
, where 𝑋 = {𝑥1, . . . , 𝑥𝑛} are the variable

nodes. These nodes represent the corresponding user queries 𝑄 =

{𝑞1, . . . , 𝑞𝑛}. 𝐷 = {𝐷1, . . . , 𝐷𝑛} is the domain sets that the assign-
ment of variable node 𝑥𝑖 is selected from the domain 𝐷𝑖 , where the
assignment represents the identity number of a candidate route for
the query 𝑞𝑖 .

In order to avoid congestion, considering the massive queries, we
need to select a suitable route from multiple candidates. We design
a 𝑡𝑜𝑝 − 𝐾 method to make a trade-off between the computational
overhead and the solution quality of the computation. That means
narrowing the list of candidates by selecting the shortest 𝐾 routes
for each query, where 𝐾 is a manually defined hyperparameter.

Since the assignment of the variable 𝑥𝑖 is the route choice of the
query 𝑞𝑖 , it contains𝐾 candidates in domain𝐷𝑖 as 1, 2, . . . , 𝐾 , where
each corresponds to a candidate route 𝜋 𝑗

𝑖
, 𝑗 ∈ 1, . . . , 𝐾 from the set

Π𝑖 =
{
𝜋1
𝑖
, . . . , 𝜋𝐾

𝑖

}
. That is, the domain 𝐷𝑖 implies the selection set

for the 𝑞𝑖𝑡ℎ query, which contains the shortest 𝐾 candidate routes.
In the GRP problem, each route consists of multiple specific roads,

and the travel time of the query is based on these road segments.
We model the specific roads as the function nodes 𝐹 =

{
𝑓1, . . . , 𝑓𝑚

}
,

where 𝐹 is a finite set of constraint functions. The variable nodes
connected to a function node 𝑓𝑗 are represented as 𝑆 𝑗 . Function
𝑓𝑗 : ×𝑥𝑖 ∈𝑆 𝑗𝐷𝑖 → R+

⋃ {0} maps the queries’ assignment to a non-
negative real number, which is the total travel cost of all vehicles
passing through the road. The value of a function node 𝑓𝑗 depends
merely on its connected variable node 𝑆 𝑗 . The undirected edges in
the bipartite graph are defined by 𝐸𝑓 𝑔 (e.g., 𝑒𝑖, 𝑗 ∈ 𝐸𝑓 𝑔 is the edge
that connects 𝑥𝑖 and 𝑓𝑗 ). Eventually, the GRP problem is to select an
assignment to the variable nodes 𝑋 such that the sum of function
nodes 𝐹 is minimized.

We present an example of our route-query factor graph through
Figure 1, which illustrates the road network and the factor graph
corresponding to its queries. The left-hand side of Figure 1 shows
a road network 𝐺 (𝑉 , 𝐸𝑔), where the vertices of the road network
are𝑉 = {𝐴, 𝐵,𝐶, 𝐷, 𝐸} and the roads 𝐸𝑔 are shown in the graph. As-
suming we have four queries simultaneously, namely 𝐴 → 𝐷,𝐴 →
𝐵,𝐴 → 𝐶 and 𝐵 → 𝐸. These queries are modeled as the variable
nodes 𝑋 = 𝑥1, 𝑥2, 𝑥3 and 𝑥4. We simply select two as the hyperpa-
rameter𝐾 of the 𝑡𝑜𝑝−𝐾 method in this example, which means each
query has two candidate routes to be chosen (the domain 𝐷𝑖 of vari-
able 𝑥𝑖 is 1, 2). Take query 𝐴 → 𝐷 (variable node 𝑥1) as an example,
the shortest two routes of this query are ⟨𝐴, 𝐷⟩ and ⟨𝐴,𝐶, 𝐷⟩. So
the function nodes connected to variable node 𝑥1 are the edges
𝑒 (𝐴, 𝐷) , 𝑒 (𝐴,𝐶) and 𝑒 (𝐶, 𝐷). Then we can get the function nodes
𝐹 =

{
𝑓1, . . . , 𝑓 8

}
and the edges 𝐸𝑓 𝑔 for all the queries. Finally, we

can construct the route-query factor graph 𝐹𝐺 =
〈
𝑋, 𝐷, 𝐹, 𝐸𝑓 𝑔

〉
,

which is shown in the right-hand of Figure 1.

