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ABSTRACT
Empowered by deep neural networks, deep reinforcement learning
(DRL) has demonstrated tremendous empirical successes in various
domains, including games, health care, and autonomous driving. De-
spite these advancements, DRL is still identified as data-inefficient
as effective policies demand vast numbers of environmental sam-
ples. Recently, episodic control (EC)-based model-free DRLmethods
enable sample efficiency by recalling past experiences from episodic
memory. However, existing EC-based methods suffer from the lim-
itation of potential misalignment between the state and reward
spaces for neglecting the utilization of (past) retrieval states with
extensive information, which probably causes inaccurate value es-
timation and degraded policy performance. To tackle this issue, we
introduce an efficient EC-based DRL framework with expanded
state-reward space, where the expanded states used as the input
and the expanded rewards used in the training both contain histor-
ical and current information. To be specific, we reuse the historical
states retrieved by EC as part of the input states and integrate the
retrieved MC-returns into the immediate reward in each interactive
transition. As a result, our method is able to simultaneously achieve
the full utilization of retrieval information and the better evalua-
tion of state values by a Temporal Difference (TD) loss. Empirical
results on challenging Box2d and Mujoco tasks demonstrate the
superiority of our method over a recent sibling method and com-
mon baselines. Further, we also verify our method’s effectiveness
in alleviating 𝑄-value overestimation by additional experiments of
𝑄-value comparison.
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1 INTRODUCTION
Deep Reinforcement Learning (DRL) algorithms have achieved
human-level control with applications in various fields by com-
bining feature extraction abilities of deep learning techniques and
decision-making capabilities of reinforcement learning. Despite the
great success, DRL requires extensive interactions to obtain suffi-
cient reward signals and still suffers from sample inefficiency. For
instance, even for the cutting-edge model-free Rainbow algorithm,
to learn a human-level policy for video games, 18 million interac-
tion steps are still required [8]. To address this issue, more dedi-
cated methodologies, including exploration improvement [35, 41],
environment modeling [2, 31], state abstraction [6, 17, 18], and
knowledge transfer [3, 30], are proposed.

Inspired by the memory-related hippocampus structure over
brain decision-making [15], to reuse the samples in the historic
information, early research on model-free algorithms presented
episodic control approaches to enable agents to perform appro-
priate decisions [1, 28]. To be specific, the episodic control can
achieve a reasonable estimation of the current value function by
capturing the MC-returns of good state-action fragments in past
memory. The idea is similar to the model-based DRL, like Dyna
algorithm [37], but only requires one or a few past samples to assist
decision-making, while avoiding complex environment modeling
and planning calculations.

In the literature, many works have focused on how to effectively
retrieve the historical information. Taking the system with dis-
crete actions as an example, researchers have proposed efficient
Gaussian random projection [22], differentiable neural network [16]
or K-means cluster [19] to compress the state-action pair into a
low-dimensional form for the convenience of retrieval. However,
once the past experiences have been retrieved, the exploitations of
the retrieval experiences, especially the information-rich historical
states, are not well studied. In detail, these methods usually only
exploit historical MC-returns to regularize the evaluation value
of the current state, and then learn a comprehensive strategy that
considers both current and historical factors, while the MC-returns’
corresponding states that contain historical information are not
taken into account as the input in the forward inference. More-
over, the propagating of past MC-returns (weighted rewards) to
the states without past information may lead to the misalignment
of the state space and the reward space and the bias of the value
estimation, the policy performance will be deteriorated. Besides, if
only the MC-returns in the retrieved information are utilized and
as extensive computing resources are necessary for the retrieval
process, current EC-based methods actually are sample inefficient.

To address the aforementioned issues, we propose an episodic
control DRL method that expands the state-reward spaces, in which
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the spaces of input states and rewards are expanded by retrieval
states and MC-returns, respectively. To achieve this, for expanding
the states, we reuse the historical states retrieved by EC as part
of the input states. For expanding the rewards, we directly inte-
grate the retrieved MC-returns as part of the immediate rewards
in a weighted manner during the TD loss calculation process [38],
while discarding the original auxiliary loss. Finally, both the states
and rewards of the proposed method consist of a two-part space
covering historical and current information. Compared to previ-
ous EC-based methods, the back-propagation approach under the
new state-reward space enables the rewards to completely cover
the input states containing past information, thus achieving bet-
ter estimations of the state values and utilization of the retrieval
samples.

We evaluate our approach on a set of challenging environments,
i.e., Mujoco and Box2D tasks, and empirical experiments demon-
strate the superiority of the algorithm compared to the strong
baselines. Overall, our contributions are: 1) we present an episodic
control-based DRL method with expanded state-reward spaces,
where the spaces of training states and rewards are expanded by
past states and MC-returns, respectively; 2) empirical experiments
reveal that adopting an expanded state-reward space is beneficial
to improve the policy performance and the utilization of retrieved
states, which also mitigates the problem of value overestimation; 3)
finally, we demonstrate the impact of different proportions between
current and past information on decision-making through ablation
experiments.

2 RELATEDWORK
Model-based DRL In recent years, from the previous Dyna frame-
work [36, 37] to algorithms such as Stochastic Lower Bound Opti-
mization (SLBO) [23], model-based reinforcement learning (MBRL)
methods have been developed rapidly with the advantages of high
data utilization and strong portability due to the ability of predicting
future information via learning an environment model. Although
MBRL has many benefits and many classical methods have been
proposed, for instance, the Model-Ensemble Trust-Region Policy
Optimization (ME-TRPO) framework [13], a model-based algorithm
that uses neural networks to model the dynamic environment and
the Trust-Region Policy Optimization (TRPO) to update the pol-
icy [33], the performances of the related algorithms rely heavily on
an accurate learned model, which is really hard to learn for complex
systems in reality. To mitigate this problem, some solutions have
been provided, such as Igl et al. [9] trained the model and policy
together, and Oh et al. [27] proposed a value prediction network
based on end-to-end training manner, which uses the Monte Carlo
algorithm to find the optimal action based the model learned by a
neural network. Besides that, a Bayesian filters method is employed
to model the environment [11].

