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ABSTRACT
We study the efficiency of fair allocations using the well-studied

price of fairness concept, which quantitatively measures the worst-

case efficiency loss when imposing fairness constraints. Previous

works provided partial results on the price of fairness with well-

known fairness notions such as envy-freeness up to one good (EF1)

and envy-freeness up to any good (EFX). In this paper, we give a

complete characterization for the price of envy-freeness in various

settings. In particular, we first consider the two-agent case under

the indivisible-goods setting and present tight ratios for the price

of EF1 (for scaled utility) and EFX (for unscaled utility), which

resolve questions left open in the literature. Next, we consider the

mixed goods setting which concerns a mixture of both divisible

and indivisible goods. We focus on envy-freeness for mixed goods

(EFM), which generalizes both envy-freeness and EF1, as well as its

strengthening called envy-freeness up to any good for mixed goods

(EFXM), which generalizes envy-freeness and EFX. To this end, we

settle the price of EFM and EFXM by providing a complete picture

of tight bounds for two agents and asymptotically tight bounds for

𝑛 agents, for both scaled and unscaled utilities.
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1 INTRODUCTION
Fair division is a fundamental topic in algorithmic game theory and

has attracted wide attention. In this problem, we need to allocate
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some resources among agents in a fair manner. The most classic

notion of fairness is envy-freeness (EF), which requires that each

agent does not envy another agent’s bundle. In other words, every

agent values her own bundle weakly better than the bundle received

by any other agent. When the goods are divisible, meaning that

they can be divided into arbitrarily small pieces and allocated to

different agents (the cake-cutting problem), an envy-free allocation

always exists [2]. However, when considering indivisible goods,

meaning that each of them should be allocated to an agent in its

entirety, an envy-free allocation may not exist. Thus, a relaxation

of envy-freeness, called envy-freeness up to one good (EF1), has been
proposed to circumvent this issue. An allocation is EF1 if for any

pairs of agents 𝑖 and 𝑗 , agent 𝑖 does not envy agent 𝑗 after removing

one item from 𝑗 ’s bundle. Such an allocation always exists when

allocating indivisible goods [41]. Besides EF1, another relaxation

of envy-freeness called envy-freeness up to any good (EFX) has also
received wide attention in recent years [e.g., 1, 4, 30, 31, 34, 37, 46],

where an agent does not envy another agent after removing any
item from the latter agent’s bundle. Moreover, there have been a

number of papers on partial EFX allocations with good proper-

ties [e.g., 19, 27, 32]. Beyond the setting concerning either divisible

or indivisible goods, some recent studies have focused on fairly

dividing a mixture of both divisible and indivisible resources [15–

17, 21, 38, 39, 45]. Among these, Bei et al. [15] first considered

the mixed-goods setting and proposed the fairness notion called

envy-freeness for mixed goods (EFM), which naturally combines

envy-freeness and EF1 together. Specifically, under an EFM alloca-

tion, for each agent, if she receives only indivisible goods, no other

agents envy her using the EF1 criterion; otherwise, no other agents

envy her using the EF criterion. An EFM allocation is guaranteed

to exist [15]. By strengthening EF1 to EFX when assessing the envy

from others to an agent who receives only indivisible goods, we

have a stronger notion than EFM, which is called envy-freeness up
to any good for mixed goods (EFXM) [15, 45].

In addition to fairness, efficiency, or social welfare, which refers

to the total utility of all the agents towards their bundles, also plays

an important role in evaluating an allocation [23, 24]. The price
of fairness, introduced independently by Bertsimas et al. [20] and

Caragiannis et al. [28], is a quantitative measure indicating the loss

of social welfare when a given fairness constraint is imposed. More

specifically, the price of fairness is defined as the supremum ratio of

the maximum social welfare among all allocations to the maximum

social welfare among all fair allocations under a particular fairness
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Table 1: Price of Envy-Freeness for Two Agents with
(Un)Scaled Utilities

Price of . . . EF1 EFM / EFXM EFX

Scaled
8

7
(Thm. 3.1)

3

2
(Thm. 3.5)

3

2
[18]

Unscaled 2 [24] 2 (Thm. 3.4) 2 (Thm. 3.4)

Table 2: Price of Envy-Freeness for 𝑛 Agents with (Un)Scaled
Utilities

Price of . . . EF1 EFM / EFXM EFX

Scaled Θ(
√
𝑛) [8, 18] Θ(

√
𝑛) (Thm. 4.1) Θ(

√
𝑛) [24]

Unscaled Θ(𝑛) [24] Θ(𝑛) (Thm. 4.2) Θ(𝑛) [24]

property, where the supremum is taken over all possible instances.

For divisible goods, the price of envy-freeness is Θ(
√
𝑛), where 𝑛

is the number of agents [20]. For indivisible goods, the price of

EF1 is Θ(
√
𝑛) [8, 18]. For the special case where 𝑛 = 2, Bei et al.

[18] provided a lower bound of 8/7 and an upper bound of
2√
3

for the price of EF1 for scaled utilities, and Bu et al. [24] gave a

tight ratio of 2 for unscaled utilities. Regarding the price of EFX for

indivisible goods, with 𝑛 = 2 agents, Bei et al. [18] provided a tight

bound of 3/2 under scaled utilities, and Bu et al. [24] presented a

lower bound of 2 under unscaled utilities. Bu et al. also showed

tight bounds for the price of EFX for 𝑛 agents for both scaled and

unscaled utilities, which are Θ(
√
𝑛) and Θ(𝑛), respectively.

In this paper, we close gaps on the price of EF1 and EFX for

indivisible-goods allocation when there are two agents [18, 24].

Moreover, for the first time, we provide tight or asymptotically

tight bounds on the price of EFM and EFXM in the mixed-goods

setting, resolving questions left open in the literature [42]. Our

results are shown in Tables 1 and 2. Below, we highlight some

interesting features/observations according to our results:

• In all of the settings, tight bounds (or asymptotically tight

bounds for an arbitrary number of agents) on the price of

envy-freeness are now known.

• For two agents, we show that the price of EF1 is exactly 8/7,
which closes the gap between 8/7 and 2/

√
3 left open in the

previous paper by Bei et al. [18].

• The price of EFM is (asymptotically) the same as the price

of EFX in all the settings. This is a potential evidence that

EFM, although defined in relation to EF1, is more similar to

EFX in nature.

1.1 Additional Related Work
While the price of fairness concept captures the efficiency loss in

the best fair allocation, Bei et al. [18] introduced the concept of

strong price of fairness, which captures the efficiency loss in the

worst allocation. The strong price of fairness has proven to provide

meaningful guarantees for fairness notions defined in the form

of welfare maximizers, e.g., maximum Nash welfare, maximum

Egalitarian welfare, and leximin. The strong price of fairness is,

however, too demanding to yield any non-trivial guarantee for

fairness notions of interest in this paper. To be more specific, the

strong price of EF1 and the strong price of EFX are∞ [18]. We thus

only focus on the price of fairness in our paper.