4.2 Damped Max-sum with Pruning
In order to solve the GRP problem, we apply the damped Max-sum
algorithm to the route-query factor graph. We further devise a
threshold-based hybrid pruning strategy to speed up the execution
process of the algorithm.

4.2.1 Damped Max-sum Algorithm. The complete algorithms [4, 7]
may take exponential time in the worst case, which is not suitable
for our time-sensitive application scenarios. The Max-sum algo-
rithm is an inference algorithm based on belief propagation that
collects global information by exchanging messages with neighbor-
ing nodes on the factor graph. The message passing of Max-sum
can be divided into two phases: the query message from variable
nodes to function nodes and the response message in the opposite
direction. In each iteration, the variable node first sends a query
message to its neighboring function node:

𝑄𝜅
𝑥𝑖→𝑓

(𝑥𝑖 ) =
∑︁

𝑓
′
𝜖𝑁 (𝑥𝑖 )\𝑓

𝑅𝜅−1
𝑓
′→𝑥𝑖

(𝑥𝑖 ) + 𝛼𝑖 (4)
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Where𝑄𝜅
𝑥𝑖→𝑓

(𝑥𝑖 ) represents the message sent by the variable node
𝑥𝑖 to the function node 𝑓 at the 𝜅𝑡ℎ iteration, and 𝑁 (𝑥𝑖 ) denotes all
the neighbors of the variable node 𝑥𝑖 . 𝑅𝜅−1

𝑓
′→𝑥𝑖

(𝑥𝑖 ) is the response

message sent by the neighboring nodes 𝑓
′
of the variable node

𝑥𝑖 other than the target node at the 𝜅 − 1𝑡ℎ iteration. 𝛼𝑖 is the
regularization term used in order to prevent the message from
growing unboundedly, which can be defined as:

𝛼𝑖 = − 1
|𝐷𝑖 |

∑︁
𝑥𝑖 ∈𝐷𝑖

𝑄𝜅
𝑥𝑖→𝑓

(𝑥𝑖 ) (5)

In the first iteration, the initial value of the query message sent
from the variable node to the function node is 0. The function
node 𝑓 computes the response message 𝑅𝜅

𝑓→𝑥𝑖
(𝑥𝑖 ) and sends it

to the variable node. The computation process of the response
message consists of summation (sum) and maximization (max)1.
The message is the minimal marginalization of function 𝑓 with
respect to variable 𝑥𝑖 . Formally, the response message 𝑅𝜅

𝑓→𝑥𝑖
(𝑥𝑖 )

is shown in Equation (6):

𝑅𝜅
𝑓→𝑥𝑖

(𝑥𝑖 ) = min
N (𝑓 )\𝑥𝑖

(𝜎 (𝑁 (𝑓 )) +
∑︁

𝑥
′
𝑖
𝜖𝑁 (𝑓 )\𝑥𝑖

𝑄𝜅
𝑥
′
𝑖
→𝑓

(
𝑥
′
𝑖

)
) (6)

where 𝜎 (𝑁 (𝑓 )) denotes the constraint function of the function
nodes. In our scenario, the constraint function is the total travel
time of all vehicles on this road 𝑒

(
𝑣𝑖 , 𝑣 𝑗

)
corresponding to function

node 𝑓 :

𝜎 (𝑁 (𝑓 )) =
∑︁

𝑖:𝑒 (𝑣𝑖 ,𝑣𝑗 ) ∈𝑞𝑖
𝑡 (𝑒 (𝑣𝑖 , 𝑣 𝑗 )) (7)