Model-free DRL In contrast with model-based algorithms, the
model-free DRL methods generally learn the behavior policy di-
rectly by past data from a replay buffer, which avoids learning a
complex model. According to the policy update method, the model-
free methods can be divided into the value-based and the policy-
based gradient update. Take Deep Q-Network (DQN) [25, 26] as
an example, DQN is an excellent value-based algorithm, which

approximates the Q-value function through a neural network. For
policy-based methods, such as Actor-Critic (A2C) [24], Proximal
Policy Optimization (PPO) [34] and TRPO, which have also achieved
outstanding performance. Obviously, the direct use of buffer data
is convenient and easy to implement. However, these model-free
methods are generally limited to making decisions based on past
historical information and lack the utilization of future informa-
tion. Recent work, Imagination-Augmented Agents (I2A) algorithm
with imagination [29], uses prediction trajectory generated by the
imagination-augmented module, and then employs a model-free
method to train the policy. This is similar to the model-based meth-
ods, where the predicted trajectory generated by an inaccurate
model is often difficult to describe the actual action trajectory of
the agent.

Episodic Control To address the issues of model accuracy and
sample inefficiency in both model-based and model-free methods, a
model-free episodic control method pioneered by Blundell et al. [1]
has been designed to purposefully recall past experiences while
improving sample utilization of DRL. It introduces the concept of
episodic memory into reinforcement learning and commonly uses
a non-parametric 𝑘-NN search to recall past successful experiences
quickly, the idea is similar to prioritized experience replay [32]
but uses a separate mean square error loss to jointly optimize the
Q-value function. In later improvements, on the one hand, Lin et
al. [22] and Kuznetsov et al. [14] successfully applied episodic con-
trol to discrete and continuous control scenarios, respectively. On
the other hand, Li et al. [16] and Liang et al. [19] improved the
inefficient episodic memory container via differentiable neural net-
works and K-means clusters, respectively. Although many episodic
control-based approaches were proposed to improve the efficiency
of DRL policy, they do not directly employ information such as
real states in the trajectories. Consequently, due to the problem
of the potential mismatch between state and reward spaces, some
explored latent semantics, such as state transitions and topological
similarities, cannot be explored and generalized well [4]. In this
paper, we tackle this problem by realigning the state-reward space
with historical retrieval information and improving the reward
backpropagation method.

3 BACKGROUND
The underlying system is modeled as a Markov Decision Process
(MDP) defined by a tupleM = (S,A, 𝑃, 𝑅, 𝜌0, 𝛾), where S denotes
the low-dimension state space, A denotes the continuous action
space, 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ): S × A → S is the probability distribution
function of transition from the state 𝑠𝑡 to the next state 𝑠𝑡+1 after
taking an action 𝑎𝑡 , 𝑅(𝑠𝑡 , 𝑎𝑡 ) : S × A → R is the reward signal
obtained by the system after taking an action 𝑎𝑡 in the state 𝑠𝑡 , 𝜌0
denotes the set of initial states, and 𝛾 ∈ [0, 1] is the discount factor
of future rewards.

The aim of reinforcement learning is to learn a policy 𝜋 (𝑎𝑡 |𝑠𝑡 ) :
S → A for decision, which can be achieved by maximizing the
expectation of the discounted cumulative reward, formulated as:

J (𝜋) = E 𝑠0∼𝜌0,𝑎𝑡 ∼𝜋 ( · |𝑠𝑡 )
𝑠𝑡 ∼P(·|𝑠𝑡 ,𝑎𝑡 )

[∑︁∞
𝑡=0
𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )

]
. (1)
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3.1 Soft Actor Critic
Soft Actor Critic (SAC) is a typical policy-based DRL algorithm for
continuous control scenes [7], which consists of an actor-network
for learning the policy function 𝜋𝜓 (𝑎𝑡 |𝑠𝑡 ) with parameters𝜓 and a
Critic network for learning the state-action value function𝑄𝜙 (𝑠𝑡 , 𝑎𝑡 )
with parameters 𝜙 . Unlike value-based algorithms, SAC optimizes a
stochastic policy to maximize the expectation of discounted cumula-
tive reward. Additionally, compared with the basic Actor Critic (AC)
framework, themain improvement of SAC is that maximum entropy
itemH = 𝑙𝑜𝑔(𝜋𝜓 (·|𝑠𝑡 )) is added to decentralize the training policy,
which enhances the exploration and robustness of the algorithm.

Concretely, SAC trains the Critic network via minimizing the
Temporal-Difference (TD) error [39], i.e., the mean square error of
approximate 𝑄 and real 𝑄 using current reward 𝑟𝑡 . The training
loss of parameters 𝜙 can be defined as follow:

L𝑄 (𝜙) = E𝑒𝑡∼B
[(
𝑄𝜙 (𝑠𝑡 , 𝑎𝑡 ) − (𝑟𝑡 + 𝛾 (1 − 𝑑)T )

)2]
. (2)

where 𝑑 represents the done signal, 𝑒𝑡 = (𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1) is a transi-
tion data sampled from repaly buffer B = {𝑒1, 𝑒2, ..., 𝑒𝑙 }. The target
T computes the expectation of the next actions sampling from
current policy, defined as:

T = E𝑎𝑡∼𝜋
[
𝑄̂
𝜙
(𝑠𝑡+1, 𝑎𝑡 ) − 𝛼𝑙𝑜𝑔(𝜋𝜓 (·|𝑠𝑡+1)

]
, (3)

where target network 𝜙 comes from the Exponential Moving Aver-
age (EMA) of the Critic network parameter 𝜙 , and the hyperparam-
eter 𝛼 is a positive entropy coefficient that determines the priority
of entropy maximization over value function optimization.

Finally, we sample actions 𝑎𝑡 ∼ 𝜋𝜓 from the current policy, and
train the Actor by maximizing the expected reward of the sampled
actions:

L𝜋 (𝜓 ) = E𝑎𝑡∼𝜋
[
(𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ) − 𝛼𝑙𝑜𝑔(𝜋𝜓 (·|𝑠𝑡 ))

]
. (4)

3.2 Gaussian Random Projection
As mentioned, in our framework, we will use the current state-
action pair to find similar state-action pairs from the Episodic Mem-
ory (EM). However, since the state is in a high-dimensional form,
the process of episodic retrieval needs to consume huge computing
resources, which makes it difficult to achieve the expected function.
To solve this problem, in this paper, Gaussian random projection is
employed to build the index ℎ for every historical state-action pair
to speed up the calculation. This method can guarantee that low-
dimensional projection vectors retain most of the high-dimensional
information.