The interplay between fairness and efficiency has been exten-

sively studied in the literature of fair division for both divisible and

indivisible goods settings [5, 6, 10, 44]. An immediate question is

whether a fairness criterion is compatible with Pareto optimality

(PO) which is a rather weak economic efficiency measurement. In

particular, both envy-freeness and EF1 can be combined with PO

by finding the allocation that satisfies maximum Nash welfare in

the divisible and indivisible settings respectively [29, 48].

Another related direction considers the problem of maximizing

social welfare subject to fairness constraints. For divisible goods,

this optimization problem with the envy-freeness constraints for

piecewise-constant valuations can be solved optimally [35]. How-

ever, this problem has an inapproximability hardness with a poly-

nomial factor if an additional requirement of connectivity on the

received piece of cake is imposed [12]. For indivisible goods, the

problemwith EF1 / EFX criteria is well understood recently [7, 9, 24].

With scaled utilities, Barman et al. [9] gave inapproximability re-

sults for general numbers of agents and items while Aziz et al.

[7] showed that the problem subject to the EF1 / EFX constraints

is NP-hard for some special cases. Bu et al. [24] gave a complete

landscape on the computational complexity and approximability

of maximizing the social welfare within EF1 / EFX allocations of

indivisible goods for both scaled and unscaled utilities.

2 PRELIMINARIES
For any positive integer 𝑡 ∈ N, let [𝑡] B {1, 2, . . . , 𝑡}. We consider

both indivisible-goods and mixed-goods settings with a set of 𝑛

agents 𝑁 = [𝑛]. The mixed-goods setting involves a set of𝑚 in-
divisible goods 𝑀 = {𝑔1, 𝑔2, . . . , 𝑔𝑚} and a set of 𝑚 homogeneous
divisible goods 𝐷 = {𝑑1, 𝑑2, . . . , 𝑑𝑚}. The indivisible-goods setting
can be viewed as a special case where 𝐷 = ∅.

Utilities. Denote by u = (𝑢1, 𝑢2, . . . , 𝑢𝑛) the utility profile, which
specifies how the agents value the goods. Each agent 𝑖 ∈ 𝑁 has a

non-negative utility 𝑢𝑖 (𝑔) for each (in)divisible good 𝑔 ∈ 𝑀 ∪ 𝐷 . A

bundle is a tuple consisting of a (possibly empty) set of indivisible

goods𝑀′ ⊆ 𝑀 and an𝑚-dimensional vector x′ = (𝑥 ′
1
, 𝑥 ′

2
, . . . , 𝑥 ′

𝑚
) ∈

[0, 1]𝑚 , in which each coordinate specifies the fraction of the cor-

responding homogeneous divisible good. The bundle is written as

(𝑀′, x′). We assume additive utilities, i.e., for all 𝑖 ∈ 𝑁 , 𝑀′ ⊆ 𝑀 ,

and x′ ∈ [0, 1]𝑚 , the utility of agent 𝑖 for bundle (𝑀′, x′) is defined
as:

𝑢𝑖 (𝑀′, x′) B
∑︁
𝑔∈𝑀 ′

𝑢𝑖 (𝑔) +
𝑚∑︁
𝑘=1

𝑥 ′
𝑘
· 𝑢𝑖 (𝑑𝑘 ).

We slightly abuse the notation by letting 𝑢𝑖 (𝑀′) B
∑
𝑔∈𝑀 ′ 𝑢𝑖 (𝑔)

and 𝑢𝑖 (x′) B
∑𝑚

𝑘=1
𝑥 ′
𝑘
· 𝑢𝑖 (𝑑𝑘 ).

An instance, written as ⟨𝑁,𝑀, 𝐷, u⟩, consists of agents 𝑁 , indi-

visible goods𝑀 , divisible goods 𝐷 , and the agents’ utility profile u.

Remark 2.1 (Piecewise-constant valuation assumption). In
the paper by Bei et al. [15] where the mixed-goods model was first
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introduced, the divisible part of the resource is modelled by a (het-
erogeneous) cake on which each agent has a value density function.
Our setting with multiple homogeneous divisible goods is equivalent
to the setting with a cake where all agents’ value density functions
are piecewise-constant. Although being somewhat more restrictive
than general valuations, piecewise-constant valuations are standardly
assumed in the cake-cutting literature for their ability to represent nat-
ural real functions with arbitrarily good precision and to be encoded
succinctly [e.g., 5, 6, 12–14, 22, 25, 33, 35, 43].

The detailed discussion on our setting of multiple homogeneous

divisible goods can be found in the full version of our paper [40].

Allocations. An allocation is denoted by A = (𝐴1, 𝐴2, . . . , 𝐴𝑛),
where for each 𝑖 ∈ [𝑛], 𝐴𝑖 = (𝑀𝑖 , x𝑖 = (𝑥𝑖1, 𝑥𝑖2, . . . , 𝑥𝑖𝑚)) is the
bundle allocated to agent 𝑖 . Allocation A is feasible if

• for any pair of agents 𝑖 ≠ 𝑗 ,𝑀𝑖 ∩𝑀𝑗 = ∅; and
• for each 𝑘 = 1, 2, . . . ,𝑚,

∑
𝑖∈𝑁 𝑥

𝑖𝑘
≤ 1.

Allocation A is complete if
⋃

𝑖∈𝑁 𝑀𝑖 = 𝑀 and for each 𝑘 ∈ [𝑚],∑
𝑖∈𝑁 𝑥

𝑖𝑘
= 1; otherwise, this is a partial allocation. In this work,

we consider feasible allocations and allow partial allocations.

Scaling. Agents’ utilities are scaled if for all 𝑖 ∈ 𝑁 ,𝑢𝑖 (𝑀∪𝐷) = 1,

and unscaled otherwise. In this work, we consider both scaled and

unscaled utilities.

SocialWelfare. The (utilitarian) social welfare of an allocationA =

(𝐴1, 𝐴2, . . . , 𝐴𝑛) is defined as SW(A) B
∑
𝑖∈𝑁 𝑢𝑖 (𝐴𝑖 ). The optimal

social welfare for an instance 𝐼 , denoted byOPT(𝐼 ), is the maximum

social welfare over all allocations of this instance.

Fairness Notions. To better understand the intuition behind fair-

ness notions like EF1, EFM, EFXM and EFX, we start with the defi-

nition of envy-freeness [36]. An allocation A = (𝐴1, 𝐴2, . . . , 𝐴𝑛) is
said to satisfy envy-freeness (EF) if for any pair of agents 𝑖, 𝑗 ∈ 𝑁 ,

we have 𝑢𝑖 (𝐴𝑖 ) ≥ 𝑢𝑖 (𝐴 𝑗 ). EF1 relaxes envy-freeness by allowing

envies “up to one good”.

Definition 2.2 (EF1 [26, 41]). An allocation (𝑀1, 𝑀2, . . . , 𝑀𝑛) of
indivisible goods𝑀 is said to satisfy envy-freeness up to one good
(EF1) if for any pair of agents 𝑖, 𝑗 ∈ 𝑁 and 𝑀𝑗 ≠ ∅, there exists a
good 𝑔 ∈ 𝑀𝑗 such that 𝑢𝑖 (𝑀𝑖 ) ≥ 𝑢𝑖 (𝑀𝑗 \ {𝑔}).

When allocating indivisible goods, another commonly studied

fairness notion is envy-freeness up to any good (EFX), which is

substantially stronger than EF1.

