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ABSTRACT
Progression in the Situation Calculus is perhaps one of the most

extensively studied cases of updating logical theories over a se-

quence of actions. While it generally requires second-order logic,

several useful first-order and tractable cases have been identified.

Recently, there has been an interest in studying the progression of

probabilistic knowledge bases expressed using degrees of belief on

first-order formulas. However, although a few results exist, they

do not provide much clarity about how this progression can be

computed or represented in a feasible manner.

In this paper, we address this problem for the first time. We

first examine the progression of a probabilistic knowledge base

(PKB) in a world-level representation; in particular, we show that

such a representation is closed under progression for any local-

effect actions with quantifier-free contexts. We also propose a more

succinct representation of the probabilistic knowledge base, i.e.

factored-representation PKB. For this type of PKB, we study the

conditions for progression to remain succinct.
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1 INTRODUCTION
Reiter’s [27] reconsideration of the situation calculus [23] has

proven enormously useful for the design of logical agents, essen-

tially paving the way for cognitive robotics [13]. Among other

things, it incorporates a simple monotonic solution to the frame

problem, leading Reiter to define the notion of regression for basic

action theories [38]. But for long-lived agents like robots, Lin and

Reiter [15] argue that the notion of progression, that of continually

updating the current view of the state of the world, is perhaps better

suited. They show that progression is always second-order defin-

able, and in general, it appears that second-order logic is unavoid-

able [36]. However, Lin and Reiter also identify some first-order
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definable cases by syntactically restricting situation calculus basic

action theories, and since then, many other special cases have been

studied [21].

While Lin and Reiter intended to use their work on robots, one

criticism leveled at their work, and indeed at much of the work

in cognitive robotics, is that the theory is far removed from the

kind of probabilistic uncertainty and noise seen in typical robotic

applications. What exactly filtering mechanisms (such as Kalman

filters [35]) have to do with Lin and Reiter’s progression was un-

clear, until recently. Using extensions to the situation calculus for

degrees of belief, likelihood, and noise, a couple of results have

been established on studying the progression of situation calculus

theories in the presence of probabilities. An early result by Belle

and Lakemeyer [3] considered probabilistic progression under the

assumption that there is full knowledge about the context formulas

in successor state axioms and showed that the values of literals

can be updated by evaluating this context. In later work, Belle and

Levesque [6] showed that progression can be defined for finitely

many nullary fluents by directly modifying the weight function on

the possible worlds. More recently, Liu and Feng [17, 18] provided a

more general account of Belle and Lakemeyer [3] and showed that

even when the context formula is not known, a characterization of

the updated values of fluents can be provided.

Although these results are interesting and involved, what is miss-

ing from this literature is that they do not provide much clarity

on how the progression can be computed or represented feasibly.

Closest in spirit, Belle and Levesque [5] consider updatingworld rep-

resentations directly. That is, for finitely many nullary fluents, they

instantiate worlds as vectors of fluent values, and update them after

actions. Because they considered uncountably many alternatives

for fluent values and noisy outcomes, they provide a limit-based

semantics for how projection can be evaluated. However, this se-

mantics is embedded in an account of program termination, making

it difficult to understand how it works.

In this paper, we comprehensively address this problem for the

first time. We first examine the progression of a probabilistic knowl-

edge base (PKB) in a world-level representation that explicitly spec-

ifies the probability of each world; in particular, we show that such

a representation is closed under progression for any local-effect

actions with quantifier-free contexts. This result establishes how

one might “implement” probabilistic progression in a direct and

simple manner: one simply has to instantiate the worlds (say as a

vector of fluent values as seen in [5]) and update them as actions

happen in the manner indicated by our result.

However, the world-level representation is clearly exponential

in the vocabulary. A more compact and attractive representation

is to use graphical models. Graphical models such as Bayesian
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networks and Markov networks are extremely popular in the ma-

chine learning area and their relational extensions continue to be

formalisms that are studied in areas such as statistical relational

learning and neuro-symbolic AI [1, 9, 11, 25, 28]. In this paper, we

consider one such compact factored representation of PKB, i.e. FR-

PKB, that factorizes according to a chordal graph. We study how,

under noise-free actions, probabilistic progression is closed in this

representation. That is, it is possible to get the progressed knowl-

edge base factorized according to another chordal graph, leading to

a compact progressed result (note that we can always capture the

progressed knowledge base using the world-level representation,

but the point is to ensure that the compactness of representation

is not lost). This result can be seen to motivate the updating of

probabilistic databases [31, 33]. Lastly, we discuss the challenges of

extending our approach to handle noisy actions.

2 PRELIMINARY
In this section, we review the logicDS𝑝 , a probabilistic modal logic

of actions and beliefs, and the classical categorical progression.

2.1 The Logic DS𝑝

DS𝑝 is a many-sorted language and, for simplicity, we only have

two sorts: object and action. We assume rational numbers are in a

sub-sort of object. The language features a fixed countable domain

with the unique name assumption: the set of standard names N =

N𝑜𝑏 𝑗 ∪ N𝑎𝑐𝑡 where N𝑜𝑏 𝑗 are object standard names and N𝑎𝑐𝑡 are

action standard names.

Syntax Formally, the vocabulary consists of

• first-order (FO) variables: {𝑥,𝑦, . . . , 𝑢, 𝑣 . . .};
• rigid function symbols such as𝑚𝑜𝑣𝑒, 𝑝𝑢𝑡 , etc.;

• fluent predicates symbols 𝐹, 𝐹 ′, . . . like 𝑂𝑛, 𝐶𝑙𝑒𝑎𝑟 including
– a binary predicate oi to denote that two actions are indis-

tinguishable from the agent’s viewpoint; and

– a special binary predicate 𝑙 that takes an action as its

first argument and the action’s likelihood as its second

argument.
1

• connectives and other symbols: =,∧,¬,∀,𝐵,□, round and

square parentheses, period, comma.

For simplicity, we do not include rigid predicates and fluent

functions. We treat {∨, ∃,≡, ⊃} as syntactic abbreviations and use

⇔ to mean the equivalence of formulas. The terms of the languages

are the least set of expressions such that (1) every FO variable and

standard name (or constant) is a term; (2) if 𝑡1, . . . 𝑡𝑘 are terms and

𝑓 a 𝑘-ary function, then 𝑓 (𝑡1, . . . 𝑡𝑘 ) is a term. Ground terms are

terms without free variables and primitive terms P𝑡 are terms of

the form 𝑓 (𝑛1 . . . 𝑛𝑚), where 𝑛𝑖 ∈ N . Additionally, we assume N𝑎

is just the set of action primitive terms. We denote P the set of

all ground atoms. Well-formed formulas are constructed as usual

in FOL logic with equality. They can further be in the context of

modalities. The logic has an epistemic modality:𝐵(𝛼 : 𝑥) is to be

read as “𝛼 is believed with a probability 𝑥” where 𝑥 is a rational

number. We use 𝐾 (𝛼) as abbreviation for 𝐵(𝛼 : 1), read as “𝛼 is

known”. There are two action modalities [𝑎], □ in that if 𝛼 is a

formula, then so are [𝑎]𝛼 (read:“𝛼 holds after action 𝑎”) and □𝛼

1
For simplicity, we omit the usual 𝑃𝑜𝑠𝑠 (𝑎) fluent for action preconditions. Meanwhile,

impossible actions are treated as actions with 0 likelihood.