Specifically, the theoretical basis of Gaussian random projection
is based on Johnson-Lindenstrauss theorem [10, 22], which can be
briefly summarized as follows. Given a data set with 𝑁 samples,
such as 𝐷 = {𝑋𝑖 }𝑛𝑖=1, where 𝑋𝑖 ∈ R𝑑 and 𝑑 is the dimension of 𝑋𝑖 .
Given 0 ≤ 𝜀 ≤ 1, then there exist a dimension-reduction mapping
function: F : R𝑑 → R𝑚 , for ∀ 𝑋𝑖 , 𝑋 𝑗 ∈ 𝐷 :
(1− 𝜀) ∥ 𝑋𝑖 −𝑋 𝑗 ∥≤∥ F (𝑋𝑖 ) − F (𝑋 𝑗 ) ∥ ≤ (1 + 𝜀) ∥ 𝑋𝑖 +𝑋 𝑗 ∥ (5)

According to the above equation, even if the projection direction
is selected by Gaussian random, as long as the dimension of the
low-dimensional space satisfies certain conditions, the deformation
caused by the projection operator to the original high-dimensional

data is at most in the interval [(1 − 𝜀), (1 + 𝜀)], i.e., the method can
keep the structure (the relationship between the data) of the data
in the high-dimensional well.

3.3 Episodic Control
Episodic Control (EC) is inspired by the mechanism of the brain’s
decision-making and motor control, i.e., the human brain leverages
the striatum (focuses on current reflex) and hippocampus (focuses
on past memory) to comprehensively complete a decision [15]. Here
the EC simulates the influence of the hippocampus on decision-
making of DRL.

The key idea of EC is to utilize the current state-action pair to
lock similar good policies in the past experience from Episodic
Memory (EM), and these state-action pairs will be utilized to guide
the learning of the current policy. Typically, EC computes the 𝐿2
distance between the current transition and each historical transi-
tion in the EM, and then extracts the top 𝐾 historical transitions
with the closest distances [1]. Next, we compute the mean Monte
Carlo (MC)-returns 𝐺𝑘 along the subsequent trajectories of the
𝐾 transitions. 𝐺𝑘 is usually utilized to constrain the parameter 𝜙
learning of the current 𝑄-value in the form of an auxiliary loss.
Ultimately, the training loss L𝐸𝐶 of the EC-based DRL algorithm
can be summarized into the following common form:

L𝐸𝐶 =

(
𝑄𝜙 (𝑠𝑡 , 𝑎𝑡 ) − (𝑟𝑡 + 𝛾 (1 − 𝑑)T )

)2︸                                      ︷︷                                      ︸+
𝑐𝑢𝑟𝑟𝑒𝑛𝑡 𝑡𝑒𝑟𝑚

𝜆

(
𝑄𝜙 (𝑠𝑡 , 𝑎𝑡 ) −𝐺𝑘

)2︸                    ︷︷                    ︸
𝑝𝑎𝑠𝑡 𝑡𝑒𝑟𝑚

(6)
In Equation (6), the EC constrains the learning of the Q-value

through current results 𝑄𝜙 (𝑠𝑡 , 𝑎𝑡 ) and past results 𝐺𝑘 , where the
coefficient 𝜆 is used to adjust the influence weight of the two terms.
In our work, the proposedmethod adopts the past real states to train
𝑄-value, instead of only using the MC-returns𝐺𝑘 , while discarding
the auxiliary loss. More implementation details can be found in the
section Method.

4 METHOD
In this section, we propose an EC-based DRLmethodwith expanded
state-reward space, which is extended to the Soft Actor-Critic (SAC)
model-free DRL algorithm. As shown in Fig. 1, ourmethod primarily
consists of two networks: the actor-network for learning policies
and the critic-network for learning 𝑄-value. Our goal is to rea-
sonably utilize both the states and rewards information captured
by episodic control to achieve better performances of the learned
policy.

4.1 Overall Architecture
As shown in Figure 1, the architecture contains two crucial compo-
nents, namely episodic retrieval (blue box, extended in Figure 2) and
standard SAC learner (pink box). Firstly, episodic retrieval is an up-
stream task aimed at retrieving similar past state-action pairs from
the Episodic Memory (EM) based on the low-dimensional random
projection of the current (𝑠𝑡 , 𝑎𝑡 ). In our improved retrieval module,
it outputs these compact past states 𝑠𝑝𝑡 and the Monte Carlo returns
𝑟
𝑝
𝑡 of their subsequent trajectories, where 𝑠𝑝𝑡 ∼ S𝑝 , 𝑟

𝑝
𝑡 ∼ R𝑝 , and

superscript ‘𝑝’ denotes ‘past’. Additionally, as for the downstream
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SAC Learner

Actor | 𝝅

Critic | 𝑸

Episodic 

Retrieval

𝒔𝒕
𝒑

𝒓𝒕
𝒑

𝒓𝒕
𝒊

Proj.

Sampling

Agg.

Episodic Memory

𝒓𝒕
𝒆

𝒔𝒕
𝒆

[𝒔𝒕
𝒊 , 𝒂𝒕]

𝒔𝒕
𝒊

Episodic Retrieval

𝒉 (𝒔, 𝒂)

Replay buffer

−𝒍𝒐𝒈(𝝅)

Figure 1: Algorithm structure. The episodic control-based reinforcement learning approach with expanded state-reward space.

decision task, the 𝑠𝑝𝑡 and the current state 𝑠𝑖𝑡 (superscript ‘𝑖’ denotes
‘immediate’) are spliced as the input state to train the actor-critic
networks. Meanwhile, during TD learning, the integration of the
𝑟
𝑝
𝑡 and the immediate environment reward 𝑟 𝑖𝑡 is utilized to train
the value network. Moreover, our method also requires two data
containers: a replay buffer B for batch sampling and an EMM for
episodic retrieval. Specifically,M is a dictionary container, which
stores the low-dimensional Gaussian projection ℎ𝑡 (key) and the
original transition 𝑒𝑡 (value) corresponding to the current (𝑠𝑖𝑡 , 𝑎𝑡 ).
B stores transition data with size 𝑁 . Algorithm 1 shows the details
of the overall framework.