Definition 2.3 (EFX [29, 46]). An allocation (𝑀1, 𝑀2, . . . , 𝑀𝑛) of
indivisible goods𝑀 is said to satisfy envy-freeness up to any good
(EFX) if for any pair of agents 𝑖, 𝑗 ∈ 𝑁 and 𝑀𝑗 ≠ ∅, 𝑢𝑖 (𝑀𝑖 ) ≥
𝑢𝑖 (𝑀𝑗 \ {𝑔}) holds for any good 𝑔 ∈ 𝑀𝑗 .

We now proceed to define EFM in the mixed-goods setting,

which, intuitively, requires that an agent compares her bundle to an-

other agent’s bundle using EF1 criterion if the latter bundle consists

of only indivisible goods; otherwise, the stronger envy-freeness

criterion is invoked.

Definition 2.4 (EFM [15, Definition 2.3]). An allocation A =

(𝐴1, 𝐴2, . . . , 𝐴𝑛) of mixed goods is said to satisfy envy-freeness for
mixed goods (EFM) if for any pair of agents 𝑖, 𝑗 ∈ 𝑁 ,

• if agent 𝑗 ’s bundle consists of only indivisible goods, i.e., x𝑗 =
0, then 𝑢𝑖 (𝐴𝑖 ) ≥ 𝑢𝑖 (𝐴 𝑗 ) or there exists some (indivisible)

good 𝑔 ∈ 𝑀𝑗 such that 𝑢𝑖 (𝐴𝑖 ) ≥ 𝑢𝑖 (𝑀𝑗 \ {𝑔}, x𝑗 );
• otherwise, 𝑢𝑖 (𝐴𝑖 ) ≥ 𝑢𝑖 (𝐴 𝑗 ).

Bei et al. [15] also suggested that by substituting the EFX crite-

rion for EF1 in cases where an agent compares her bundle to those

containing only indivisible goods, a stronger variant of EFM can be

derived. Its formal definition was later introduced in the work of

Nishimura and Sumita [45].

Definition 2.5 (EFXM [45]). An allocation A = (𝐴1, 𝐴2, . . . , 𝐴𝑛)
of mixed goods is said to satisfy envy-freeness up to any good for
mixed goods (EFXM) if for any pair of agents 𝑖, 𝑗 ∈ 𝑁 ,

• if agent 𝑗 ’s bundle consists of only indivisible goods, i.e.,

x𝑗 = 0, then 𝑢𝑖 (𝐴𝑖 ) ≥ 𝑢𝑖 (𝐴 𝑗 ) or 𝑢𝑖 (𝐴𝑖 ) ≥ 𝑢𝑖 (𝑀𝑗 \ {𝑔}, x𝑗 )
for any (indivisible) good 𝑔 ∈ 𝑀𝑗 ;

• otherwise, 𝑢𝑖 (𝐴𝑖 ) ≥ 𝑢𝑖 (𝐴 𝑗 ).

2.1 Price of Fairness
We are now ready to define the central concept of the paper—the

price of fairness [8, 18, 20, 28].

Definition 2.6 (Price of Fairness 𝑃 ). For any given fairness criteria

𝑃 and any instance 𝐼 , we define

price of 𝑃 for instance 𝐼 =
OPT(𝐼 )
SW(A∗) ,

where A∗ is a (partial) allocation that satisfies 𝑃 and has the maxi-

mum social welfare.

The overall price of 𝑃 is then defined as the supremum price of

𝑃 across all instances.

Note that when we define the price of EF1 and EFX, we consider

instance 𝐼 with 𝐷 = ∅.

Partial Allocation and Resource Monotonicity. As a remark, when

defining the price of EFM, EFXM and EFX, we include partial allo-

cations into our consideration. To illustrate the idea here, let us first

introduce the concept of resource monotonicity with respect to social
welfare

1
[see, e.g., 24]. Given a fairness property 𝑃 , we say resource

monotonicity holds for property 𝑃 if for any instance, there always

exists a complete allocation satisfying 𝑃 that has a weakly higher

social welfare than any other partial allocation satisfying 𝑃 . Note

that when the existence of property 𝑃 is not guaranteed, resource

monotonicity fails for the property.
2

Regarding EFX, Bu et al. [24] showed that for two agents, re-

source monotonicity holds for EFX. In general, however, resource

monotonicity fails for EFX [24]. Put differently, Bu et al. [24] pro-

vided an instance in which a partial EFX allocation has a higher

social welfare than any complete EFX allocation. Note also that it

is a major open problem whether a complete EFX allocation always

exists [3]. We have the following two scenarios:

(1) if an EFX allocation of indivisible goods always exists, its

failure of resource monotonicity suggests that some partial

1
Prior research has also explored the concept of resource monotonicity subject to

Pareto optimality. [see, e.g., 47].

2
For instance, resource monotonicity fails for envy-freeness when allocating indivisible

goods.
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EFX allocation may have higher social welfare than any

complete EFX allocation; and

(2) otherwise we may not even have a complete EFX allocation.

In either case, independent of the existence of EFX, it is more natural

to include partial allocations when defining the price of EFX. Since

EFXM is a generalization of EFX, it is also natural to consider partial

allocations in its price of fairness definition.

In terms of EFM, its existence is guaranteed [15]; however, we

do not know whether resource monotonicity holds for EFM (in the

mixed-goods setting) or not. If any partial EFM allocation can be

extended to a complete EFM allocation with a weakly higher social

welfare, it makes no difference whether or not partial allocations

are included when defining the price of EFM. Otherwise, it would be

more natural to use the “better” partial allocation for characterizing

the price of EFM, as opposed to forcing the allocation being com-

plete. Thus, it is again more natural to include partial allocations

into our consideration.

For EF1, as noted in [24], it is easy to see that any partial EF1

allocation can be extended to a complete EF1 allocation with a

weakly higher social welfare by carrying on the envy-graph proce-
dure. Therefore, we do not need to consider partial allocations for

the price of EF1.

3 TWO AGENTS
In this section, we establish tight bounds on the price of EF1 / EFX

/ EFM / EFXM for two agents with scaled or unscaled utilities.

3.1 Price of EF1 (for Indivisible Goods)
For unscaled utilities, the price of EF1 is exactly 2 due to Bu et al.

[24]. For scaled utilities, the price of EF1 is between
8

7
and

2√
3

due

to Bei et al. [18]. In the following, we close the gap by showing that

the price of EF1 is
8

7
.

Theorem 3.1. For𝑛 = 2 and scaled utilities (over indivisible goods),
the price of EF1 is 8

7
.

Some additional notations are introduced here for the sake of

clarity during this proof. Denote by 𝑇1 the subset of goods that

agent 1 values no less than agent 2, and by 𝑇2 the remaining goods:

𝑇1 = {𝑔 ∈ 𝑀 | 𝑢1 (𝑔) ≥ 𝑢2 (𝑔)} and 𝑇2 = 𝑀 \𝑇1 .

Let the surplus of a bundle𝑀′, denoted by SP(𝑀′), be how much

agent 1 values bundle𝑀′ more than agent 2; formally stated as

SP(𝑀′) =
∑︁
𝑔∈𝑀 ′
(𝑢1 (𝑔) − 𝑢2 (𝑔)) .