(read: “𝛼 holds after any sequence of actions”). For 𝑧 = 𝑎1 · · ·𝑎𝑘 ,
we write [𝑧]𝛼 to mean [𝑎1] · · · [𝑎𝑘 ]𝛼 . We use True to denote truth,

which is taken as an abbreviation for, say, ∀𝑥 (𝑥 = 𝑥), and False for

its negation. For 𝛼 , we use 𝛼𝑥𝑡 to denote the formula obtained by

substituting free variable 𝑥 in 𝛼 with term 𝑡 . A formula without 𝐵
is called objective; a formula without [𝑎],□ is called static; a formula

without fluents, [𝑎],□ outside 𝐵 is called subjective; and a formula

without modalities is called fluent formula or fact.

Semantics The semantics is given in terms of possible worlds.

In a dynamic setting, such worlds are defined to interpret not only

the current state of affairs but also how that changes with actions.

LetZ = (N𝑎)∗ be the set of all finite sequences of actions including
⟨⟩, the empty sequence. Then a world maps P × Z to {0, 1}. We

denoteW the set of all possible worlds. We require that ∀𝑤 ∈ W
• oi is an equivalence relation (reflexive, symmetric, and tran-

sitive) for all 𝑧 and oi is rigid;
2

• 𝑙 (𝑎,𝑢) behaves like a function in all worlds: for all action

𝑎, action sequence 𝑧, there exists exactly one number 𝑛 s.t.

𝑤 [𝑙 (𝑎, 𝑛), 𝑧] = 1 and for all 𝑛′ ≠ 𝑛,𝑤 [𝑙 (𝑎, 𝑛′), 𝑧] = 0.

An epistemic state 𝑒 is a set of distributions𝑑 (weighted functions)

that maps W to R≥0
. By a model, we mean a triple ⟨𝑒,𝑤, 𝑧⟩.

Truth for objective sentences is given as:

• 𝑒,𝑤, 𝑧 |= 𝑡1 = 𝑡2 iff 𝑡1, 𝑡2 are identical;

• 𝑒,𝑤, 𝑧 |= 𝑝 iff 𝑝 is an atom and𝑤 [𝑝, 𝑧] = 1;

• 𝑒,𝑤, 𝑧 |= ¬𝛼 iff 𝑒,𝑤, 𝑧 ̸ |= 𝛼 ;

• 𝑒,𝑤, 𝑧 |= 𝛼 ∧ 𝛽 iff 𝑒,𝑤, 𝑧 |= 𝛼 and 𝑒,𝑤, 𝑧 |= 𝛽 ;

• 𝑒,𝑤, 𝑧 |= ∀𝑥 .𝛼 iff 𝑒,𝑤, 𝑧 |= 𝛼𝑥𝑛 for all 𝑛 ∈ N for the right sort;

• 𝑒,𝑤, 𝑧 |= [𝑟 ]𝛼 iff 𝑒,𝑤, 𝑧 · 𝑟 |= 𝛼 ;

• 𝑒,𝑤, 𝑧 |= □𝛼 iff 𝑒,𝑤, 𝑧 · 𝑧′ |= 𝛼 for all 𝑧′ ∈ Z.

To account for stochastic actions,DS𝑝 uses a notion called obser-

vational indistinguishability among actions. The idea is that instead

of saying stochastic actions have non-deterministic effects, DS𝑝

says stochastic actions have non-deterministic alternatives which

are mutually observationally indistinguishable from the agent’s

perspective and each of which has a deterministic effect. E.g., to

express that the robot’s forward action might forward successfully

or unsuccessfully, DS𝑝 uses a formula oi(fwd (1), fwd (0)), i.e. the
outcomes {1, 0} are observationally indistinguishable to the agent

(unless sensing is performed). For action sequences, we have:

Definition 2.1. Given a world𝑤 , we define 𝑧 ≈𝑤 𝑧′:

(1) ⟨⟩ ≈𝑤 𝑧′ iff 𝑧′ = ⟨⟩;
(2) 𝑧 · 𝑎 ≈𝑤 𝑧′ iff 𝑧′ = 𝑧∗ · 𝑎∗, 𝑧 ≈𝑤 𝑧∗ and𝑤 [oi(𝑎, 𝑎∗), 𝑧] = 1.

For example, we have fwd (0) · fwd (1) ≈𝑤 fwd (1) · fwd (0). Lastly,
we define the likelihood of action sequences in a world:

Definition 2.2. We define 𝑙∗ : W ×Z ↦→ R≥0
:

• 𝑙∗ (𝑤, ⟨⟩) = 1 for all𝑤 ∈ W;

• 𝑙∗ (𝑤, 𝑧 · 𝑎) = 𝑙∗ (𝑤, 𝑧) × 𝑛 where𝑤 [𝑙 (𝑎, 𝑛), 𝑧] = 1.

Given 𝑒,𝑤 and formula 𝛼 , let ∥𝛼 ∥𝑒 := {𝑤 ′
: 𝑒,𝑤 ′, ⟨⟩ |= 𝛼}. Intu-

itively, ∥𝛼 ∥𝑒 is the set of all alternative worlds that might result

in 𝛼 under 𝑒 . For a distribution 𝑑 , we define Norm(𝑑, ∥𝛼 ∥{𝑑 } , 𝑛)
if 𝑛 = 1

[ × ∑
{𝑤′

:∥𝛼 ∥{𝑑} } 𝑑 (𝑤
′), where [ is a normalizer with the

same expression as the numerator but replacing 𝛼 to True, i.e. the

2
Allowing truth of 𝑜𝑖 to vary might cause counter-intuitive result, see [20].
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set of worlds where 𝛼 holds has proportioned summed weights

(or probability) 𝑛 in distribution 𝑑 . Essentially, althoughW is un-

countable, the Norm here requires 𝑑 to be a well-defined discrete

distribution over possible worlds. See [4] for details. A distribution

is called regular if Norm(𝑑, ∥True∥{𝑑 } , 1). We denote D as the set

of all regular distributions. Henceforth, we restrict ourselves to

regular distributions.

Definition 2.3. Given𝑤 ∈ W, 𝑧 ∈ Z, 𝑑 ∈ D, we define

• 𝑤𝑧 as a world s.t. for each atom 𝑝 and 𝑧′ ∈ Z,

𝑤𝑧 [𝑝, 𝑧′] = 𝑤 [𝑝, 𝑧 · 𝑧′];
• 𝑑𝑧 as a distribution s.t. for all𝑤 ∈ W, 𝑑𝑧 (𝑤) =∑

{𝑤′
:𝑑 (𝑤′ )>0}

∑
{𝑧′ :𝑧′≈𝑤′𝑧,𝑤′

𝑧′=𝑤} 𝑑 (𝑤 ′) × 𝑙∗ (𝑤 ′, 𝑧′).

𝑤𝑧 is called the progressed world of 𝑤 wrt 𝑧. Since worlds are

tree-structured, the progressed world𝑤𝑧 of a world𝑤 wrt an action

sequence 𝑧 is just a copy of the sub-tree of 𝑤 starting after the

action sequence 𝑧, i.e. forgetting the past. 𝑑𝑧 is called the progressed

distribution of 𝑑 wrt 𝑧 and it is obtained by shifting the weight of

worlds according to the actions’ likelihood.

Given 𝑒, 𝑧, let 𝑒𝑧 = {𝑑𝑧 ∈ D : 𝑑 ∈ 𝑒}. Now, we are ready to give

truth for 𝐵. Supposing 𝑟 is a number,

• 𝑒,𝑤, 𝑧 |= 𝐵(𝛼 : 𝑟 ) iff for all 𝑑 ∈ 𝑒𝑧 , Norm(𝑑, ∥𝛼 ∥{𝑑 } , 𝑟 );
For a sentence 𝛼 , we write 𝑒,𝑤 |= 𝛼 to mean 𝑒,𝑤, ⟨⟩ |= 𝛼 . If Σ

is a set of sentences and 𝛼 is a sentence, we write Σ |= 𝛼 (read: Σ
logically entails 𝛼) to mean that for all 𝑒 and 𝑤 , if 𝑒,𝑤 |= 𝛼 ′ for
every 𝛼 ′ ∈ Σ, then 𝑒,𝑤 |= 𝛼 . Satisfiability and validity are defined in

the usual way. If 𝛼 is objective, we write𝑤 |= 𝛼 instead of 𝑒,𝑤 |= 𝛼 .