After receiving the response messages, variable node 𝑥𝑖 will accu-
mulate the messages of all its neighbors and calculate its beliefs.
The variable node 𝑥𝑖 will then choose the optimal assignment 𝑑𝑖
based on its beliefs:

𝑑𝑖 = argmin
𝑥𝑖 ∈𝐷𝑖

∑︁
𝑓
′
𝜖𝑁 (𝑥𝑖 )

𝑅𝜅
𝑓
′→𝑥𝑖

(𝑥𝑖 ) (8)

On tree-structured graphs, Max-sum is able to converge to the
optimal solution in linear time. However, when the factor graph
contains multiple cycles, Max-sum may explore low-quality solu-
tions. Damping [29] is a method that is incorporated with belief
propagation to reduce the effect of excessive loopy propagation.
This is achieved by balancing the new calculation with the cal-
culations carried out in previous iterations. The use of damping
during message propagation can improve the Max-sum algorithm
[8]. Damping is typically added to the message 𝑄𝜅

𝑥𝑖→𝑓
(𝑥𝑖 ) sent

from the variable node to the function node:

𝑄𝜅
𝑥𝑖→𝑓

(𝑥𝑖 ) = 𝜆𝑄𝜅−1𝑥𝑖→𝑓
(𝑥𝑖 ) + (1 − 𝜆)

∑︁
𝑓
′
𝜖𝑁 (𝑥𝑖 )\𝑓

𝑅𝜅−1
𝑓
′→𝑥𝑖

(𝑥𝑖 ) + 𝛼𝑖

(9)

which balances the message between the previous and new itera-
tions by the weight parameter 𝜆 ∈ (0, 1]. When 𝜆 = 0, the resulting
algorithm is standard Max-sum.

1In this minimization problem, it is Mini-sum, but we still call it Max-sum because it
is widely accepted

Figure 2: Threshold-based Pruning method. The function
node calculates the response message with a threshold to
determine which pruning method to use.

4.2.2 Threshold-based Pruning. The primary computational over-
head of the Max-sum algorithm is in calculating the response mes-
sages sent from function nodes to variable nodes. As demonstrated
in Equation (6), the computation overhead grows exponentially
with the number of variables involved in the function node in the
worst case. In our task designed for massive-scale trips, neighbors
of the function node are queries that could potentially pass through
this road segment. Suppose there are 𝑛 variable nodes connected
to a function node, and each variable node has 𝐾 assignments (i.e.,
𝐾 candidate routes for the query). The constraint function then
has 𝐾𝑛 possible states, and the computational cost of optimiza-
tion in these states will be relatively high. Thus, by exploiting the
characteristics of GRP problems, we have designed two pruning
strategies and employed a threshold-based method to reduce the
time complexity of DMS in the worst case.

Classification pruning. When computing the response mes-
sage 𝑅𝜅

𝑓→𝑥𝑖
(𝑥𝑖 ) that the function node 𝑓 sends to the variable node

𝑥𝑖 , Max-sum needs to traverse all combinations of variable nodes
𝑥
′
𝑖
∈ 𝑁 (𝑓 )\𝑥𝑖 connected to function node 𝑓 except 𝑥𝑖 . For the GRP

problem, the function node 𝑓 corresponds to a specific road, while
the variable node 𝑥𝑖 corresponds to a user query. Inspired by the
"Fast Max-sum" [26, 38], considering the properties of queries, the
values of variable nodes 𝑥𝑖 , linked to function nodes 𝑓 can be nat-
urally divided into two categories. The first includes values for
queries that will pass through this road, while the second com-
prises those that will not. Since the constraint function calculation
is solely related to the number of vehicles passing through the edge,
each category impacts the constraint function identically. There-
fore, we only need to compute 𝑄

𝑥
′
𝑖
→𝑓

(𝑥𝑖 ) for each category and
choose the smaller one. With classification pruning, the computa-
tional time complexity of the response messages is reduced from
𝑂 (𝐾𝑛) to 𝑂 (2𝑛). This computational overhead is acceptable for
function nodes with fewer neighbors, making it applicable to areas
like suburban roads.