We first state and prove a useful proposition, and then provide

the proof of Theorem 3.1. Given an allocation (𝑀1, 𝑀2, . . . , 𝑀𝑛) of
indivisible goods𝑀 , we say that an agent 𝑖 ∈ 𝑁 strongly envies an
agent 𝑗 if and only if for any 𝑔 ∈ 𝑀𝑗 , 𝑢𝑖 (𝑀𝑖 ) < 𝑢𝑖 (𝑀𝑗 \ {𝑔}). It
can be seen that given an allocation, if some agent strongly envies

some other agent, then the allocation is not EF1. Moreover, if every

agent does not strongly envy any other agent, then the allocation

is EF1.

Proposition 3.2. Suppose agent 2 strongly envies agent 1 in the
allocation (𝑇1,𝑇2). If 𝑇1 can be partitioned into 𝑇 ′

𝐴
and 𝑇 ′

𝐵
such that

agent 2 does not strongly envy agent 1 in the allocationA = (𝑇 ′
𝐴
,𝑇 ′

𝐵
∪

𝑇2), then there exists an EF1 allocation A′ with SW(A′) ≥ SW(A).

Proof. If agent 1 does not strongly envy agent 2 in A, then

let A′ = A and we are done. Otherwise, we apply the following

iterative “one-by-one reassignment” process:

(1) Suppose, at the beginning of the iteration, agent 1 has bun-

dle𝑇 ′
1
and agent 2 has bundle𝑇 ′

2
. Select an arbitrary good𝑔 ∈

𝑇 ′
2
∩𝑇1. Since agent 1 strongly envies𝑇 ′

2
, she would still envy

the bundle if 𝑔 is excluded, that is, 𝑢1 (𝑇 ′
1
) < 𝑢1 (𝑇 ′

2
\ {𝑔}).

(2) If 𝑢2 (𝑇 ′
2
\ {𝑔}) ≥ 𝑢2 (𝑇 ′

1
), assign good 𝑔 to agent 1. Other-

wise we have 𝑢2 (𝑇 ′
2
\ {𝑔}) < 𝑢2 (𝑇 ′

1
). We now swap the two

agents’ bundles, i.e., let agent 1 get bundle𝑇 ′
2
and agent 2 get

bundle 𝑇 ′
1
. Note that given the updated allocation, agent 2 is

still EF1 towards agent 1.

(3) If agent 1 still strongly envies agent 2’s bundle, go back to

step 1 and start another iteration of this process.

Then we prove that the following two invariants hold at the end

of each iteration: (a) the social welfare does not decrease throughout

the process; (b) agent 2 does not strongly envy agent 1’s bundle.

• If agent 2 does not envy agent 1 even when 𝑔 is excluded

from her bundle, moving𝑔 to agent 1’s bundle would increase

social welfare, because 𝑔 ∈ 𝑇1, indicating that agent 1 values

it more than agent 2; if otherwise, the two agents envy each

other’s bundle, swapping their bundle would also increase

social welfare, and item 𝑔, too, is reassigned to the agent that

values it more.

• If agent 2 does not envy agent 1 even when 𝑔 is excluded

from her bundle, adding 𝑔 to agent 1’s bundle would not lead

to agent 2 strongly envying the bundle; if otherwise, both

agents would not envy each other’s bundle after swapping,

and agent 2 certainly does not strongly envy agent 1’s bundle

after 𝑔 is reassigned.

The two invariants being established, it can be seen that EF1 is

guaranteed after the whole one-by-one reassignment process, and

the social welfare of the resulting allocation A′ is no less than

SW(A). □

We are now ready to establish Theorem 3.1.

Proof of Theorem 3.1. For brevity, let𝑦 be SP(𝑇1). Since scaled
utilities are considered here, we should have that SP(𝑇2) = −SP(𝑇1) =
−𝑦. Note that assigning each item to the agent that values it more,

i.e., assigning 𝑇1 to agent 1 and 𝑇2 to agent 2, achieves the optimal

social welfare, so for any instance 𝐼 with two agents, scaled utilities,

and only indivisible goods,

OPT(𝐼 ) = 𝑢1 (𝑇1) + 𝑢2 (𝑇2) = SP(𝑇1) + 𝑢2 (𝑇1) + 𝑢2 (𝑇2) = 1 + 𝑦.

We divide our proof into three cases.

Case 1: 𝑦 ≥ 1

2
. This case is trivial, since the optimal allocation

(allocating each item to the agent who values it more) would have

already achieved envy-freeness. More formally speaking, in the

optimal allocation, the bundle assigned to agent 1 is𝑇1, while agent 2

receives 𝑇2. Hence, the utility of agent 1’s bundle

𝑢1 (𝑇1) = 𝑢2 (𝑇1) + SP(𝑇1) ≥ 𝑦 ≥ 1

2

.
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Since agent 1 has received more than half of the total value of all

items from her perspective, there is no chance that she would envy

agent 2’s bundle. Similarly, for agent 2,

𝑢2 (𝑇2) = 𝑢1 (𝑇2) − SP(𝑇2) = 𝑢1 (𝑇2) + 𝑦 ≥
1

2

.

Therefore, neither would agent 2 envy agent 1’s bundle, and envy-

freeness is proved. Because EF1 can be achieved via an allocation

optimizing social welfare, the price of EF1 for such instances is 1.

Case 2: 𝑦 ≤ 1

3
. If the optimal allocation already satisfies EF1,

we are done. For this reason, we only consider instances where

the optimal allocation violates EF1, and suppose without loss of

generality that agent 2 strongly envies agent 1. Note that agent 1

does not strongly envy agent 2’s bundle in the optimal allocation,

for otherwise exchanging their bundle would lead to an allocation

with higher social welfare, contradicting to optimality. Then we

let agent 2 partition 𝑇1 into two subsets “as evenly as possible”,

maximizing the utility of the subset with lower utility from her

perspective. Call the two subsets 𝑇𝐴 and 𝑇𝐵 . Suppose SP(𝑇𝐴) ≥
SP(𝑇𝐵). We temporarily assign𝑇𝐴 to agent 1, and𝑇𝐵 ∪𝑇2 to agent 2,
and it can be proved that, at this time, (a) agent 2 does not strongly

envy agent 1; (b) the social welfare is no less than
𝑦
2
+ 1.

• If 𝑢2 (𝑇𝐵) ≥ 𝑢2 (𝑇𝐴), then agent 2 values her bundle more

than agent 1’s, and envy-freeness is guaranteed. If 𝑢2 (𝑇𝐵) ≤
𝑢2 (𝑇𝐴), there should exist a certain item 𝑔 ∈ 𝑇𝐴 such that

𝑢2 (𝑇𝐵) ≥ 𝑢2 (𝑇𝐴 \ {𝑔}), for otherwise, moving this item

to 𝑇𝐵 would result in a “more even” partition. Therefore,

𝑢2 (𝑇𝐵 ∪𝑇2) ≥ 𝑢2 (𝑇𝐵) ≥ 𝑢2 (𝑇𝐴 \ {𝑔}).
• The lower bound of social welfare can be established as

follows:

SW(𝑇𝐴,𝑇𝐵 ∪𝑇2) = SP(𝑇𝐴) + 𝑢2 (𝑇𝐴 ∪𝑇𝐵 ∪𝑇2)

≥ 1

2

SP(𝑇1) + 𝑢2 (𝑀)

=
𝑦

2

+ 1.