Similarly, we write 𝑒 |= 𝛼 instead of 𝑒,𝑤 |= 𝛼 if 𝛼 is subjective.

2.2 Classical Progression
To express the dynamics of a domain, DS𝑝 uses a notion of basic

action theories (BATs) like the situation calculus [27].

Definition 2.4 (Basic Action Theory). Given a set of fluents F , a

BAT Σ consists of:

• The initial theory Σ0, which is a set of fluent sentences;

• Successor-state axioms (SSAs) Σ𝑝𝑜𝑠𝑡 , which is a set of axioms

of the form □[𝑎]𝐹 ( ®𝑥) ≡ 𝛾+
𝐹
( ®𝑥, 𝑎) ∨ 𝐹 ( ®𝑥) ∧¬𝛾−

𝐹
( ®𝑥, 𝑎), one for

each fluent 𝐹 ∈ F .
3

𝛾+
𝐹
and 𝛾−

𝐹
are the positive and negative effect conditions respec-

tively. Intuitively, the initial theory expresses what holds initially,

while successor-state axioms describe how actions affect fluents.

Definition 2.5 (Progression). Let Σ0 ∪ Σ𝑝𝑜𝑠𝑡 be a basic action

theory. A set of fluent sentences Σ′
0
is a progression of Σ0 via a

ground action 𝑡 wrt Σ𝑝𝑜𝑠𝑡 iff for every sentence 𝜙

Σ0 ∪ Σ𝑝𝑜𝑠𝑡 |= [𝑡]𝜙 iff Σ′
0
∪ Σ𝑝𝑜𝑠𝑡 |= 𝜙

The definition follows from [37]. Unfortunately, progression is in

general only second-order (SO) definable [15, 36], i.e. Σ′
0
might not

always be first-order. DS𝑝 can be easily extended to include SO

quantifiers and variables in the language which is then interpreted

by variable maps. This means that the model has to be expanded

with variable maps and the satisfaction relationship needs to be

3
Free variables are implicitly universally quantified from the outside. The □ modality

has lower syntactic precedence than the connectives, and [ · ] has the highest priority.

modified accordingly. We omit it here and refer the interested read-

ers to [17, 18] on how this can be achieved.

Theorem 2.6 ([15]). The following is a progression of Σ0 wrt a

ground action 𝑡 and Σ𝑝𝑜𝑠𝑡 :

∃®𝑉 .(Σ0)
®𝐹
®𝑉
∧
∧
𝑖

∀®𝑥 .𝐹𝑖 ( ®𝑥) ≡ (𝛾𝐹𝑖 ( ®𝑥, 𝑡))
®𝐹
®𝑉

(1)

where ®𝑉 are SO variables and 𝛾𝐹𝑖 is the RHS of the SSA of fluent 𝐹𝑖 .

Here the super- and subscript stands for substitution, just like the

first-order case.

Progression is closely related to the concept of forgetting. Intu-

itively, forgetting a ground atom (or predicate) in a theory leads

to a weaker theory that entails the same set of sentences that are

“irrelevant” to the atom (or predicate). [14] provided a semantic

characterization of forgetting, which is essentially captured by

our notion of progressed worlds. Syntactically, forgetting a pred-

icate 𝑃 in a sentence 𝜙 , i.e. forget (𝜙, 𝑃), is equivalent to ∃𝑉 .𝜙𝑃
𝑉

while forgetting a ground atom 𝑃 (®𝑡) in 𝜙 , i.e. forget (𝜙, 𝑃 (®𝑡)) is
more complex. Let 𝜙 [𝑃 (®𝑡)] be the formula obtained by replacing

every occurrence of the form 𝑃 (®𝑡 ′) in 𝜙 with [®𝑡 = ®𝑡 ′ ∧ 𝑃 (®𝑡)] ∨ [®𝑡 ≠
®𝑡 ′ ∧ 𝑃 (®𝑡 ′)], 𝜙𝑃 (®𝑡 )+ and 𝜙

𝑃 (®𝑡 )
− be formulas obtained by replacing

𝑃 (®𝑡) in 𝜙 [𝑃 (®𝑡)] with True and False respectively. Then we have

forget (𝜙, 𝑃 (®𝑡)) = 𝜙
𝑃 (®𝑡 )
+ ∨𝜙

𝑃 (®𝑡 )
− . E.g., let 𝜙 := eh(𝐴) ∧ ¬eh(𝐶), then

we have forget (𝜙, eh(𝐴)) = ¬eh(𝐶). This result naturally extends to
forgetting a finite set of atoms Ω, that is, assume 𝑝 ∈ Ω, we define
forget (𝜙,Ω) := forget (forget (𝜙, 𝑝),Ω\{𝑝}) .With these notions, the

progression of an initial theory Σ0 wrt 𝑡 and Σ𝑝𝑜𝑠𝑡 is just to add

the effects of 𝑡 (the big conjunction in Eq. (1)) and forget the past

(i.e. the SO existential quantifiers in the head of Eq. (1)).

Since then, efforts have been made to find fragments where pro-

gression is first-order. Lin and Reiter [15] showed that progression is

FO definable for strongly context-free SSAswhich essentially capture

the STRIPS operators. This is further extended [21] to local-effect

SSAs. Intuitively, local-effect means that fluents affected by the

action are determined by the action’s parameters. More formally,

Definition 2.7. A SSA is called

• strongly context-free if for all fluent 𝐹 , 𝛾+
𝐹
and 𝛾−

𝐹
are disjunc-

tions of formulas of the form ∃®𝑢 [𝑎 = 𝐴(®𝑣)] where ®𝑣 contains
®𝑥 and ®𝑢;

• local-effect if for all fluent 𝐹 , 𝛾+
𝐹
and 𝛾−

𝐹
are disjunctions of

formulas of the form ∃®𝑢 [𝑎 = 𝐴(®𝑣) ∧ 𝜙 (®𝑣)] where ®𝑣 contains
®𝑥 and ®𝑢 is the set of remaining variables, 𝜙 (®𝑣) is the context
formula;

Clearly, strongly context-free SSAs (SCF-SSAs) are special cases

of local-effect SSAs (LE-SSAs) without context formulas. The result

in [21] to progress local-effect action theories is based on two obser-

vations. First, if a sentence 𝜙 entails that two predicates 𝑃,𝑄 agree

on everything except on a finite set of instances Δ, then forgetting

𝑄 in 𝜙 amounts to forgetting the set of 𝑄 atoms instantiated by Δ
in 𝜙 and then replacing 𝑄 by 𝑃 . That is:

Theorem 2.8 ([21]). Let Δ = {®𝑡1, . . . , ®𝑡𝑛} be a set of vectors of

ground terms, 𝑃,𝑄 two predicates, 𝑄 (Δ) be the set {𝑄 (®𝑡) | 𝑡 ∈ Δ},
and 𝑃 ≈Δ 𝑄 denote the formula ∀®𝑥 . ∉ Δ ⊃ 𝑃 ( ®𝑥) ≡ 𝑄 ( ®𝑥). Then
forget (𝜙 ∧ 𝑃 ≈Δ 𝑄,𝑄) ⇔ forget (𝜙,𝑄 (Δ))𝑄