Traversal pruning. While the classification pruning method
can significantly reduce computational time complexity, it’s still
resource-intensive for highly trafficked central road segments. Hence,
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Figure 3: Overview of our proposed RQ-FGNN. The query at the same moment is taken as input and combined with the road
network to model the route-query factor graph. The features of the nodes in the factor graph are updated by message passing,
and the output is obtained from the features of the variable nodes. The results of Max-sum are used as labels during training.

we propose a traversal pruning method inspired by greedy ap-
proaches. When the function node 𝑓 sends the response message
𝑅𝜅
𝑓→𝑥𝑖

(𝑥𝑖 ), it no longer scans the entire space. Instead, it sequen-
tially traverses the node set 𝑁 (𝑓 )\𝑥𝑖 . For each variable node 𝑥𝑖
in 𝑁 (𝑓 )\𝑥𝑖 , it chooses a value that minimizes 𝑄

𝑥
′
𝑖
→𝑓

(𝑥𝑖 ) under
the current state. This search strategy only considers the locally
optimal values up to the current variable node, disregarding subse-
quent variable nodes’ influence. Using this traversal concept, each
variable node decides its value based on previously determined
values, requiring just a single traversal through all 𝑥𝑖 in 𝑁 (𝑓 )\𝑥𝑖 ,
reducing the time complexity to 𝑂 (𝐾𝑛).

Threshold-based pruning. The two pruning methods can be
applied to different road segments. We set a threshold 𝜌 to strike a
balance between the two methods. Specifically, when the number of
neighboring nodes of a function node is less than or equal to 𝜌 , we
opt for the classification pruning method for precise computation.
If the count exceeds 𝜌 , we use traversal pruning for a rapid com-
putation. By employing this threshold-based pruning optimization,
we can ensure a balance between accuracy and efficiency, tailoring
acceleration solutions flexibly for different road conditions. The
threshold-based pruning optimization is depicted in Figure 2. In
addition to our work, there are other runtime reduction methods
[30, 31, 38] that have the potential to be applied to this scenario,
where the variables can be divided into groups and the decision is
only dependent on the number of variables in each group.

5 ROUTE-QUERY FACTOR GRAPH NEURAL
NETWORK (RQ-FGNN)

In massive-scale route planning scenarios, a large number of re-
peated queries are generated every day. To quickly get a feasible

Figure 4: Node and edge features in RQ-FGNN.

solution in real-time scenarios, we design an end-to-end model
route-query Factor Graph Neural Network (RQ-FGNN), which uti-
lizes historical data and simulates the Max-sum process based on
the route-query factor graphs to obtain the solution. This algo-
rithm uses historical query data to train the model offline and
makes fast online inferences using node representations and de-
pendencies. Zhang et al. [41] proposed a Factor Graph Neural Net-
work (FGNN), a neural network for message passing over factor
graphs, and demonstrated that factor graph neural networks can
accurately parameterize Max-Product belief propagation [2]. Our
approach essentially parameterized Max-sum, a variant algorithm
of Max-Product. In our scenario, we improve the FGNN and design
a suitable framework, route-query Factor Graph Neural Network
(RQ-FGNN), for our route-query factor graph.