The inequality can be derived by the fact that SP(𝑇𝐴) ≥
SP(𝑇𝐵).

At this time, agent 1 can still strongly envy agent 2, and we apply

Proposition 3.2 to derive a EF1 allocation A′ with social welfare

no less than
𝑦
2
+ 1. Consequently, for instances with 𝑦 ≤ 1

3
, there

exists an allocation A′ with SW(A) ≥ 𝑦
2
+ 1 satisfying EF1, ergo

the price of EF1

OPT(𝐼 )
SW(A′) ≤

1 + 𝑦
1 + 𝑦

2

≤ 8

7

.

Case 3: 1
3
≤ 𝑦 ≤ 1

2
. Again, supposewithout loss of generality that

agent 2 strongly envies agent 1 under optimal allocation. Let agent 2

partition 𝑇1 into three subsets “as evenly as possible”, maximizing

the subset with minimum utility from her perspective. Let the three

subsets be 𝑇𝐴 , 𝑇𝐵 and 𝑇𝐶 , and 𝑢2 (𝑇𝐴) ≥ 𝑢2 (𝑇𝐵) ≥ 𝑢2 (𝑇𝐶 ). Three
subcases are studied here.

Subcase 3.1:𝑢2 (𝑇𝐶 ) ≥ 1

6
. Since𝑢2 (𝑇2) = 𝑢1 (𝑇2)−SP(𝑇2) ≥ 𝑦 ≥ 1

3
,

assigning any one of 𝑇𝐴 , 𝑇𝐵 , and 𝑇𝐶 to agent 2 would result in

she claiming more than half of all items’ total utility, eliminating

the possibility of agent 2 envying agent 1. We assign the subset

with smallest surplus, dubbed 𝑇13, to agent 2, and the other two,

dubbed𝑇11 and𝑇12, to agent 1. Thus, SP(𝑇11 ∪𝑇12) ≥ 2

3
SP(𝑇1). The

social welfare of such allocation A can be lower bounded via the

following calculation

SW(A) = SP(𝑇11 ∪𝑇12) + 𝑢2 (𝑀) ≥ 1 + 2

3

𝑦.

Since it is still possible that agent 1 strongly envies agent 2 at

this moment, we apply the “one-by-one assignment” process in

Proposition 3.2, and derive an allocation A′ satisfying EF1, with

social welfare no less than 1 + 2

3
𝑦.

Subcase 3.2: 𝑢2 (𝑇𝐴) ≤ 1

3
. If any one of 𝑇𝐴 , 𝑇𝐵 , and 𝑇𝐶 is as-

signed to agent 2, she would not strongly envy agent 1. Assume she

gets 𝑇𝐶 . For any item 𝑔 ∈ 𝑇𝐵 , 𝑢2 (𝑇𝐶 ) ≥ 𝑢2 (𝑇𝐵 \ {𝑔}) should hold,

because moving 𝑔 to 𝑇𝐶 would give a more even partition other-

wise. Furthermore, 𝑢2 (𝑇2) ≥ 𝑦 ≥ 1

3
≥ 𝑢2 (𝑇𝐴). Thus, 𝑢2 (𝑇𝐶 ∪𝑇2) ≥

𝑢2 (𝑇𝐴 ∪ 𝑇𝐵 \ {𝑔}) for any 𝑔 ∈ 𝑇𝐵 , proving the claim that agent 2

does not strongly envy agent 1. If𝑇𝐴 or𝑇𝐵 is assigned to agent 2 in-

stead, the proof is similar. Again, assigning the subset with smallest

surplus to agent 2 would result in an allocation with social welfare

no less than 1 + 2

3
𝑦. Since it is possible that agent 1 strongly envies

agent 2 at this moment, we apply the “one-by-one assignment” pro-

cess in Proposition 3.2, and derive an allocation A′ satisfying EF1,

with social welfare no less than 1 + 2

3
𝑦.

Subcase 3.3: 𝑢2 (𝑇𝐴) ≥ 1

3
and 𝑢2 (𝑇𝐶 ) ≤ 1

6
. In this case, all items

in 𝑇𝐴 must have values no less than
1

6
, for otherwise moving this

item to 𝑇𝐶 would bring about a more even allocation. Furthermore,

observe that if there are two items in 𝑇𝐴 , moving one of them

to 𝑇𝐶 would also result in a more even allocation. Thus, there can

only be one item in 𝑇𝐴 . Call it 𝑔𝐴 . The optimal allocation here

already satisfies EF1, because 𝑢2 (𝑇2) ≥ 𝑦 = 1

3
, and 𝑢2 (𝑇1 \ {𝑔𝐴}) =

𝑢2 (𝑇1) − 𝑢2 (𝑔𝐴) ≤ 2

3
− 1

3
= 1

3
.

Concluding the three subcases discussed above, for any instance 𝐼

with
1

3
≤ 𝑦 ≤ 1

2
, there exists an EF1 allocation A with SW(A) ≥

1 + 2

3
𝑦. Therefore, the price of EF1 for instance 𝐼 is

OPT(𝐼 )
SW(A) ≤

1 + 𝑦
1 + 2

3
𝑦
≤ 9

8

.

Combining all three cases, the price of EF1 is at most
8

7
. Together

with the lower bound provided in Bei et al. [18], we concluded that

for two agents, the price of EF1 is exactly
8

7
. □

3.2 Price of EFX / EFM / EFXM
Regarding EFX, it is known that for scaled utilities, the price of EFX

is
3

2
due to Bei et al. [18] as well as for unscaled utilities, the price

of EFX is at least 2 due to Bu et al. [24]. We provide here a matching

upper bound and thus conclude that for unscaled utilities, the price

of EFX is exactly 2. In addition, we provide a complete picture of

tight bounds on the price of EFM and EFXM for two agents with

scaled or unscaled utilities.

We start by showing that a variant of the well-known Cut-and-
Choose Algorithm outputs an EFXM (and thus EFM) allocation with

social welfare at least one half of 𝑢1 (𝑀 ∪𝐷) +𝑢2 (𝑀 ∪𝐷). The same

idea has also been used to show the price of EFX for two agents

when allocating indivisible goods; see Theorem 3.4 of Bei et al. [18].

We slightly tailor the algorithm description to allocating mixed

goods.
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Algorithm 1: Cut-and-Choose Algorithm
Input: Fair division instance ⟨[2], 𝑀, 𝐷, u⟩.
Output: An EFM (or EFX if 𝐷 = ∅) allocation with social

welfare at least
𝑢1 (𝑀∪𝐷 )+𝑢2 (𝑀∪𝐷 )

2
.

1 Let agent 1 (resp., agent 2) partition the mixed goods into

two bundles, denoted by 𝑋1, 𝑋2 (resp., 𝑌1, 𝑌2), in the sense

that her values for the two bundles are as equal as possible.