𝑃
.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1212



Second, after instantiating a LE-SSA of fluent 𝐹 with a ground

action 𝐴(®𝑛), 𝛾+
𝐹
(likewise for 𝛾−

𝐹
) is equivalent to disjunctions of

the form ®𝑥 = ®𝑚 ∧ 𝜙 (®𝑛) where ®𝑚 ⊆ ®𝑛. That is only finitely many

instances of 𝐹 ( ®𝑥) are affected (those ®𝑥 = ®𝑚). More formally, let

Δ𝐹 = { ®𝑚 : ®𝑥 = ®𝑚 appears in 𝛾𝐹 ( ®𝑥,𝐴(®𝑛))}, then the big conjunction

part in Eq.(1) (for fluent 𝐹𝑖 ) amounts to the conjunction of

∀®𝑥 .®𝑥 ∉ Δ𝐹𝑖 ⊃ 𝐹𝑖 ( ®𝑥) ≡ 𝑉𝑖 ( ®𝑥) (2a)∧
®𝑚∈Δ𝐹𝑖

𝐹𝑖 ( ®𝑚) ≡ (𝛾𝐹𝑖 ( ®𝑚, 𝑡)) ®𝐹®𝑉 (2b)

Hence one could use Eq.(2a) and Theorem 2.8 to eliminate the

second-order quantifier in the result of Theorem 2.6. Formally, let

Ω be the characteristic set of action 𝐴(®𝑛), i.e. the set of atoms given

by: Ω = {𝐹 (®𝑡) : 𝐹 is a fluent, and ®𝑡 ∈ Δ𝐹 }. For each fluent 𝐹 we

introduce a new predicate 𝑄 .4

Theorem 2.9 ([21]). If Σ𝑝𝑜𝑠𝑡 is local-effect, then the following FO

sentence is a progression of Σ0 wrt 𝑡 and Σ𝑝𝑜𝑠𝑡 ,

forget (Σ0 ∧
∧

𝐹𝑖 ( ®𝑚) ∈Ω
𝑄𝑖 ( ®𝑚) ≡ 𝛾𝐹𝑖 ( ®𝑚, 𝑡),Ω) ®𝑄®𝐹 . (3)

Example 2.10. Consider the following blocks world. A single

actionmove(𝑥,𝑦, 𝑧) can move a block 𝑥 from block 𝑦 to block 𝑧. We

use a fluent eh(𝑥) to indicate if the height of block 𝑥 is an even

number. Every block is assumed to have a unit height.move(𝑥,𝑦, 𝑧)
causes the height of 𝑥 to be even if and only if the height of 𝑧 is

odd. The following LE-SSA can express this:

□[𝑎]eh(𝑥) ≡ ∃𝑦, 𝑧.[𝑎 = move(𝑥,𝑦, 𝑧) ∧ ¬eh(𝑧)]∨ (4a)

¬[∃𝑦, 𝑧.𝑎 = move(𝑥,𝑦, 𝑧) ∧ eh(𝑧)] ∧ eh(𝑥)

Let Σ0 = {¬eh(𝐴)}. For the ground action move(𝐴, 𝐵,𝐶), we
have Ω = {eh(𝐴)}. Let 𝑄 be a new predicate for eh. Then Eq. (3)

equals to forget (¬eh(𝐴) ∧𝑄 (𝐴) ≡ 𝑒ℎ(𝑐),Ω)𝑄
eh
, which is equivalent

to 𝑒ℎ(𝐴) ≡ ¬𝑒ℎ(𝐶). That is, the height of 𝐴 is even if and only the

height of 𝐶 is not even.

3 PROGRESSINGWR-PKB
To perform probabilistic progression, one needs to specify the like-

lihood of each outcome of stochastic action. DS𝑝 achieves this

by including an axiom of observational indistinguishability among

actions and a likelihood axiom in the BATs. The observational indis-

tinguishability axiom Σoi specifies the equivalence relations among

actions. In this paper, we focus on Σoi where each action has finitely
many alternatives, that is, Σ𝑜𝑖 is of the form □oi(𝑎, 𝑎′) ≡

∨
𝑖 𝑎 ∈

N𝑖 ∧𝑎′ ∈ N𝑖 whereN𝑖 ⊂ N𝑎 are finite. Accordingly, the likelihood

axiom (LA) Σ𝑙 is as □𝑙 (𝑎,𝑢) ≡
∨

𝑖

∨
𝑡𝑖 ∈N𝑖

𝑎 = 𝑡𝑖 ∧𝑢 = 𝑞𝑡𝑖 subject to∑
𝑡𝑖 ∈N𝑖

𝑞𝑡𝑖 = 1 for all 𝑖 .

3.1 Representing Probabilistic Knowledge Base
Like classical progression where one needs to use a theory to de-

scribe the world state, we need to specify what is believed by the

agent, namely the probabilistic knowledge base (PKB). By a prob-

abilistic knowledge base, we mean a set of static subjective fluent

4
The purpose of new predicates is to ensure the LHS of Eq. (2b), i.e. 𝐹𝑖 ( ®𝑚) won’t be
affected when forgetting the characteristic set Ω.

formulas without nested 𝐵. Clearly, different syntactic constraints

can be imposed on formulas to obtain different types of PKB.

WhileDS𝑝 allows PKBswith incomplete beliefs like𝐵(𝑝1 : 𝑟1)∨
𝐵(𝑝2 : 𝑟2) or beliefs involving infinitely many random variables

like ∀𝑥 .𝐵(𝜙 (𝑥) : 0.5), we only consider PKB that can be character-

ized by a joint distribution of finitely many binary random variables

and leave PKBs with unknown distributions for future study.

Fact-Independent PKB. A natural and also compact way to repre-

sent a PKB is using a theory 𝑇 = {𝐵(𝛼1 : 𝑛1), . . . ,𝐵(𝛼𝑘 : 𝑛𝑘 )} to
express that fact 𝛼𝑖 hold with probability 𝑛𝑖 , together with a theory

𝑇𝑖𝑛𝑑 saying that 𝛼𝑖 are mutually independent. We called such PKBs

fact-independent PKBs (FI-PKB for short). In this paper, we only

focus on PKB over atomic facts, i.e. 𝛼𝑖 are ground atoms. Although

the size of𝑇𝑖𝑛𝑑 might be exponential in 𝑘 , in practice𝑇𝑖𝑛𝑑 is usually

omitted and is only implicitly assumed in reasoning about probabil-

ity. Let𝑋𝛼𝑖 be a binary random variables for fact 𝛼𝑖 , clearly,𝑇 ∪𝑇𝑖𝑛𝑑
defines a joint distribution 𝑃𝑟 (·) over 𝑋𝛼1

, . . . 𝑋𝛼𝑘 . In fact, FI-PKBs

correspond to the notion of the tuple-independent probabilistic data-

base [33]. Unfortunately, this representation is not closed under

progression: the progression of a fact-independent PKB might no

longer be a fact-independent PKB as actions would introduce new

dependencies among facts.