5.1 Features
In the route-query factor graph, function nodes correspond to roads,
and variable nodes correspond to queries. We denote the feature of a
function node 𝑓𝑖 as 𝛿 (𝑓𝑖 ), which consists of the number of start and
end, length, and width of the road. In this case, the length of a road

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1169



Figure 5: Message passing for Max-sum and RQ-FGNN.

determines the travel time of a single vehicle, and the width, such as
the 𝛼𝑒 in Equation (1), affects the travel time for multiple vehicles.
For the edge 𝑒𝑖, 𝑗 between the variable node 𝑥𝑖 and the function node
𝑓𝑗 , the feature 𝛿 (𝑒𝑖, 𝑗 ) contains the identical number of the variable
node and the function node. For variable node 𝑥𝑖 , its feature 𝛿 (𝑥𝑖 )
contains the origin and destination of the query and the 𝑡𝑜𝑝 − 𝐾
candidate routes. Our feature setup is shown in Figure 4. We then
encode the features through the network to propagate messages
between nodes and obtain higher-order features.

5.2 Message Passing
In the Max-sum algorithm, the message passing can be divided into
the query message sent by the variable node to the function node
and the response message by the function node. Given a route-
query factor graph 𝐹𝐺 = ⟨𝑋, 𝐷, 𝐹, 𝐸⟩, for the query message sent
from variable node 𝑥𝑖 to function node 𝑓𝑗 , the inputs are the features
𝛿 (𝑥𝑖 ) of the variable node, the features 𝛿 (𝑓𝑗 ) of the function node,
and the features 𝛿 (𝑒𝑖, 𝑗 ) of the edge 𝑒𝑖, 𝑗 . Concatenate 𝛿 (𝑥𝑖 ) with
𝛿 (𝑓𝑗 ), then input 𝛿 (𝑒𝑖, 𝑗 ) and [𝛿 (𝑥𝑖 ), 𝛿 (𝑓𝑗 )] into the fully-connected
layer, respectively, to obtain a𝑚×𝑛 matrix and a 𝑛× 1 vector. Then
we multiply the two, and their product yields the query message
𝛿 (𝑄𝑖 ). After that, the function node 𝑓𝑗 aggregates the querymessage{
𝛿 (𝑄𝑖 )

��𝑥𝑖 ∈ 𝑁 (
𝑓𝑗
)}

from all the neighbors to update its feature

𝛿 (𝑓𝑗 ). Specifically, the feature
∼
𝛿
(
𝑓𝑗
)
of the function node is shown

in Equation (10).
∼
𝛿
(
𝑓𝑗
)
= max
𝑥𝑖𝜖N (𝑓𝑗 )

𝜑𝑒
(
𝛿
(
𝑒𝑖, 𝑗

) ��Θ𝑉𝐹 ) 𝜑𝑣 ( [𝛿 (𝑥𝑖 ) , 𝛿 (𝑓𝑗 ) ] ��Φ𝑉𝐹 ) (10)

Where 𝜑𝑒 maps features to a𝑚 × 𝑛 matrix and 𝜑𝑣 maps features
to a𝑚 × 1 vector. Θ𝑉𝐹 and Φ𝑉𝐹 represent the parameters of the
model in variable-to-function message passing. Taking [Θ𝐹𝑉 ,Φ𝐹𝑉 ]
to denote the parameters of the model from the function-to-variable
module, the updating process of the feature 𝛿 (𝑥𝑖 ) of the variable
node can be expressed as:

∼
𝛿 (𝑥𝑖 ) =

∑︁
𝑓𝑗𝜖N (𝑥𝑖 )

𝜑𝑒
(
𝛿
(
𝑒𝑖, 𝑗

) ��Θ𝐹𝑉 ) 𝜑𝑣 ( [𝛿 (𝑥𝑖 ) , 𝛿 (𝑓𝑗 ) ] ��Φ𝐹𝑉 ) (11)

Figure 5 illustrates the message passing process of RQ-FGNN and
Max-sum.

5.3 Route Inference
We take the queries at the same moment as inputs to the model
and construct a route-query factor graph according to the road

network. After that, the model will perform message passing on
the factor graph to update the features of each node and edge. After
the features are updated, we input 𝛿 (𝑥𝑖 ) of the variable nodes into
the fully connected layer, and through the softmax layer, we can
map the features of the variable nodes to a value 𝑥𝑖 .