Assume without loss of generality that 𝑢1 (𝑋1) ≥ 𝑢1 (𝑋2),
|𝑢1 (𝑋1) − 𝑢1 (𝑋2) | ≤ |𝑢2 (𝑌1) − 𝑢2 (𝑌2) | and that between

bundles 𝑋1 and 𝑋2, all goods of value zero for agent 1, if

any, are in bundle 𝑋2.

2 Let agent 2 choose her preferred bundle between 𝑋1 and 𝑋2,

and agent 1 get the other bundle. Denote by A = (𝐴1, 𝐴2)
the resulting allocation.

3 return Allocation A

Lemma 3.3. Given any fair division instance ⟨[2], 𝑀, 𝐷, u⟩, Al-
gorithm 1 computes an EFXM allocation A = (𝐴1, 𝐴2) with social
welfare SW(A) ≥ 𝑢1 (𝑀∪𝐷 )+𝑢2 (𝑀∪𝐷 )

2
. If 𝐷 = ∅, A is EFX.

Proof. For ease of exposition, we assume without loss of gener-

ality that 𝑢1 (𝑋1) ≥ 𝑢1 (𝑋2) and 𝑢2 (𝑌1) ≥ 𝑢2 (𝑌2). Then, according
to Algorithm 1, we have

𝑢1 (𝑋1) − 𝑢1 (𝑋2) ≤ 𝑢2 (𝑌1) − 𝑢2 (𝑌2) . (1)

Put differently, agent 1’s partition of the mixed goods is more equal.

We now show that SW(A) ≥ 𝑢1 (𝑀∪𝐷 )+𝑢2 (𝑀∪𝐷 )
2

. First, we have

𝑢1 (𝐴1) ≥ 𝑢1 (𝑋2). Second, we have 𝑢2 (𝐴2) ≥ 𝑢2 (𝑌1); otherwise,
agent 2 could have a more equal partition of the mixed goods, a

contradiction to our assumption. The social welfare of allocationA
is lower bounded by

SW(A) = 𝑢1 (𝐴1) + 𝑢2 (𝐴2) ≥ 𝑢1 (𝑋2) + 𝑢2 (𝑌1) ≥ 𝑢1 (𝑋1) + 𝑢2 (𝑌2),

where the last transition is due to Equation (1). It implies that

SW(A) ≥ 𝑢1 (𝑋2) + 𝑢2 (𝑌1) + 𝑢1 (𝑋1) + 𝑢2 (𝑌2)
2

=
𝑢1 (𝑀 ∪ 𝐷) + 𝑢2 (𝑀 ∪ 𝐷)

2

,

as desired.

Finally, we show that allocation A is EFXM. Agent 2 gets her

preferred bundle, so she is envy-free and hence EFXM. Regarding

agent 1, she is envy-free (and hence EFM) if she receives bundle 𝑋1.

In the case that agent 1 gets bundle 𝑋2, if agent 1 still has envy

after removing some indivisible good or some amount of divisible

goods from bundle 𝑋1, then, by moving the good to bundle 𝑋2,

agent 1 could have created a more equal partition, a contradiction.

As a result, allocation A is EFXM. When 𝐷 = ∅, this implies that

allocation A is EFX. □

We are now ready to show the tight bounds on price of EFX

/ EFM / EFXM for two agents, and start with the case of agents

having unscaled utilities.

Theorem 3.4. For 𝑛 = 2 and unscaled utilities, the price of EFX /
EFM / EFXM is 2.

Proof. The lower bound of 2 for both the price of EFX (and

thus EFXM) and the price of EFM (note that EFM generalizes EF1)

follows from Theorem F.4 of Bu et al. [24].

We now show the matching upper bound. Consider an arbitrary

instance 𝐼 = ⟨[2], 𝑀, 𝐷, u⟩. It is easy to see that OPT(𝐼 ) ≤ 𝑢1 (𝑀 ∪
𝐷) + 𝑢2 (𝑀 ∪ 𝐷). Together with Lemma 3.3, we conclude that the

price of these three fairness notions is at most 2. □

We next show the price of EFM / EFXM for two agents with

scaled utilities.

Theorem 3.5. For 𝑛 = 2 and scaled utilities, the price of EFM and
the price of EFXM is 3

2
.

Proof. Lower bound: Consider the following instance with one

indivisible good 𝑔1 and two homogeneous divisible goods 𝑑1, 𝑑2,

and assume that the utilities are as follows:

𝑔1 𝑑1 𝑑2

Agent 1’s value 1/2 1/2 − 𝜀 𝜀

Agent 2’s value 1/2 𝜀 1/2 − 𝜀

The optimal social welfare is 3/2−2𝜀, achieved by assigning goods𝑔1
and 𝑑1 to agent 1, and good 𝑑2 to agent 2. On the other hand, in

any EFM allocation, no agent can get both the indivisible good 𝑔1
and any positive amount of the divisible goods. Hence, the social

welfare of an EFM allocation is at most 1. Taking 𝜀 → 0, we find

that the price of EFM is at least 3/2. Since EFXM is stronger than

EFM, this also implies that the price of EFXM is at least 3/2.
Upper bound: Consider an arbitrary instance. If in an optimal alloca-

tion both agents get utility at least 1/2, this allocation is envy-free

(due to the assumptions of additive and scaled utilities) and hence

EFM and EFXM; therefore, in this case, the price of EFM is 1. Other-

wise, themaximum social welfare is at most 1+1/2 = 3/2. According
to Lemma 3.3, Algorithm 1 returns an EFXM (and thus EFM) al-

location A with SW(A) ≥ 𝑢1 (𝑀∪𝐷 )+𝑢2 (𝑀∪𝐷 )
2

. Since utilities are

scaled, we have SW(A) ≥ 1, implying that the price of EFXM and

the price of EFM is at most 3/2. □

4 ARBITRARY NUMBER OF AGENTS
In this section, we establish asymptotically tight bounds on the

price of EFM and the price of EFXM for 𝑛 agents, and begin with

the case that agents’ valuations are scaled.

Theorem 4.1. For scaled utilities, the price of EFM and the price
of EFXM are Θ(

√
𝑛).

Proof. Since EFM generalizes EF1 and EFXM implies EFM, the

lower bound Ω(
√
𝑛) follows from Bei et al. [18].

To show the upper bound𝑂 (
√
𝑛), we make use of the result that

the price of EFX is Θ(
√
𝑛) shown by Bu et al. [24]. The high-level

idea is as follows. We first split each divisible good 𝑑
𝑘
into ℓ smaller

goods 𝑑1
𝑘
, 𝑑2

𝑘
, . . . , 𝑑ℓ

𝑘
of equal size, and we treat each of the ℓ smaller

goods as an indivisible good. In other words, we are considering

an instance 𝐼 ℓ with a total of𝑚 +𝑚ℓ indivisible goods. For each ℓ ,

we find an EFX allocation that achieves an 𝑂 (
√
𝑛)-approximation

to OPT(𝐼 ℓ ). When ℓ →∞, we have a sequence of EFX allocations
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which converges to a “limit allocation’’ that is EFXM (and thus

EFM), and the limit allocation exists due to the compactness of the

allocation space. This limit allocation characterizes the upper bound

𝑂 (
√
𝑛) for the price of EFXM, as the social welfare is a continuous

function on the allocation space.