World-Representation PKB. Alternatively, one could list out the

probabilities of all boolean combinations of facts 𝛼𝑖 by using formu-

las of the form𝐵(𝛽1 ∧ 𝛽2 ∧ . . . 𝛽𝑘 : 𝑟 ) where 𝛽𝑖 ∈ {𝛼𝑖 ,¬𝛼𝑖 }. Such
a boolean combination essentially represents a truth assignment \

for atomic facts AF, i.e. \ = 𝛽1 ∧ 𝛽2 ∧ . . . 𝛽𝑘 . We denote the set of

all assignments as Θ and call such a PKB world-representation PKB,

(WR-PKB for short). That is, a WR-PKB𝑇 is a set {𝐵(\ : 𝑟\ ) |\ ∈ Θ}.
Clearly, the set of formulas has to be consistent:

∑
\ ∈Θ 𝑟\ = 1. WR-

PKB is not compact as the size of Θ is exponential to the number of

facts. Below is a WR-PKB over three facts {eh(𝐴), eh(𝐵), eh(𝐶)}.

eh(𝐴) eh(𝐵) eh(𝐶) 𝑟\
\1 0 0 0 0.378

\2 0 0 1 0.162

\3 0 1 0 0.018

\4 0 1 1 0.042

\5 1 0 0 0.028

\6 1 0 1 0.012

\7 1 1 0 0.108

\8 1 1 1 0.252

(5)

3.2 Progressing WR-PKB
Definition 3.1. Given a WR-PKB 𝑇 over facts AF = {𝛼1, . . . , 𝛼𝑘 },

a BATs Σ = Σ𝑝𝑜𝑠𝑡 ∪ Σ𝑙 ∪ Σ𝑜𝑖 , and a stochastic action 𝑡 , another

WR-PKB 𝑇 ′
(over AF) is said to be a progression of 𝑇 wrt Σ and 𝑡 if

𝑇 ∧𝐾Σ |= [𝑡]𝑇 ′ .

Note that, this definition coincides with Def. 2.5 as𝑇 ′
completely

specifies the joint distribution. Intuitively, given a WR-PKB that

represents an initial joint distribution, the progression computes

another one according to the effects and likelihoods of the action.

Unfortunately, given a PKB, the effects of a stochastic action

might not always be captured by another PKB (over finitely many

random variables). This is because PKB is essentially propositional,
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yet the progression of a propositional theory Σ0 might contain

quantifiers even second-order quantifiers as shown by Theorem 2.6.

Intuitively, given an initial PKB over a finite set of facts, an action

might change the truth of infinitely many facts according to the

SSAs, hence the result cannot be captured by another finite PKB. An

interesting question is then what conditions are required to ensure

that the progression of a PKB is another PKB? Perhaps, a naive but

also natural way is to require the domain to be finite by using an

axiom like ∀𝑥 .𝑥 = 𝑛1 ∨ 𝑥 = 𝑛2 . . . ∨ 𝑥 = 𝑛𝑘 . Yet such a formula

is unsatisfiable in DS𝑝 as the domain is infinite. Of course, one

could fake such a finite domain in DS𝑝 , for example, by assuming

that a predicate 𝑃 has finitely many instances and all quantifiers

are quantifying over its finite instance, yet again, this corresponds

to include the closed-worlds assumption [26] as a premise. What

we are after here are conditions that the progression of a PKB is

closed in an open-world setting. Below, we show that WR-PKB is

closed under progression for quantifier-free LE-SSAs (QF-LE-SSAs

for short).

Definition 3.2. A set of LE-SSAs is said to be essentially quantifier-

free if all the context formulas 𝜙 (®𝑣) are quantifier-free.

SCF-SSAs are all essentially quantifier-free as their contexts

amount to True. We denote the progression of a initial theory Σ0

wrt a LE-SSAs Σ𝑝𝑜𝑠𝑡 and a ground action 𝑡𝑎 given by Theorem 2.9

as Prog(Σ0, Σ𝑝𝑜𝑠𝑡 , 𝑡𝑎). Clearly, Prog(Σ0, Σ𝑝𝑜𝑠𝑡 , 𝑡𝑎) is propositional
if Σ0 is propositional and Σ𝑝𝑜𝑠𝑡 is quantifier-free.

Given a BAT Σ with QF-LE-SSAs, let 𝑡 = 𝐴(®𝑛) be a stochastic
action, w.l.o.g, we assume the set of alternatives of 𝑡 under Σ𝑜𝑖 is
given by N𝑡 = {𝐴1 (®𝑛1), . . . , 𝐴𝑘 (®𝑛𝑘 )} (also 𝑡 ∈ N𝑡 ). Let Ω𝑡𝑖 be the

characteristic sets of action 𝑡𝑖 ∈ N𝑡 , Φ𝑡𝑖 be the set of atoms that

appears in the context formulas 𝜙 (®𝑛𝑖 ). We call the stochastic action

𝑡 progressable wrt a WR-PKB 𝑇 and BAT Σ if Ω𝑡𝑖 ∪ Φ𝑡𝑖 ⊆ AF for all

𝑡𝑖 ∈ N𝑡 , that is, facts that the stochastic actions 𝑡𝑎 will have effects

on and condition on are believed with a certain degree in the PKB

𝑇 .

In Example 2.10, suppose the ground action 𝑡 = move(𝐴, 𝐵,𝐶)
has an alternative 𝑡 ′ =𝑚𝑜𝑣𝑒𝐹𝑎𝑖𝑙𝑒𝑑 that affects nothing, additionally,

the two actions have equal likelihoods (letNmove = {𝑡, 𝑡 ′}, then the

following Σ𝑜𝑖 ad Σ𝑙 can express this), we have Ω𝑡 = {eh(𝐴)} and
Φ𝑡 = {eh(𝐶)}.

□oi(𝑎, 𝑎′) ≡ 𝑎 ∈ Nmove ∧ 𝑎′ ∈ Nmove (6a)

□𝑙 (𝑎,𝑢) ≡ 𝑎 ∈ Nmove ∧ 𝑢 = 0.5 (6b)

Therefore, 𝑡 is progressable for a WR-PKB over facts containing

{𝑒ℎ(𝐴), eh(𝐶)}.

Theorem 3.3. Given a WR-PKB𝑇 over facts AF = {𝛼1, . . . , 𝛼𝑘 }, a
BAT with QF-LE-SSAs Σ and a progressable stochastic action 𝑡 (under

𝑇 and Σ), the following WR-PKB 𝑇 ′
over AF is a progression of 𝑇 wrt

Σ and 𝑡 :

𝑇 ′ = {𝐵(\ : 𝑟\ ) |𝑟\ =
∑︁
\ ′∈Θ

∑︁
𝑡 ′∈N𝑡

𝑟 ′
\ ′ ×𝑞𝑡 ′ × I(\, Prog(\ ′, Σ𝑝𝑜𝑠𝑡 , 𝑡 ′))}

where 𝐵(\ ′ : 𝑟 ′
\ ′ ) ∈ 𝑇 , 𝑞𝑡 ′ is the likelihood of 𝑡 ′, and I(·) is an

indicator function given by:

I(\, Prog(\ ′, Σ𝑝𝑜𝑠𝑡 , 𝑡 ′)) =
{

1 \ ⇔ Prog(\ ′, Σ𝑝𝑜𝑠𝑡 , 𝑡 ′)
0 otherwise.

The proof is obtained by the definition of progressed distribution

and progressed world. Intuitively, to compute the new degree of

belief of an assignment \ , one needs to consider all the assignments

\ ′ and action alternatives 𝑡 ′ such that \ ′ might progress to \ via

action 𝑡 ′, the result is just to sum the product of the degrees of

belief of \ ′ (in𝑇 ) and the likelihood of 𝑡 ′. E.g., let𝑇 = {𝐵(¬eh(𝐴)∧
¬eh(𝐶) : 1)}, then 𝑇 ∧𝐾Σ |= [move(𝐴, 𝐵,𝐶)]]𝑇 ′

where Σ consists

of Eq.(4a),Eq.(6a), and Eq.(6b), and𝑇 ′
is as (ignore the trivial beliefs):

𝑇 ′ = {𝐵(¬eh(𝐴) ∧ ¬eh(𝐶) : 0.5),𝐵(eh(𝐴) ∧ ¬eh(𝐶) : 0.5)}

This is because progressing ¬eh(𝐴) ∧ ¬eh(𝐶) with the ground

action move(𝐴, 𝐵,𝐶) we obtain forget (¬eh(𝐴) ∧ ¬eh(𝐶) ∧𝑄 (𝐴) ≡
𝑒ℎ(𝑐),Ω)𝑄

eh
, which is equivalent to eh(𝐴)∧¬eh(𝐶), additionally, the

likelihood ofmove(𝐴, 𝐵,𝐶) is 0.5, therefore eh(𝐴)∧¬eh(𝐶) receives
0.5 degree of belief.