4.2 Episodic Retrieval
Gaussian Projection In order to improve the efficiency of episodic
retrieval, we search in low-dimensional projection space accord-
ing to existing methods. The aforementioned Gaussian projection
theorem shows that by multiplying the original matrix with the
projection matrix, most of the features can still be preserved in
low-dimensional vectors. Therefore, we use the projection method
to project the state-action pair to any low-dimensional space, de-
fined as ℎ𝑡 = G([𝑠𝑖𝑡 ;𝑎𝑡 ]) : S𝑖 × A → R𝑛 , where 𝑛 represents the
dimension of projection space.
Episodic Retrieval As shown in Figure 2, B with dictionary form
holds all the original transitions and their projections before 𝑡 steps,
formalized as,

B = {(ℎ𝑡1 : 𝑒𝑡1 ), (ℎ𝑡2 : 𝑒𝑡2 ), ..., (ℎ𝑡𝑁 : 𝑒𝑡𝑁 )}. (7)

First of all, we introduce the retrieval process of the past state 𝑠𝑝𝑡 .
Given the projection vector of current (𝑠𝑖𝑡 , 𝑎𝑡 ), we can calculate the
distances from it to each projection vector in B by the 𝐿2 distance,
and then choose the 𝐾 transitions {𝑒𝑡1 , 𝑒𝑡2 , ..., 𝑒𝑡𝐾 }corresponding
to the closest top 𝐾 distances. Then, the origin indexes of those
transitions are used to extract the subsequent trajectory of each
transition from buffer B. Thereby, we express the set of the trajec-
tories as 𝑇 = {𝜏𝑡1 , 𝜏𝑡2 , ..., 𝜏𝑡𝐾 }, where the length of each trajectory
is set to 𝑑 . To facilitate the implementation of the retrieval, the
capacities of theM and the B need to be consistent. Ultimately,
the 𝐾 trajectories (only pick up the state and action) are fed into
the feature extraction networks and then aggregated into the past
states 𝑠𝑝𝑡 .

Secondly, we compute the MC-rewards for each trajectory in the
set of 𝑇 . According to the optional setting of trajectory length 𝑑 ,
the MC-return can be divided into two cases:

𝐺𝑡 =

{
𝑟𝑡1 , 𝑖 𝑓 𝑑 = 1,
𝑓 B
𝑑
(𝑠𝑖𝑡 , 𝑎𝑡 ) 𝑖 𝑓 𝑑 > 1, (8)

where 𝑓 B
𝑑
(𝑠𝑖𝑡 , 𝑎𝑡 ) represents the approximate cumulative discounted

return of a past trajectory retrieved by the current (𝑠𝑖𝑡 , 𝑎𝑡 ). Actually,
𝑑 is set to 2 in this work, i.e., the MC-returns𝐺𝑡 of a trajectory can
be calculated by,

𝐺𝑡 = 𝑓
B
𝑑
(𝑠𝑖𝑡 , 𝑎𝑡 ) =

𝑑∑︁
𝑘=0

𝛾𝑘𝑟𝑡+𝑘+1 . (9)

Then, we compute the MC-returns along each trajectory, ex-
pressed as the set of {𝐺𝑡1 ,𝐺𝑡2 , ...,𝐺𝑡𝐾 }. Then, given the weight ma-
trix {𝜔𝑡1 , 𝜔𝑡2 , ..., 𝜔𝑡𝐾 } that is obtained from the 𝐿2 distances of the
aforementioned 𝐾 transitions, we finally calculate the past reward
𝑟
𝑝
𝑡 by multiplying them, defined as:

𝑟
𝑝
𝑡 = (𝐺𝑡1 , ...,𝐺𝑡𝑘−1 ,𝐺𝑡𝐾 ) · (𝜔𝑡1 , ..., 𝜔𝑡𝑘−1 , 𝜔𝑡𝐾 )⊤ . (10)

Finally, the retrieval module obtains two key historical informa-
tion, i.e., the retrieved states 𝑠𝑝𝑡 and rewards 𝑟𝑝𝑡 through the above
steps.

4.3 Optimization Implementation
In the downstream tasks, the work still follows the inherent char-
acteristics of the EC, yet we implement the same idea in a way that
is highly data-efficient with stronger generalization ability. As a
whole, our first direct improvement is to expand the state space
of network training, where the learning of past states facilitates
the generalization of learned policy to explored states. The other
is that we try to incorporate the past reward into the immediate
reward for the efficient learning of the value function.

Specifically, the input state information fed into the critic and
actor networks is aggregated from the current state and past state,
which can be expressed as:

𝑠𝑒𝑡 = 𝐴𝑔𝑔(𝑠𝑖𝑡 , 𝑠
𝑝
𝑡 ) . (11)

For the actual input state 𝑠𝑒𝑡 ∼ S𝑒 (superscript ‘𝑒’ denotes ‘ex-
panded’) is defined on expanded state spaceS𝑒 , thus we accordingly
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𝒔𝒕𝒌+𝟏, 𝒂𝒕𝒌+𝟏,…, 𝒔𝒕𝒌+𝒅, 𝒂𝒕𝒌+𝒅

Proj. Transitions

𝒉𝒕𝟏 (𝒔𝒕𝟏 , 𝒂𝒕𝟏 , 𝒓𝒕𝟏 , 𝒔𝒕𝟏+𝟏)

𝒉𝒕𝟐 (𝒔𝒕𝟐 , 𝒂𝒕𝟐 , 𝒓𝒕𝟐 , 𝒔𝒕𝟐+𝟏)

… …

𝒉𝒕𝑵 (𝒔𝒕𝒏 , 𝒂𝒕𝒏 , 𝒓𝒕𝒏 , 𝒔𝒕𝒏+𝟏)
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Figure 2: Structure of episodic retrieval module

Algorithm 1 Episodic Control-based DRL Method with Expanded State-reward Space

1: Initialize replay buffer B and Episodic MemoryM with size 𝑁 .
2: Initialize critic networks 𝑄 , target 𝑄̂ , and policy 𝜋 with parameters 𝜙 , 𝜙 , and𝜓 , respectively.
3: for each iteration do ⊲ Start an episodic trajectory
4: for each environment step do ⊲ Trajectory length of episode
5: 𝑎𝑡 ∼ 𝜋𝜓 (·|𝑠𝑒𝑡 ) ⊲ Sample an action from current policy
6: 𝑠𝑖𝑡 , 𝑎𝑡 , 𝑟