To prove the upper bound formally, we start from defining the in-

stance 𝐼 ℓ and the allocationAℓ
. In the instance 𝐼 ℓ , we have the same

set of agents 𝑁 , and a set of𝑚 +𝑚ℓ indivisible goods which consist

of the𝑚 goods in 𝑀 and𝑚ℓ goods {𝑑1
𝑘
, 𝑑2

𝑘
, . . . , 𝑑ℓ

𝑘
}
𝑘=1,...,𝑚

as de-

scribed earlier. The result of Bu et al. [24] indicates that there exists

a (partial) EFX allocationA for instance 𝐼 ℓ such that
OPT(𝐼 ℓ )
SW(A) ≤ 𝑐

√
𝑛

for some constant 𝑐 and sufficiently large 𝑛. Let Aℓ
be such an al-

location. Notice that 𝐴ℓ
is also a valid allocation for the original

instance 𝐼 (where each 𝑑
𝑘
is divisible), and we will use Aℓ

for the

same allocation in both 𝐼 ℓ and 𝐼 .

Next, we define an allocationA for the original instance 𝐼 which

is a “limit allocation’’ for the allocation sequence {Aℓ }∞
ℓ=1

. To make

the notion of limit valid, we need to define a metric space for the set

of all allocations, and this is defined in the following natural way.

First note that there are (𝑛 + 1)𝑚 ways to allocate the indivisible

goods (each good can be allocated to one of the 𝑛 agents, or unallo-

cated), which is finite. For each fixed allocation of the indivisible

goods, an allocation of the divisible goods {𝑑1, 𝑑2, . . . , 𝑑𝑚} can be

naturally described by a point in the following subset of R𝑛𝑚 :

𝜒 =

{
(𝑥

𝑖𝑘
)
𝑖=1,...,𝑛;𝑘=1,...,𝑚

∈ R𝑛𝑚 :

𝑛∑︁
𝑖=1

𝑥
𝑖𝑘
≤ 1 for each 𝑘 ∈ [𝑚],

and 𝑥
𝑖𝑘
≥ 0 for each 𝑖 ∈ [𝑛] and 𝑘 ∈ [𝑚]

}
.

Given two allocations, the distance between them in the metric

space is defined as follows:

• if their corresponding allocations for 𝑀 are different, the

distance is∞;
• if their corresponding allocations for 𝑀 are the same, the

distance is defined by the Euclidean distance of the two

points in 𝜒 describing their allocations for 𝐷 .

Since 𝜒 is closed and bounded and the space of all allocations is

a union of finitely many ((𝑛 + 1)𝑚 to be precise) such closed and

bounded sets, the Bolzano-Weierstrauss Theorem [11] implies that

the allocation space contains at least one allocation that is a limit

point for the sequence {Aℓ }∞
ℓ=1

. Let A be one such limit point.

In the remaining part of the proof, we will conclude the theorem

by showing that 1) A is an EFXM allocation and 2) it satisfies the

approximation guarantee
OPT(𝐼 )
SW(A) = 𝑂 (

√
𝑛).

A is EFXM. Suppose this is not the case. There exist two agents

𝑖 and 𝑗 such that 𝑢𝑖 (𝐴𝑖 ) < 𝑢𝑖 (𝐴 𝑗 ) and 𝐴 𝑗 contains some divisible

good (i.e., 𝑥
𝑗𝑘

> 0 for some 𝑘). We choose a sufficiently small value

𝛿
𝑘
such that 3𝛿

𝑘
∈ (0, 𝑥

𝑗𝑘
) and 𝑢𝑖 (𝐴 𝑗 ) − 𝑢𝑖 (𝐴𝑖 ) > 3𝛿

𝑘
· 𝑢𝑖 (𝑑𝑘 ). In

other words, removing an amount 3𝛿
𝑘
of good 𝑑

𝑘
from 𝐴 𝑗 will

not stop agent 𝑖 from envying agent 𝑗 . Since 𝑢𝑖 is a continuous

function (which can be proved by a straightforward application of

the definition of continuity given our definition of the metric space)

and A is a limit point of the sequence {Aℓ }∞
ℓ=1

, by considering a

sufficiently small neighbourhood ofA, there exists ℓ with allocation

Aℓ = (𝐴ℓ
1
, . . . , 𝐴ℓ

𝑛) such that

(1) |𝑢𝑖 (𝐴𝑖 ) − 𝑢𝑖 (𝐴ℓ
𝑖
) | < 𝛿

𝑘
· 𝑢𝑖 (𝑑𝑘 ),

(2) |𝑢𝑖 (𝐴 𝑗 ) − 𝑢𝑖 (𝐴ℓ
𝑗
) | < 𝛿

𝑘
· 𝑢𝑖 (𝑑𝑘 ), and

(3) 𝛿
𝑘
> 1

ℓ .

Points 1 and 2 above imply 𝑢𝑖 (𝐴ℓ
𝑗
) − 𝑢𝑖 (𝐴ℓ

𝑖
) > 𝛿

𝑘
· 𝑢𝑖 (𝑑𝑘 ) under

the condition that 𝑢𝑖 (𝐴 𝑗 ) − 𝑢𝑖 (𝐴𝑖 ) > 3𝛿
𝑘
· 𝑢𝑖 (𝑑𝑘 ). Point 3 further

implies that, in the instance 𝐼 ℓ , there exists an indivisible item

corresponding to a small portion that is smaller than 𝛿
𝑘
of 𝑑

𝑘
whose

removal will not stop agent 𝑖 from envying agent 𝑗 . This contradicts

to our construction that Aℓ
is EFX.

Approximation guarantee. By our construction of the sequence

with the result of Bu et al. [24], for sufficiently large 𝑛 and a fixed

constant 𝑐 , we have
OPT(𝐼 ℓ )
SW(Aℓ ) ≤ 𝑐

√
𝑛 for every ℓ . It suffices to show

OPT(𝐼 ) = lim

ℓ→∞
OPT(𝐼 ℓ ) and SW(A) = lim

ℓ→∞
SW(Aℓ ) .

The second limit follows from the continuity of the function SW(·),
where the continuity can be proved by a straightforward application

of the definition of continuity. The first limit follows from the

fact that OPT(𝐼 ) = OPT(𝐼 ℓ ) for each ℓ . To see this, in the optimal

allocation, we allocate each divisible good 𝑑
𝑘
as a whole to a single

agent who values it the highest (with tie broken arbitrarily), so it

does not matter how each divisible good is sub-divided to multiple

indivisible smaller goods. □

We next show the price of EFM/ EFXM for unscaled utilities.

Theorem 4.2. For unscaled utilities, the price of EFM and the price
of EFXM are Θ(𝑛).

Theorem 4.2 can be proved by using the result that the price

of EFX for unscaled valuations is Θ(𝑛) from Bu et al. [24] and

applying the discretization-with-limit technique used in the proof

of Theorem 4.1. Here, we give an alternative constructive proof.