𝑥𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝜑𝑐 (𝛿 (𝑥𝑖 ) |𝜃 )) (12)

Where 𝜑𝑐 maps the feature 𝛿 (𝑥𝑖 ) to a 𝑘 × 1 vector, and 𝜃 is the
network parameter of the module. In the training phase, the result
𝑥∗
𝑖
is obtained byMax-sum calculation, and themodel can be trained

by the cross-entropy loss.

𝐿𝑜𝑠𝑠
(
𝑥𝑖 , 𝑥

∗
𝑖

)
= −

|𝑋 |∑︁
𝑖=1

𝑥𝑖𝑙𝑜𝑔
(
𝑥∗𝑖

)
(13)

The loss of each item is shown in Equation 13. In the inference
phase, the output of the model 𝑥𝑖 is taken as the corresponding
route selection for each query. The overall framework of the method
is shown in figure 3.

6 EXPERIMENT
6.1 Datasets and Baselines
We construct a fully connected graph with 2000 vertices and 3771
edges as the synthetic road network (SG). We also chose the San
Joaquin County Road Network (TG)2 as the real road network. We
select an area from the entire urban area that has the same count
of vertices as the SG and add the necessary edges to make it a
fully connected graph, which has 2000 vertices and 4958 edges. We
randomly generate queries, and to prevent queries that are too close
in distance, we set the minimum length for query generation to 10
road segments. We compare our method with the individual-based
search algorithm (IND) and the self-aware batch process (SBP). The
IND algorithm finds the shortest path for each query separately
under the traffic situation [36]. In [21], the state-of-the-art method
named SBP algorithm consists of an initial greedy-based search
with subsequent refining steps.

6.2 Metrics
There are two widely used metrics for evaluation: the computation
time and the global travel time 𝐺𝑇 (Π) in Equation (3), which are
also used in [21]. The 𝐺𝑇 (Π) metric Calculate the time taken to
pass through each road in real time, and count the total travel time
of all the queries under expectations. However, the time taken for
vehicles to traverse each road segment depends on the travel time
on the preceding roads, so the traffic volume on each edge is un-
certain. Existing methods for solving the GRP assume that traffic
generated by queries will arrive at the next intersection on time,
yet they overlook delays caused by factors such as traffic lights and
unexpected incidents. Therefore, we are the first to propose the
"worst-case travel time" metric 𝐺𝑇𝑤𝑜𝑟𝑠𝑡 (Π) as an auxiliary evalua-
tion metric. Compared to the𝐺𝑇 (Π), the𝐺𝑇𝑤𝑜𝑟𝑠𝑡 (Π) considers the
impact of queries on road congestion in terms of an entire route
rather than decomposing this route into individual roads over time.
That is, when a query is assigned to route 𝜋 , the count of vehicles
(𝜒𝑒 in Equation 1) on all road segments along this route increments

2https://users.cs.utah.edu/ lifeifei/SpatialDataset.htm
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by one. This metric removes the effect of uncertainty in arrival
times and represents the upper bound of the total travel time for
all vehicles caused by queries.

6.3 Experimental Settings
The minimum travel time 𝑡𝑚𝑖𝑛 (𝑒

(
𝑣𝑖 , 𝑣 𝑗

)
) is a randomly generated

value ranging from 10 to 200 (seconds) for each edge. The parameter
𝛼𝑒 in Equation (1) measures the travel time, represents parameters
such as the width of the road, and is randomly set between 0.1 and 2.
A larger 𝛼𝑒 makes it more likely that congestion will occur, allowing
a better assessment of the method’s ability to avoid congestion.
We assume that the non-query traffic is relatively stable over a
time period. Specific road conditions and traffic flow simulation
experiments are out of the scope of our study. For the damping
factor 𝜆 in Equation (9), we adjust it between 0 and 0.9 during
training. The threshold parameter 𝜌 for pruning can be adjusted
depending on the road network, and our default setting is 10.We use
the networkx [12] to construct the road network graph, calculate
and store the shortest𝐾 distance between any two nodes in advance.
The experiments are conducted on an AMD R9 3950X processor
(3.5 GHz) and GeForce RTX 2080ti GPUs. Note that the Max-sum
algorithm naturally supports parallel computation. Therefore, we
parallelize the message-passing process during the training process.