𝑖
𝑡 , 𝑠

𝑖
𝑡+1 = 𝑆𝑡𝑒𝑝 (𝑎𝑡 ) ⊲ Execute an action

7: B ← B ∪ < 𝑠𝑖𝑡 , 𝑎𝑡 , 𝑟
𝑖
𝑡 , 𝑠𝑡+1 > ⊲ Collect a transition

8: ℎ𝑡 = G([𝑠𝑖𝑡 ;𝑎𝑡 ]) ⊲ Compute Gaussian projection vector
9: M ←M ∪ < ℎ𝑡 , 𝑠

𝑖
𝑡 , 𝑎𝑡 , 𝑟

𝑖
𝑡 , 𝑠

𝑖
𝑡+1 > ⊲ Collect an episodic memory

10: end for
11: for each gradient step do ⊲ Gradient Training
12: (ℎ𝑡 , 𝑠𝑖𝑡 , 𝑎𝑡 , 𝑟 𝑖𝑡 , 𝑠𝑖𝑡+1) ∼ 𝑈 (B) ⊲ Randomly sample a batch of samples.
13: Retrieve the past information 𝑠𝑝𝑡 and reward 𝑟𝑝𝑡 of G([𝑠𝑖𝑡 ;𝑎𝑡 ]) by EC.
14: 𝑠𝑒𝑡 = 𝐶𝑜𝑛𝑐𝑎𝑡 (𝑠𝑖𝑡 , 𝑠

𝑝
𝑡 ); 𝑟𝑒𝑡 = 𝑟 𝑖𝑡 + 𝜂 𝑟

𝑝
𝑡 ⊲ Compute the expanded state and reward.

15: ∇̂L𝑄 (𝜙) = ∇𝜙𝑄𝜙 (𝑎𝑡 , 𝑠𝑒𝑡 )
(
𝑄𝜙 (𝑎𝑡 , 𝑠𝑒𝑡 ) − (𝑟𝑒𝑡 + 𝛾𝑄𝜙

(𝑎, 𝑠𝑒𝑡 ) − 𝛼H)
)

⊲ Update the gradients of critic network

16: ∇̂L𝜋 (𝜓 ) = ∇𝜓 𝑙𝑜𝑔(𝜋𝜓 (·|𝑠𝑒𝑡 )) ⊲ Update the gradients of actor network
17: 𝜙 ← 𝜏𝜙 + (1 − 𝜏)𝜙 ⊲ Update the target critic network
18: end for
19: end for

introduce a comprehensive reward 𝑟𝑒𝑡 ∼ R𝑒 defined on expanded
reward space R𝑒 , calculated as:

𝑟𝑒𝑡 = 𝑟 𝑖𝑡 + 𝜂 𝑟
𝑝
𝑡 (12)

where the weight coefficient 𝜂 between current and past rewards is
adopted to fine-tune their influence on decision-making.

By properly introducing past information, we have obtained
states 𝑠𝑒 and rewards 𝑟𝑒 that can be used for critic network training.
Intuitively, the more reasonable state-reward space setting may
lead to a good 𝑄-value estimation, the formal analysis is in Section
4.4. At last, we train the critic network with an end-to-end loss,
which is different from the work of Lin et.al [22] that regularizes
𝑄 (𝑠, 𝑎) with an auxiliary loss. The TD target is defined as,

Y = 𝑟𝑒𝑡 + 𝛾 (1 − 𝑑)E𝑎𝑡∼𝜋
[
𝑄̂
𝜙
(𝑠𝑒𝑡+1, 𝑎𝑡 ) − 𝛼H

]
, (13)

and the critic-network is updated by

L𝑄 (𝜙) = E(𝑠𝑒𝑡 ,𝑠𝑒𝑡+1 )∼S𝑒 ,𝑟𝑒𝑡 ∼R𝑒 ,𝑎𝑡∼B
[(
𝑄𝜙 (𝑠𝑒𝑡 , 𝑎𝑡 ) − Y

)2]
, (14)

whereH represents the maximum entropy learning item in the SAC
algorithm, formulated in Section 3.1. The TD target is approximated
by an expectation sampling method.

As mentioned, the policy 𝜋 (𝑎𝑡 |𝑠𝑡 ) learned by the actor-network
also depends on the expanded states 𝑠𝑒𝑡 . According to the standard
SAC algorithm [7], the parameters 𝜓 of the actor can be learned
by directly minimizing the KL divergence of the current policy
distribution and 𝑄-value, which is finally defined as:

L𝜋 (𝜓 ) = E𝑠𝑒𝑡 ∼S𝑒 ,𝑎𝑡∼𝜋
[
(𝑄𝜋 (𝑠𝑒𝑡 , 𝑎𝑡 ) − 𝛼𝑙𝑜𝑔(𝜋𝜓 (·|𝑠𝑒𝑡 ))

]
. (15)

4.4 Space Alignment
In episodic control-based DRL, we can formalize the expanded state
(reward) model space as the concatenation of the immediate and
past state (reward) spaces, i.e., S𝑒 = S𝑖 + S𝑝 and R𝑒 = R𝑖 + R𝑝 , as
shown in Figure 4. In training, 𝑟𝑒 ∼ R𝑒 is leveraged to learn 𝑉 (𝑠)
under state 𝑠𝑒 ∼ S𝑒 , where the absence of any subspace of S and R
may lead to a mismatch between the reward and the state transition
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Figure 3: Performance comparison for 100K environment steps (20k steps in InvertedPendulum-v2) on Mujoco and Box2d tasks.
For every curve, the mean episode rewards are computed every 1000 environment steps (100 steps in InvertedPendulum-v2),
averaging over 10 episodes. Each curve is averaged over 10 seeds and is smoothed for visual clarity.