We comment that the notion of progressable action imposes

both constraints on the BAT and the PKB, yet the constraints on

the PKB are not about the type of the PKB but only instances. In

the previous example, the action move(𝐴, 𝐵,𝐶) is not progressable
wrt a WR-PKB over a single fact eh(𝐴) due to lack of information

for fact eh(𝐶), but it is progressable wrt any WR-PKB over facts

containing {eh(𝐴), eh(𝐶)}. In fact, we have that

Theorem 3.4. Given a BAT Σ with QF-LE-SSAs and an action 𝑡 ,

there is always a WR-PKB 𝑇 such that 𝑡 is progressable wrt 𝑇, Σ.

In other words, WR-PKB is closed under progression for BATs

with QF-LE-SSAs. The proof is straightforward: since every sto-

chastic action 𝑡 has finite alternatives 𝑁𝑡 and for each 𝑡𝑖 ∈ 𝑁𝑡 , Ω𝑡𝑖

and Φ𝑡𝑖 are finite, their union is also finite.

4 PROGRESSING FR-PKB
The inability of WR-PKB to compactly represent a PKB motivates

us to resort to probabilistic graphical models.

4.1 Factored-Representation PKB
Probabilistic graphical model is a powerful approach that allows

compactly representing dependency patterns among random events

[24]. The central idea of these approaches is the use of factored rep-

resentations for modeling correlations. In what follows, we denote

a random variable by 𝑋 (possibly with super or subscripts), a set of

random variables by X, and the domain of 𝑋 by dom(𝑋 ).

Definition 4.1. A factor 𝑓 (X) is a function of a (small) set of

random variables X = {𝑋1, . . . , 𝑋𝑘 } s.t. 𝑓 (X = x) ∈ [0, 1] for all
x ∈ dom(𝑋1) × . . . × dom(𝑋𝑘 ).

A factored representation of a joint distribution 𝑃𝑟 (X) allows
it to be represented compactly as a product of factors 𝑃𝑟 (X =

x) =
∏𝑚

𝑖=1
𝑓𝑖 (X𝑖 = x𝑖 ) where X𝑖 ⊆ X is the set of random vari-

ables restricted to factor 𝑓𝑖 and x𝑖 is the corresponding assignment.

Moreover, we say a joint distribution 𝑃𝑟 (X) factorizes (or is factor-
izable) according to an undirected graph 𝐺 = (𝑉 , 𝐸), if 𝑉 = X, and
𝑃𝑟 (X = x) = ∏

𝑐∈C 𝑓𝑐 (X𝑐 = x𝑐 ) where C is the set of (maximal)

cliques of𝐺 , X𝑐 ⊆ X is the set of random variables in clique 𝑐 . For a

clique 𝑐 , we might use 𝑐 to refer to the set of vertices in 𝑐 . Since X𝑐

is usually smaller than X, representing 𝑓𝑐 (X𝑐 ) is easier than 𝑃𝑟 (X)
leading to a compact representation.
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eh(𝐴) eh(𝐵)

eh(𝐶 )

(a)

eh(𝐴)

eh(𝐵) eh(𝐶 )

(b)

eh(𝐴) eh(𝐵)

eh(𝐶 ) eh(𝐷 )

(c)

Figure 1: Three undirected graphs

In general, the factor functions 𝑓𝑐 (X𝑐 ) (wrt a graph 𝐺) do not

carry out explicit meanings and are hard to interpret. For this

reason and for the purpose of representing PKB, we focus on the

decomposable graph, viz chordal graph.

Definition 4.2 (Chordal graph). A graph 𝐺 is chordal if every

cycle of length four or more has at least one chord, i.e. an edge that

is not part of the cycle but connects two vertices of the cycle.

The chordal graph is also known as triangulated graph, this is

because every induced cycle in a chordal graph has exactly three

vertices (triangle). For example, graphs in Fig. (1a) and (1b) are

chordal graphs while the graph in Fig. (1c) is not.

For a chordal graph𝐺 and a pair of connected cliques 𝑐𝑖 , 𝑐 𝑗 in𝐺 ,

we denote 𝑠𝑖, 𝑗 the separator of 𝑐𝑖 and 𝑐 𝑗 as the maximal set of their

common vertices, S the set of all separators in 𝐺 , including any

repetitions. For example, graph (1a) has two cliques eh(𝐴)-eh(𝐵),
eh(𝐵)-eh(𝐶) and a separator eh(𝐵), graph (1b) has one clique (the

whole graph) and no separators.

Theorem 4.3 ([24]). If a joint distribution 𝑃𝑟 (X) is factorizable
according to a chordal graph 𝐺 , then

𝑃𝑟 (X = x) =
∏

𝑐∈C 𝑃𝑟 (X𝑐 = x𝑐 )∏
𝑠∈S 𝑃𝑟 (X𝑠 = x𝑠 )

(7)

where 𝑃𝑟 (X𝑐 = x𝑐 ) is the marginal probability in 𝑃𝑟 (X), likewise for
𝑃𝑟 (X𝑠 = x𝑠 ) and the RHS is understood as 0 whenever the denomina-

tor is 0.

Theorem 4.3 lies the theoretical foundation of our factored repre-

sentation PKB (FR-PKB).

Definition 4.4. A factored representation PKB over facts AF =

{𝛼1, . . . , 𝛼𝑘 } is a pair ⟨𝐺,𝑇 ⟩, where 𝐺 = (𝑉 , 𝐸) is an undirected

chordal graph, 𝑉 = AF, 𝑇 = {𝐵(\ : 𝑟\ ) |\ ∈ Θ𝑐 or \ ∈ Θ𝑠 , 𝑐 ∈
C, 𝑠 ∈ S)}. Here, C and S are the set of all cliques and separators

of 𝐺 , Θ𝑐 and Θ𝑠 are the set of all assignment over facts in 𝑐 and 𝑠 .

Essentially, 𝑇 is the set of formulas that specifies the marginal

probability of cliques and separators in 𝐺 , while 𝐺 specifies the

correlations of the binary random variables for facts 𝛼1, . . . , 𝛼𝑘 . By

Theorem 4.3, a FR-PKB is logically equivalent to a WR-PKB. For

example, the WR-PKB in Eq. (5) is equivalent to the FR-PKB ⟨𝐺,𝑇 ⟩
where 𝐺 is as Fig. (1a) and 𝑇 is given as Fig. (2).