Figure 6: The performance of theMax-sum after 20 iterations
and the baselines under different numbers of queries.

Figure 7: Performance of Max-sum after each iteration when
query count is 6000.

Figure 8: The performance of Max-sum under different num-
bers of candidate routes and queries after 20 iterations.

6.4 Experimental Results
The Performance of the Max-sum. We first present the performance
of the Max-sum and analyze some factors that affect the perfor-
mance. We make the number of simultaneous arrivals of query 100
and set the batch size of sbp to 100 and 𝜖 to 0.001, which are the
optimal hyperparameters found in [21]. Figure 6 shows the results
achieved by Max-sum after 20 iterations when 𝐾 = 3. It is evident
that the Max-sum algorithm outperforms all baseline methods in
both metrics, effectively reducing the total travel time caused by
the massive-scale queries. As the number of queries increases, the
performance of Max-sum improves more significantly than the
baseline methods. As Max-sum makes decisions based on the selec-
tion of an entire route, it shows more improvements over baseline
methods in the 𝐺𝑇𝑤𝑜𝑟𝑠𝑡 (Π) metric.

Figure 7 illustrates the performance ofMax-sum during iterations
when 𝐾 = 3 and query count is 6000. As can be seen from the
figure, both metrics are trending down as the number of iterations
of the Max-sum algorithm increases. It is observable that Max-
sum had already surpassed the performance of IND and SBP in
both metrics after the first iteration. In fact, for 𝐾 < 5, the time
taken for each iteration of Max-sum is only on the order of seconds
even without parallel computation, indicating that the Max-sum
algorithm without neural networks is already capable of real-time
applications in some scenarios.

Hyperparametric analysis. We analyze how the candidate routes
𝐾 affect the performance of the Max-sum method. We fix the num-
ber of iterations as 20 for Max-sum and obtain the results shown
in Figure 8. The values in the graph are the percentage improve-
ment relative to the IND algorithm (i.e., 𝐺𝑇 (Π)𝐼𝑁𝐷−𝐺𝑇 (Π)𝑀𝑎𝑥−𝑠𝑢𝑚

𝐺𝑇 (Π)𝑀𝑎𝑥−𝑠𝑢𝑚
),

with darker colours meaning greater improvement. A suitable 𝐾
may yield better performance in some scenarios due to the number
of iterations and pruning threshold 𝜌 . A larger 𝐾 usually makes
the model more difficult to converge, but the ability of the Max-
sum algorithm may be enhanced as a trade-off, which should be
considered in real-world applications.
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Table 1: Effect of training set size

Maps Methods
Number of samples

200 400 600 800 1000

SG GNN 61.35% 73.20% 80.56% 79.29% 82.70%
RQ-FGNN 64.19% 77.25% 85.47% 85.72% 88.76%

TG GNN 63.74% 74.39% 84.45% 85.13% 85.78%
RQ-FGNN 67.02% 78.91% 89.02% 90.20% 92.53%

Average Gain 3.06% 4.29% 4.74% 5.75% 6.41%

Table 2: Performance of models under different 𝐾

Maps Methods
Value of 𝐾

2 3 4 5 6

SG GNN 85.24% 82.70% 79.71% 77.34% 71.39%
RQ-FGNN 89.32% 88.76% 85.12% 82.41% 77.82%

TG GNN 87.05% 85.78% 80.43% 76.58% 73.31%
RQ-FGNN 92.11% 92.53% 87.62% 83.36% 78.14%

Average Gain 4.57% 6.41% 6.30% 5.93% 5.63%

Figure 9: Performance and the computational overhead of
methods corresponding to different numbers of queries.