Table 1: Comparison results of the best mean episode rewards on the 6 tasks. (mean & standard deviation for 10 seeds)

Methods Hopper-v3 HalfCheetah-v3 InvertedPendulum-v2 Pusher-v2 LunarLanderC-v2 Walker2d-v3

EMAC 1254±710 898±393 1000±0 -76±13 139±126 966±255
TD3 374±141 1597±879 90±24 -70±4 -25±68 507±117
DDPG 664±243 1442±672 1000±0 -64±3 -122±36 122±41
Ours 1677±697 2788±455 1000±0 -39±1 238±24 761±322
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Left: space mismatch Right: space match

在回合控制DRL中，根据其思想，我们可形式化实际状态（奖励）模型空间为即时
和潜在过去状态（奖励）空间的拼接，即 𝑆 = 𝑆𝑖 + 𝐼和 ℛ = ℛ𝑖 + ℛ𝑝，如图2所示。
在训练中，r~ℛ 被用于状态s~𝑆下的𝑉(𝑠)学习，其中ℛ和𝑆的任意一项子空间的缺失
都可能导致奖励和状态转移模型之间的不匹配[1]，进而导致r → 𝑠传播上的失真估计
和策略泛化问题。在图2左侧，过去奖励传递给了一个并不发生该奖励的当前状态，
实际上它描述的为EC方法中潜在的不匹配学习模式。在我们的工作中，提出的方法
或许具备缓解该问题的性质。具体地，我们抽象过去的信息I作为状态的一部分，同
时将过去的MC-回报（即𝑟𝑝 ）纳入TD的内部计算，以一种非常清晰的对齐方式引导
基于回合控制的价值学习。

Figure 4: Two match relationships between state and reward
space during value back-propagation.

model space [21], which in turn leads to the problems of distorted
estimation and policy generalization on back-propagation period
of 𝑟𝑒 → 𝑠𝑒 . In Figure 4 (left), past rewards are back-propagated to
a current state that does not produce that reward, which in fact de-
scribes a potential mismatched learning pattern in episodic control
methods. In our work, the proposed method has the property of
alleviating this problem. Specifically, we abstract past information

𝑠𝑝 as part of the actual input state 𝑠𝑒 , while incorporating past MC-
rewards (i.e., 𝑟𝑝 ) into the internal computation of the TD target,
which guides value update with a clear alignment mode.

5 EXPERIMENTS
We evaluate the proposed algorithm on a series of challenging
Box2d and Mujoco physics tasks. The goals of the experimental
evaluation are as follows: 1) Demonstrate the performance improve-
ment of the proposed algorithm compared to the strong sibling
EMAC baseline and common baselines; 2) Empirically reveal that
the proposed algorithm with expanded state-reward space has the
ability to further alleviate the problem of 𝑄-value overestimation;
3) Through ablation experiments show how to achieve the best
trade-off between the past and the current information for learning
the best policy, as well as shows the best coefficient of different
tasks.

All algorithms utilize a typical Adam optimizer [12]with the
same batch size of 256, and the learning rates of 3e-4 (TD3) or 1e-3
(others). The models’ networks consist of two hidden layers, size
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Figure 5: Illustrations of the experimental environments. From left to right: Pusher-v2, LunarLanderContinuous-v2,
InvertedPendulum-v2, Walker2d-v3, HalfCheetah-v3, and Hopper-v3.

Figure 6: Q-value estimation comparison between the proposed method and EMAC under the same setting. Each curve is
averaged over 5 seeds and not smoothed.

256, for the actor and the critic, and a rectified linear unit (ReLU)
as a nonlinearity. The projection dimension is set to 10, the typical
coefficient 𝜂 is 0.5 (0.25 in Hopper-v3, 1.0 in LunarLander-v2), the
discount reward is 0.99, the initial temperature coefficient is 0.1 and
so on. Detailed parameters can be accessed in Table 2.

5.1 Environments
The environments in Figure 5 are briefly described below. Pusher-v2:
the task is to move the stacking to the red position by controlling
the 4-DOF robotic arm; LunarLander-v2: the task is to control the
three jets of the satellite to successfully land on the designated
position; InvertedPendulum-v2: its task is to balance the connecting
rod by controlling the slider; HalfCheetah-v3: the task is to learn to
run by controlling the multi-degree-of-freedom cheetah; Walker2d-
v3 and Hopper-v3: the tasks are to control the foot-shaped agent to
learn to walk and stand, respectively.

In this work, the training states are the low-dimensional vector of
aforementioned tasks, such as joint angle, acceleration, and position,
as well as the controlled actions are generally continuous angle,
speed, or direction.

5.2 Main Result
As shown in Figure 3, we compare our method with a recent sibling
algorithm, i.e., EMAC [14] and various variants of the Soft Actor-
Critic, including the powerful TD3 [5] in the continuous control
field, and the commonDDPG [20] baseline. Among them, the sibling
EMAC also aims to exploit past good experiences and share a similar
idea with episodic control, which is the key comparison baseline of
our method.

The environments for evaluating algorithm performance cover
Mujoco environment [40] (Hopper-v3, HalfCheetah-v3, Walker2d-v3

tasks) and Gym-Box2d environment (InvertedPendulum-v2, Pusher-
v2, LunarLander-v2 tasks). As shown in Table 1, ourmethod achieves
the best average rewards and faster convergence in most tasks,
which means our agent is able to get a better policy performance
over long-term interactions. Specifically, even in the simple task of
InvertedPendulum-v2 where the convergence takes only 10k steps,
our method can still improve the learning efficiency again with such
a narrow improvement space. In addition, in the HalfCheetah-v3
task, our method significantly improves by nearly 75% over the best
baseline. However, note that our algorithm performs poorly in the
hardWalker2d-v3 task. We suspect that this may be due to the sparse
reward property of high-difficulty tasks, which forces our method
to still use an almost constant reward signal while expanding the
state space, thereby increasing the burden of state space exploration
and value learning. Overall, the presented method outperforms the
sibling EC-based EMAC algorithm, while also significantly outper-
forming other baselines.

5.3 Q-value Overestimation
𝑄-value overestimation is a main challenge in the literature and for
the inherent overestimation of the Actor-Critic (AC) framework,
the problem can be traced back to the Q-learning algorithm [26],
i.e., the TD target of the Q-learning algorithm is derived from the
optimal Bellman equation, which leads to an overestimation bias
of the 𝑄-function during value back-propagation. Although our
approach is also based on the AC framework, we show that we can
alleviate the problem well both theoretically and experimentally.

From the theoretical perspective, since the overestimation prob-
lem has been well addressed in EC-based methods such as EMAC,
which has the ability to alleviate the overestimation problem caused
by the AC framework [14, 22], our EC-based approach theoretically
can have the same performances in terms of the Q-value estimation.
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Figure 7: Ablation experiments on several tasks. We test the performances of the proposedmethod by tuning a series of trade-off
coefficients 𝜂. Each curve is averaged over 5 seeds. The embedded line graph represents the best average rewards corresponding
to the ablation curves of each task. Note that coefficient 𝜂 = 2.0 is additionally supplemented in LunarLanderContinuous-v2.