Moreover, FR-PKB is a complete representation in the sense that

any WR-PKB has an equivalent FR-PKB. Given a WR-PKB with

sentences𝑇 , in the extreme case, we can construct an FR-PKB ⟨𝐺,𝑇 ⟩
where𝐺 is a complete graph. Clearly, an equivalent FR-PKB will be

more compact if the chordal graph𝐺 is sparser and there is always

a minimal𝐺 . In this paper, we will not insist𝐺 to be minimal. In this

regard, fact-independent PKBs are special cases of FR-PKBs where

the graph has no edges, i.e. vertices are mutually independent.

eh(𝐵) 𝑟\
\0 0 0.58

\1 1 0.42

(a)

eh(𝐴) eh(𝐵) 𝑟\
\2 0 0 0.54

\3 0 1 0.06

\4 1 0 0.04

\5 1 1 0.36

(b)
eh(𝐵) eh(𝐶) 𝑟\

\6 0 0 0.406

\7 0 1 0.174

\8 1 0 0.126

\9 1 1 0.294

(c)

Figure 2: The theory of a FR-PKB over three facts

4.2 Progressing FR-PKB
The progression of FR-PKB can be defined similarly as Def.3.1.

Definition 4.5. Given a FR-PKB ⟨𝐺,𝑇 ⟩ over factsAF = {𝛼1, . . . , 𝛼𝑘 },
a BATs Σ = Σ𝑝𝑜𝑠𝑡 ∪ Σ𝑙 ∪ Σ𝑜𝑖 , and a stochastic action 𝑡 , another

FR-PKB ⟨𝐺 ′,𝑇 ′⟩ (over AF) is a progression of𝑇 wrt Σ and 𝑡 , written

as ⟨𝐺,𝑇 ⟩ ∧𝐾Σ |= [𝑡]⟨𝐺 ′,𝑇 ′⟩, if
𝑇WR-PKB ∧𝐾Σ |= [𝑡]𝑇 ′

WR-PKB

where 𝑇WR-PKB and 𝑇 ′
WR-PKB

is the corresponding WR-PKBs of the

FR-PKBs ⟨𝐺,𝑇 ⟩ and ⟨𝐺 ′,𝑇 ′⟩.

Since every FR-PKB has a corresponding WR-PKB, we imme-

diately obtain that FR-PKB is closed under progression for BATs

with QF-LE-SSAs. The notion of progressable actions carries out

naturally to FR-PKBs as well. Of course, for FR-PKBs, one could

use Theorem 3.3 to derive a WR-PKB as a progression for QF-LE-

SSAs and progressable actions, since all WR-PKBs are FR-PKB as

well. Nevertheless, the graph of the corresponding FR-PKB of the

progressed result tends to be fully connected, i.e. a complete graph,

leading to a less compact representation. Hence, the interest here is

to identify conditions where progression remains compact. In what

follows, we show that for deterministic actions with SCF-SSAs,

such compactness can be retained and the progressed graph can be

obtained by some simple graph operations. Thereafter, we discuss

challenges in extending the methods to general stochastic actions.

Deterministic Actions with SCF-SSAs. By a deterministic action, we

mean a stochastic action that has only one alternative and likelihood

1. After such an action 𝑡 , facts in Ω𝑡 become either True or False, yet,

this does not mean that a PKB over facts AF will degenerate to a

deterministic KB as facts in AF\Ω𝑡 remains uncertain. Nevertheless,

the observation that facts in Ω𝑡 become independent of other facts

provides a clue to build the new graph 𝐺 ′
.

Given a FR-PKB ⟨𝐺,𝑇 ⟩ with 𝐺 = ⟨𝑉 , 𝐸⟩, for the deterministic

action 𝑡 , we define a new graph 𝐺 ′ = ⟨𝑉 ′, 𝐸′⟩ as 𝑉 ′ = 𝑉 and

𝐸′ = {⟨𝑣1, 𝑣2⟩ ∈ 𝐸 |𝑣1 ∉ Ω𝑡 and 𝑣2 ∉ Ω𝑡 .}
Namely, 𝐺 ′

is a graph that is generated from 𝐺 by deleting all

edges connecting a vertex in Ω𝑡 . Although provably the graph 𝐺 ′

is always chordal, the progressed WR-PKB 𝑇 ′
WR-PKB

might not be

factorizable according to 𝐺 ′
.
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Theorem 4.6. Given a FR-PKB ⟨𝐺,𝑇 ⟩ over factsAF = {𝛼1, . . . , 𝛼𝑘 },
a BATs Σ with SCF-SSAs, and a progressable deterministic action 𝑡 , let

𝑇WR-PKB be the corresponding WR-PKB of ⟨𝐺,𝑇 ⟩ and𝑇 ′
WR-PKB

be the

progression of 𝑇WR-PKB wrt Σ and 𝑡 , additionally, let 𝐺 ′
be a graph

built from 𝐺 as above, then 𝑇 ′
WR-PKB

is factorizable according to 𝐺 ′

if Ω𝑡 ⊆ 𝑉 \𝑆 , where 𝑉 is the vertex set of 𝐺 , 𝑆 is the set of all vertices

in the separators of 𝐺 .

That is, if all the affected facts are not in any separator, i.e. Ω𝑡 ⊆
𝑉 \𝑆 , then the progressed PKB is factorizable according to 𝐺 ′

. In

fact, under this assumption, the theory of progressed FR-PKB 𝑇 ′

can be computed efficiently (linear in the size of 𝑇 ) by 3 steps.

(1) Adding 𝐵(𝛼 : 1) or 𝐵(𝛼 : 0) for 𝛼 ∈ Ω𝑡 to 𝑇
′
according to

if 𝛼 is positively or negatively affected by 𝑡 ;

(2) For each clique 𝑐′ (and separator 𝑠′) in𝐺 ′
that was previously

a clique 𝑐 (separator 𝑠) in 𝐺 , retain 𝐵(\ : 𝑟\ ) for \ ∈ Θ𝑐

(\ ∈ Θ𝑠 ) in 𝑇 to 𝑇 ′
;

(3) For each clique 𝑐′ ∈ 𝐺 ′
that can be obtained by deleting

edges in a clique 𝑐 ∈ 𝐺 , add 𝑇 ′
with {𝐵(\ ′ : 𝑟\ ′ ) |\ ′ ∈ Θ′

𝑐 }
where 𝑟\ ′ =

∑
{\ ∈Θ𝑐 |\ implies \ ′ } 𝑟\ .

We mark the above process to derive𝐺 ′
and𝑇 ′

as DeleteEdges.

Intuitively, the degree of belief of facts in Ω𝑡 becomes either 1 or

0 depending on whether they are positively or negatively affected

by 𝑡 (Step 1); for facts in a clique or separator that was not affected

by 𝑡 , the degree of beliefs of any assignment of the facts remains

unchanged (Step 2); For the assignment \ ′ in a clique 𝑐′ of the new
graph𝐺 ′

that is obtained by removing an affected fact in the clique

𝑐 ∈ 𝐺 , its degree of belief is obtained by summing over the degree

of belief over assignments \ ∈ Θ𝑐 where \ can progress to \ ′ by 𝑡 ,
i.e. \ implies \ ′ (Step 3).

The proof is straightforward. Intuitively, by Theorem 3.3, the

effect of 𝑡 is simply shifting the degree of beliefs over assignment \

that contains affected facts in Ω𝑡 to a particular assignment (wrt

Ω𝑡 ). Therefore, the degree of belief of the particular assignment

amounts to the sum of the degree of belief of multiple assignments.

Moreover, by Theorem 4.3, if the denominators in Eq. (7) are the

same, the summation of multiple assignments can be pushed inside

to the numerators, i.e. reducing to the summation of cliques that

contain the affected facts. Additionally, such summation of cliques

yields the factors of cliques in the new graph.

Example 4.7. Consider a variant of the blocks world where the

action putground (𝑥) can put block 𝑥 to the ground and therefore

set the height of 𝑥 even, i.e. 𝑒ℎ(𝑥) is true. This can be specified by

□[𝑎]eh(𝑥) ≡ 𝑎 = putground (𝑥) ∨ eh(𝑥) (8)

Let ⟨𝐺,𝑇 ⟩ be a FR-PKB where 𝐺 is given as Fig.(1a) and 𝑇 as

Fig. 2. For the ground action 𝑡 = putground (𝐴), Ω𝑡 = {eh𝐴}. The
new graph𝐺 ′

will contain only one edge between the vertices of

eh(𝐵), eh(𝐶). Additionally, since the clique eh(𝐵) − eh(𝐶) in 𝐺 ′
is

also a clique in 𝐺 , Tuples in Fig. (2c) are retained in 𝑇 ′
, meanwhile

{𝐵(eh(𝐴) : 1)} is added to 𝑇 ′
.