Learning ability of RQ-FGNN. Then we analyze the ability of
RQ-FGNN to fit the Max-sum algorithm. We compare RQ-FGNN
with commonly used GNN, whose structure consists of a stack of
linear, convolutional, and attention convolutional layers. We main-
tained the number of iterations at 20 for the Max-Sum algorithm to
generate training datasets. Unifying different labels associated with
the same query into the most frequent label leads to more stable
network convergence without significantly reducing algorithm per-
formance. We conducted experiments by controlling the number
of potential query-generating vertices to 200. In order to make the
problem scenario more realistic and reduce the sample space for the
neural network, we obtain the query through weighted sampling.
That means downtown areas with heavy traffic are more likely
to generate queries than remote areas. We randomly assign each
vertex a weight between 1 and 10, with the weight determining the
vertex’s probability of generating a query.

To explore how neural networks’ dependency on prior solutions
affects performance, we first examine the effect of varying training
set sizes. We report the optimal network performance achieved
with consistent hyperparameters. The experiments were conducted

with 100 simultaneous queries, making each sample a factor graph
comprising 100 variable nodes. We use Adam [14] as the optimizer.
Table 1 shows the fitting performance under testing sets with 100
samples, revealing that RQ-FGNN outperforms conventional GNNs
across various dataset sizes, with fitting performance gradually im-
proving as the training set enlarges. The commonly used GNN can
also achieve good accuracy, which demonstrates the effectiveness
of our factor graph structure and feature design. As 200 query-
generating vertices are sufficient for application in real scenarios
(e.g., the maps in [24] contain hundreds of vertices), we believe that
adequate training can leverage our algorithms to handle scenarios
with more query-generating vertices and larger map scales.

Then we present the effect of different 𝐾 values. As can be seen
from Table 2, RQ-FGNN fits the Max-sum better under every 𝐾 ,
which shows that the RQ-FGNN structure can effectively learn the
message propagation of Max-sum. Because 𝐾 has an effect on the
size of the factor graph and the size of the features, increasing 𝐾
may require networks with more parameters. Note that there may
be a sample imbalance problem with increasing values of 𝐾 , which
can affect the learning ability of the neural network.

The performance of RQ-FGNN. Finally, we compare our RQ-FGNN
with the baselines of performance and computational overhead.
Considering the effect of 𝐾 on Max-sum and RQ-FGNN, the experi-
ment was conducted in the case of 𝐾 = 3. We selected the model
with the highest accuracy in our previous experiments. The results
are shown in Figure 9, where the horizontal coordinate is the num-
ber of accumulated queries. It can be seen that RQ-FGNN requires
less time than the SBP method, within one second. Because the neu-
ral networks can perform batch processing, the computation time
does not obviously increase as the number of queries grows. Mean-
while, RQ-FGNN outperforms the IND method in both datasets and
metrics, significantly cutting global travel time, which proves the
effectiveness of RQ-FGNN in avoiding congestion. Compared to
the SBP method, our method achieves similar performance while
consuming significantly less time.

7 CONCLUSION
In this paper, we propose a novel graph model named the route-
query factor graph for the GRP problem. We apply a damped Max-
sum method and design a hybrid pruning approach based on the
characteristics of the GRP problem, which can return high-quality
solutions. We further devised a message-passing route-query factor
graph neural network (RQ-FGNN) to represent the route-query
factor graph. Our experimental results show that the RQ-FGNN
is able to generate plausible solutions in a real-time manner. Our
factor graph modeling approach with DMS computation also sup-
ports deployment in distributed scenarios, which provides insights
into research trends in privacy protection. Besides, RQ-FGNN re-
quires a data labeling process where the label encoding, especially
searching the ground truth marginals for hard instances, can be
time-consuming. We will consider such factors and explore the
theoretical guarantee of RQ-FGNN in our future work.
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