Furthermore, as shown in Figure 6, with the alignment of the state-
reward spaces, we show experimentally the problem can be further
mitigated and the𝑄-value estimation of our method is significantly
lower than that of the EMAC algorithm.

5.4 Ablation Study
Empirically, human beings can always make a comprehensive deci-
sion on the current event through experience results and current
state. Specifically, they tend to rely on feedback from past experi-
ences when dealing with memory-type events. On the contrary, in
reflection-type events, they are used to making decisions based on
immediate feedback. In our method, we adopt the weight coefficient
𝜂 between current and past results to quantify their influence on
the decision.

To explore the optimal decision-making scheme, we conduct
ablation experiments to reveal the performance when fine-tuning
the weight between the current and past rewards. Therefore, we
set a set of typical coefficients 𝜂 = {0.0, 0.05, 0.25, 0.5, 0.75, 1.0}
for the ablation, where the two extreme values mean that only

Table 2: Hyperparameters used for experiments

Hyperparameter Value

Seeds 0-9
Replay buffer size 100000
Episodic memory size 100000
Coefficient 𝜂 0.25, Hopper-v3

1.0, LunarLanderC-v2
0.5, otherwise

Environment steps 20000, InvertedPendulum-v2
100000, otherwise

Evaluation interval 100, InvertedPendulum-v2
1000, otherwise

Batch Size 256
Discount factor 0.99
Hidden layer size 256
K-nearest size 2
Memory dimension 10
Optimizer Adam
Learning rate 0.001

immediate or half-and-half mixture reward is leveraged to guide
policy learning.

As shown in Figure 7, we perform ablation experiments on the
Hopper-v3, HalfCheetah-v3, and LunarLanderC-v2 tasks. By the
comparison results, we can summarize the following empirical con-
clusions: 1) Fine-tuning 𝜂 will allow agents to learn policies with
different performances. Nevertheless, making decisions that rely
exorbitantly on immediate(𝜂 = 0.0) or past feedback, i.e., reward
(𝜂 = 1.0) is usually not the best solution, which is broadly consis-
tent with practical experience. 2) Making a good trade-off between
immediate and historical rewards is beneficial for the agent to learn
a good policy; 3) The optimal coefficients for different tasks are not
fixed, yet generally in the interval of 𝜂 ∈ (0, 1.0). For example, as
shown in the embedded line graphs, in Hopper-v3, 𝜂 = 0.25 achieves
the best performance, while in the LunarLanderContinuous-v2 task
𝜂 = 2.0.

6 CONCLUSION
We introduced an episodic control approach with expanded state-
reward space under model-free DRL algorithms that is able to im-
prove policy performance. In our method, the valuable retrieval
states are reconsidered as part of the training states, while the
retrieved MC-returns are directly integrated as part of the immedi-
ate rewards in a weighted manner during the TD loss calculation.
Thus, both the state and reward of our method consist of a two-
part space covering historical and current information. Ultimately,
our method can achieve the full utilization of retrieval informa-
tion, while achieving better evaluation of state value through a
space-aligned training manner.

We conduct rich experiments over challenging Box2d and Mu-
joco continuous control tasks, and the main results show that the
performance of our method has obtained improvement compared
with authoritative baselines. Besides, comparison results of the 𝑄-
value show that the proposed method is able to effectively alleviate
the problem of 𝑄-value overestimation. Finally, ablation experi-
ments also show that a reasonable trade-off between historical and
current results is conducive to learning an optimal policy.

ACKNOWLEDGMENTS
This work was supported by the National Natural Science Founda-
tion of China (No. 61772438 and No. 61375077).

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1199



REFERENCES
[1] Charles Blundell, Benigno Uria, Alexander Pritzel, Yazhe Li, Avraham Ruderman,

Joel Z Leibo, Jack Rae, Daan Wierstra, and Demis Hassabis. 2016. Model-free
episodic control. arXiv preprint arXiv:1606.04460 (2016).

[2] Fei Deng, Ingook Jang, and Sungjin Ahn. 2022. Dreamerpro: Reconstruction-
free model-based reinforcement learning with prototypical representations. In
International Conference on Machine Learning. PMLR, 4956–4975.

[3] Manfred Eppe, Christian Gumbsch, Matthias Kerzel, Phuong DH Nguyen, Mar-
tin V Butz, and Stefan Wermter. 2022. Intelligent problem-solving as integrated
hierarchical reinforcement learning. Nature Machine Intelligence 4, 1 (2022),
11–20.

[4] Scott Fujimoto, Herke Hoof, and David Meger. 2018. Addressing function ap-
proximation error in actor-critic methods. In International conference on machine
learning. PMLR, 1587–1596.

[5] Scott Fujimoto, Herke Hoof, and David Meger. 2018. Addressing function ap-
proximation error in actor-critic methods. In International conference on machine
learning. PMLR, 1587–1596.

[6] Diego Gomez, Nicanor Quijano, and Luis Felipe Giraldo. 2022. Information
Optimization and Transferable State Abstractions in Deep Reinforcement Learn-
ing. IEEE Transactions on Pattern Analysis and Machine Intelligence 45, 4 (2022),
4782–4793.

[7] Tuomas Haarnoja, Aurick Zhou, Kristian Hartikainen, George Tucker, Sehoon
Ha, Jie Tan, Vikash Kumar, Henry Zhu, Abhishek Gupta, Pieter Abbeel, et al. 2018.
Soft actor-critic algorithms and applications. arXiv preprint arXiv:1812.05905
(2018).

[8] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostro-
vski, Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver.
2018. Rainbow: Combining improvements in deep reinforcement learning. In
Proceedings of the AAAI conference on artificial intelligence, Vol. 32.

[9] Maximilian Igl, Luisa Zintgraf, Tuan Anh Le, Frank Wood, and Shimon Whiteson.
2018. Deep variational reinforcement learning for POMDPs. In International
Conference on Machine Learning. PMLR, 2117–2126.

[10] William B Johnson, Joram Lindenstrauss, and Gideon Schechtman. 1986. Exten-
sions of Lipschitz maps into Banach spaces. Israel Journal of Mathematics 54, 2
(1986), 129–138.

[11] Peter Karkus, David Hsu, and Wee Sun Lee. 2017. Qmdp-net: Deep learning for
planning under partial observability. Advances in neural information processing
systems 30 (2017).