When allocating indivisible goods, Lemma 1 of Barman et al. [8]

proved that there always exists an EF1 allocation with an absolute

welfare guarantee. We show a similar result holds when allocating

mixed goods. To be more specific, by slightly tweaking Algorithm 1

(Alg-EF1-Abs) of Barman et al. [8], we can compute a partial EFXM

allocation with a similar absolute welfare guarantee:

Lemma 4.3. Given any fair division instance ⟨𝑁,𝑀, 𝐷, u⟩, Algo-
rithm 2 computes a partial EFXM allocation A with social welfare
SW(A) ≥ 1

2𝑛+1 ·
∑
𝑖∈𝑁 𝑢𝑖 (𝑀 ∪ 𝐷).

The proof can be found in the full version of our paper [40].

We give some intuition as follows. At a high level, Barman et al.’s

algorithm starts from a maximum weight matching where each

agent receives exactly one indivisible good, and then performs

the envy-cycle elimination procedure of Lipton et al. [41]. At the

end, an EF1 allocation (𝐴1, 𝐴2, . . . , 𝐴𝑛) of indivisible goods is ob-
tained. In many “natural scenarios”, we have 𝑢𝑖 (𝐴𝑖 ) ≥ 1

2
𝑢𝑖 (𝐴 𝑗 ) as

removing one indivisible good from 𝐴 𝑗 eliminates the envy from 𝑖

to 𝑗 . This gives us the 2𝑛 approximation ratio to the optimal so-

cial welfare. The inequality 𝑢𝑖 (𝐴𝑖 ) ≥ 1

2
𝑢𝑖 (𝐴 𝑗 ) can only fail in the

case when the removed indivisible good 𝑔 from 𝐴 𝑗 is “large” so

that 𝑢𝑖 ({𝑔}) > 𝑢𝑖 (𝐴 𝑗 \ {𝑔}). However, the initial allocation with
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Algorithm 2: A partial EFXM allocation with an absolute

welfare guarantee

Input: Fair division instance ⟨𝑁,𝑀, 𝐷, u⟩.
Output: A partial EFXM allocation A = (𝐴1, 𝐴2, . . . , 𝐴𝑛)

with social welfare

SW(A) ≥ 1

2𝑛+1 ·
∑
𝑖∈𝑁 𝑢𝑖 (𝑀 ∪ 𝐷).

1 if |𝑀 | ≥ 𝑛 then
2 𝑀 ← 𝑀

3 else
4 Let𝑀 be the union of indivisible goods𝑀 and some

dummy indivisible goods, for which each agent has

value zero, such that |𝑀 | = 𝑛.

5 Consider the weighted bipartite graph 𝐺 = (𝑁 ∪𝑀, 𝑁 ×𝑀)
with weight of each edge (𝑖, 𝑔) ∈ 𝑁 ×𝑀 setting as 𝑢𝑖 (𝑔).
Let 𝜋 be a maximum-weight matching in 𝐺 that matches

all nodes in 𝑁 .

6 Construct the partial allocation A′ = (𝐴′
1
, 𝐴′

2
, . . . , 𝐴′𝑛) such

that 𝐴′
𝑖
= {𝜋 (𝑖)} for each 𝑖 ∈ 𝑁 .

7 Use Algorithm 2.1 of Chaudhury et al. [32] to extend

allocationA′ by allocating the remaining indivisible goods

and obtain a partial EFX allocation.

8 Use Algorithm 1 of Bei et al. [15] to allocate the divisible

goods and obtain a partial EFXM allocation

A = (𝐴1, 𝐴2, . . . , 𝐴𝑛), where 𝐴𝑖 = (𝑀𝑖 , x𝑖 ).
9 return Allocation A

the maximum weight matching ensures that the “large indivisible

goods” are “reasonably allocated” so that the inequality holds in

some average sense. Barman et al. worked out the calculations to

make the approximation guarantee 2𝑛 hold, and we find out that

these arguments can be extended to the setting with mixed goods.

Proof of Theorem 4.2. Since EFM generalizes EF1, the desired

lower bound of Ω(𝑛) follows from Theorem 1 of Barman et al. [8].

Since EFXM implies EFM, we obtain the same lower bound of Ω(𝑛)
for the price of EFXM.

We now show the asymptotic matching upper bound for the price

of EFXM. Consider an arbitrary instance where

∑
𝑖∈𝑁 𝑢𝑖 (𝑀 ∪𝐷) is

a trivial upper bound on the optimal social welfare. Thus Lemma 4.3

implies the desired upper bound of 𝑂 (𝑛) for the price of EFXM.

Next, we establish the asymptotic matching upper bound for

the price of EFM. Given that EFXM implies EFM, we can readily

deduce an upper bound of 𝑂 (𝑛) for the price of EFM. Moreover, if

we want to find a complete EFM allocation, we can adapt line 8 of

Algorithm 2 in the following way:

• Use Algorithm 1 of Bei et al. [15] to extend the partial EFM

allocation A′ by allocating both the remaining indivisible

goods and divisible goods into a complete EFM allocation.

Following a similar argument, we can conclude that SW(A) ≥
1

2𝑛 ·
∑
𝑖∈𝑁 𝑢𝑖 (𝑀 ∪ 𝐷).Thus, the price of EFM is also Θ(𝑛). □

5 CONCLUSION AND FUTUREWORK
In this paper, we have given a complete characterization for the

price of envy-freeness in various settings. The bounds we provide

Table 3: An example where EFM is incompatible with Pareto-
optimality. Notice that one of the agents needs to receive
both 𝑑1 and 𝑑2 to guarantee EFM, but this violates Pareto-
optimality. However, this counterexample fails if 0 in the
table is replaced by a very small positive value 𝜀 > 0.

𝑔1 𝑑1 𝑑2

Agent 1’s value 1 1/2 0

Agent 2’s value 1 0 1/2

are tight for two agents and asymptotically tight for any number

of agents. In particular, we close a gap left open in [18] by showing

a tight bound for the price of EF1 for two agents. Furthermore,

the price of fairness has been studied for the setting with divisible

goods and the setting with indivisible goods, but it is much less

understood for allocating mixed divisible and indivisible goods.

This paper fills in this missing piece.

For future work, we list two open problems about allocation

efficiency which are yet to be understood.

Compatibility between (a Variant of) EFM and Pareto-Optimality.
As we mentioned in Section 1.1, Pareto-optimality is compatible

with EF1 for the setting with indivisible goods and is compatible

with EF for the setting with divisible goods. However, the compati-

bility of Pareto-optimality with (a variant of) EFM for the setting

with mixed divisible and indivisible goods is still largely unknown.
3

Although a simple counterexample is shown in Table 3, it is a rather

corner case that only happens when an agent has a zero valuation

on a divisible good. What if we assume the valuations are positive?

What if we consider an arguably more natural relaxed version of

EFM where 𝑖 is allowed to envy 𝑗 if 𝑗 ’s bundle only contains divisi-

ble goods that has a total value of zero to agent 𝑖 and the envy can

be eliminated by removing one indivisible item from 𝑗 ’s bundle?

Resource Monotonicity. In Section 2.1, we have mentioned that it

is not known whether the resource monotonicity holds for EFM:

we do not know if any partial EFM allocation can be extended to

a complete EFM allocation with a weakly higher social welfare.

Although we have argued that our definition for the price of EFM

is more natural by including partial EFM allocations in both cases

whether or not resource monotonicity holds, we believe resource

monotonicity is an interesting problem by itself.
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