[12] Diederik P Kingma and Jimmy Ba. 2014. Adam: A method for stochastic opti-
mization. arXiv preprint arXiv:1412.6980 (2014).

[13] Thanard Kurutach, Ignasi Clavera, Yan Duan, Aviv Tamar, and Pieter Abbeel. 2018.
Model-ensemble trust-region policy optimization. arXiv preprint arXiv:1802.10592
(2018).

[14] Igor Kuznetsov and Andrey Filchenkov. 2021. Solving continuous control with
episodic memory. The Thirtieth International Joint Conference on Artificial Intelli-
gence (2021), 2651–2657.

[15] Máté Lengyel and Peter Dayan. 2007. Hippocampal contributions to control: the
third way. Advances in neural information processing systems 20 (2007).

[16] Zhuo Li, Derui Zhu, Yujing Hu, Xiaofei Xie, Lei Ma, Yan Zheng, Yan Song,
Yingfeng Chen, and Jianjun Zhao. 2022. Neural Episodic Control with State
Abstraction. In The Eleventh International Conference on Learning Representations.

[17] Dayang Liang, Qihang Chen, and Yunlong Liu. 2021. Gated multi-attention
representation in reinforcement learning. Knowledge-Based Systems 233 (2021),
107535.

[18] Dayang Liang, Qihang Chen, and Yunlong Liu. 2023. Sequential Action-
Induced Invariant Representation for Reinforcement Learning. arXiv preprint
arXiv:2309.12628 (2023).

[19] Dayang Liang, Huiyi Deng, and Yunlong Liu. 2023. The treatment of sepsis:
an episodic memory-assisted deep reinforcement learning approach. Applied
Intelligence 53, 9 (2023), 11034–11044.

[20] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and DaanWierstra. 2016. Continuous control with deep
reinforcement learning. International Conference on Learning Representations
(2016).

[21] Shiau Hong Lim and Arnaud Autef. 2019. Kernel-based reinforcement learning
in robust Markov decision processes. In International Conference on Machine
Learning. PMLR, 3973–3981.

[22] Zichuan Lin, Tianqi Zhao, Guangwen Yang, and Lintao Zhang. 2018. Episodic
memory deep q-networks. Twenty-Seventh International Joint Conference on
Artificial Intelligence (2018).

[23] Yuping Luo, Huazhe Xu, Yuanzhi Li, Yuandong Tian, Trevor Darrell, and Tengyu
Ma. 2018. Algorithmic framework for model-based deep reinforcement learning
with theoretical guarantees. arXiv preprint arXiv:1807.03858 (2018).

[24] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Tim-
othy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asyn-
chronous methods for deep reinforcement learning. In International conference
on machine learning. PMLR, 1928–1937.

[25] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioannis
Antonoglou, Daan Wierstra, and Martin Riedmiller. 2013. Playing atari with deep
reinforcement learning. Advances in neural information processing systems (2013),
201–220.

[26] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
nature 518, 7540 (2015), 529–533.

[27] Junhyuk Oh, Satinder Singh, and Honglak Lee. 2017. Value prediction network.
Advances in neural information processing systems 30 (2017).

[28] Alexander Pritzel, Benigno Uria, Sriram Srinivasan, Adria Puigdomenech Badia,
Oriol Vinyals, Demis Hassabis, DaanWierstra, and Charles Blundell. 2017. Neural
episodic control. In International conference on machine learning. PMLR, 2827–
2836.

[29] Sébastien Racanière, Théophane Weber, David Reichert, Lars Buesing, Arthur
Guez, Danilo Jimenez Rezende, Adrià Puigdomènech Badia, Oriol Vinyals, Nicolas
Heess, Yujia Li, et al. 2017. Imagination-augmented agents for deep reinforcement
learning. Advances in neural information processing systems 30 (2017).

[30] Sahand Rezaei-Shoshtari, Charlotte Morissette, Francois R Hogan, Gregory
Dudek, and David Meger. 2023. Hypernetworks for zero-shot transfer in rein-
forcement learning. In Proceedings of the AAAI Conference on Artificial Intelligence,
Vol. 37. 9579–9587.

[31] Marc Rigter, Bruno Lacerda, and Nick Hawes. 2022. Rambo-rl: Robust adversarial
model-based offline reinforcement learning. Advances in neural information
processing systems 35 (2022), 16082–16097.

[32] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. 2015. Prioritized
experience replay. arXiv preprint arXiv:1511.05952 (2015).

[33] John Schulman, Sergey Levine, Pieter Abbeel, Michael Jordan, and Philipp Moritz.
2015. Trust region policy optimization. In International conference on machine
learning. PMLR, 1889–1897.

[34] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[35] Laixi Shi, Gen Li, Yuting Wei, Yuxin Chen, and Yuejie Chi. 2022. Pessimistic Q-
learning for offline reinforcement learning: Towards optimal sample complexity.
In International Conference on Machine Learning. PMLR, 19967–20025.

[36] Richard S Sutton. 1990. Integrated architectures for learning, planning, and
reacting based on approximating dynamic programming. In Machine learning
proceedings 1990. Elsevier, 216–224.

[37] Richard S Sutton. 1991. Dyna, an integrated architecture for learning, planning,
and reacting. ACM Sigart Bulletin 2, 4 (1991), 160–163.

[38] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[39] Gerald Tesauro et al. 1995. Temporal difference learning and TD-Gammon.
Commun. ACM 38, 3 (1995), 58–68.

[40] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. Mujoco: A physics engine
for model-based control. In 2012 IEEE/RSJ international conference on intelligent
robots and systems. IEEE, 5026–5033.

[41] Rui Yang, Lin Yong, XiaotengMa, HaoHu, Chongjie Zhang, and Tong Zhang. 2023.
What is Essential for Unseen Goal Generalization of Offline Goal-conditioned
RL?. In International Conference on Machine Learning. PMLR, 39543–39571.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1200


	Abstract
	1 Introduction
	2 Related Work
	3 Background
	3.1 Soft Actor Critic
	3.2 Gaussian Random Projection
	3.3 Episodic Control

	4 Method
	4.1 Overall Architecture
	4.2 Episodic Retrieval
	4.3 Optimization Implementation
	4.4 Space Alignment

	5 Experiments
	5.1 Environments
	5.2 Main Result
	5.3 Q-value Overestimation
	5.4 Ablation Study

	6 Conclusion
	Acknowledgments
	References