Now, what if the affected facts are on separators? As mentioned

before, in such case, the progressed PKB 𝑇 ′
WR-PKB

might not be

factorizable to the graph 𝐺 ′
constructed above. An example would

be the block world with the ground action 𝑡 = putground (𝐵). In
this case, the new graph 𝐺 ′

will have 0 edges. Any distribution

that is factorizable wrt 𝐺 ′
implies that eh(𝐴), eh(𝐵), and eh(𝐶) are

independent, which is not the case for 𝑇 ′
WR-PKB

. The reason is that

facts that were not directly connected in a Markov net are merely

conditionally independent but not independent. Moreover, the effect

of a deterministic action 𝑡 is just to make facts Ω𝑡 independent,

leaving alone the correlations among other facts. Hence, removing

edges in a graph might undermine such correlations.

The idea is to add edges to 𝐺 to generate a new chordal graph

𝐺sup s.t. vertices of Ω𝑡 is no longer in separators of𝐺sup . Thereafter,

we could derive a progressed FR-PKB of ⟨𝐺,𝑇 ⟩ according to 𝐺sup

as before. Nevertheless, the challenge here is how to ensure that

PKB ⟨𝐺,𝑇 ⟩ is factorizable according to 𝐺sup . The solution is to

merge cliques of 𝐺 (by adding edges) that contain a separator in

Ω𝑡 to a bigger clique. More formally, given a FR-PKB ⟨𝐺,𝑇 ⟩ with
𝐺 = ⟨𝑉 , 𝐸⟩, and a vertex 𝑣 s.t. 𝑣 ∈ 𝑠𝑣 and 𝑠𝑣 is a separator of 𝐺 , let

C𝑠𝑣 ⊆ C be the set of all cliques that contains 𝑠𝑣 , we built a new

graph 𝐺sup,𝑣 = ⟨𝑉 , 𝐸sup,𝑣⟩ as:

𝐸sup,𝑣 = {(𝑣1, 𝑣2) |𝑣1 ∈ C𝑠𝑣 and 𝑣2 ∈ C𝑠𝑣 }.

The property of the chordal graph ensures that the graph 𝐺sup,𝑣 is

again chordal. By iterating, this extends naturally to a set of vertices

Ω𝑡 in 𝐺 and we denote the result as 𝐺sup,Ω𝑡
or simply 𝐺sup .

Theorem 4.8. Given a FR-PKB ⟨𝐺,𝑇 ⟩ and a set of vertices Ω𝑡 ⊆
𝑆 , let TWR-PKB be the corresponding WR-PKB of ⟨𝐺,𝑇 ⟩ and 𝐺sup

a supergraph of 𝐺 constructed as above, TWR-PKB is factorizable

according to 𝐺sup .

The proof is by induction on the size of Ω𝑡 and the key in the

induction step is that by Theorem 4.3, marginal probabilities over

assignment of the newly merged clique can be expressed again by

Eq. (7) via the factors of the original cliques and their separators.

This also provides a way to derive the theory 𝑇sup of the new FR-

PKB. That is, 𝑇sup can be obtained by the following steps:

(1) for all unaffected cliques 𝑐 and separators 𝑠 , retain𝐵(\ : 𝑟\ )
from 𝑇 to 𝑇sup where \ ∈ Θ𝑐 or \ ∈ Θ𝑠 ;

(2) for all newly merged cliques 𝑐★ ∈ 𝐺sup , assuming w.l.o.g

𝑐1, . . . 𝑐𝑘 are the original cliques and 𝑠 =
⋂

𝑖 𝑐𝑖 is the separator

in 𝐺 that generating 𝑐★, adding 𝐵(\ : 𝑟\ ) to 𝑇sup where \ ∈
Θ𝑐★ and 𝑟\ =

∏
𝑐𝑖 𝑟𝑖,\ /𝑟𝑠,\ , here 𝑟𝑖,\ (𝑟𝑠,\ ) is degree of belief

of the resp. assignment over clique 𝑐𝑖 (separator 𝑠) from \ .

Wemark the above process to derive𝐺sup and𝑇sup as InsertEdges.

Hence, the overall procedure to progress a FR-PKB ⟨𝐺,𝑇 ⟩ wrt a de-
terministic action 𝑡 in a SCF-SSAs is as follows (mark as Progress):

(1) partitioning Ω𝑡 into Ω𝑠 ∪ Ω𝑠 where Ω𝑠 are vertices in sepa-

rators and Ω𝑠 = Ω𝑡\Ω𝑠 ;

(2) deriving a new FR-PKB ⟨𝐺sup,𝑇sup⟩ from ⟨𝐺,𝑇 ⟩ and Ω𝑠 via

the procedure InsertEdges;

(3) deriving the progressed FR-PKB ⟨𝐺 ′
sup

,𝑇 ′
sup

⟩ from ⟨𝐺sup,𝑇sup⟩
and Ω𝑠 via the procedure DeleteEdges.

Theorem 4.9. Given a FR-PKB ⟨𝐺,𝑇 ⟩ over factsAF = {𝛼1, . . . , 𝛼𝑘 },
a BATs Σ = Σ𝑝𝑜𝑠𝑡 ∪ Σ𝑙 ∪ Σ𝑜𝑖 , and an action 𝑡 s.t. 𝑡 is deterministic

in Σ and Σ𝑝𝑜𝑠𝑡 is strongly context-free, let Ω𝑡 be the characteristic

set of 𝑡 in Σ and ⟨𝐺 ′
sup

,𝑇 ′
sup

⟩ the FR-PKB obtained from the procedure

Progress via the input ⟨𝐺,𝑇 ⟩ and Ω𝑡 , then

⟨𝐺,𝑇 ⟩ ∧𝐾Σ |= [𝑡]⟨𝐺 ′
sup

,𝑇 ′
sup

⟩.
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The proof is by Theorem 4.8 and Theorem 4.6.

Example 4.10. Consider the variant of the blocks world in Ex-

ample 4.7 and the ground action 𝑡 = putground (𝐵). Let ⟨𝐺,𝑇 ⟩ be
a FR-PKB where 𝐺 is given as Fig.(1a) and 𝑇 as Fig. 2 again. We

have Ω𝑡 = eh(𝐵), which is the separator of 𝐺 . By the procedure

InsertEdges, wemerge the cliques eh(𝐴) - eh(𝐵) and eh(𝐵) - eh(𝐶)
resulting a graph 𝐺sup as in Fig. (1b) and theory 𝑇sup as Eq. (5).

After the procedure DeleteEdges, we obtain a graph 𝐺 ′
sup

with

only one edge among eh(𝐴) and eh(𝐶). In addition,𝑇 ′
sup

is as𝑇 ′
sup

=

{𝐵(eh(𝐵) : 1),𝐵(eh(𝐴)∧eh(𝐶) : 0.264),𝐵(¬eh(𝐴)∧eh(𝐶) : 0.204),
𝐵(eh(𝐴) ∧ ¬eh(𝐶) : 0.136),𝐵(¬eh(𝐴) ∧ ¬eh(𝐶) : 0.396)}.

We comment that although the procedure InsertEdges tends to

add edges to the graph of a FR-PKB, the procedure DeleteEdges

tends to simplify the graph. As a result, the progressed FR-PKB via

Progress tends to be compact compared to the WR-PKB.

Challenge in Extending to General Stochastic Actions. Perhaps, the
most appealing point of the Progress procedure is that progression

can be obtained by some simple graph operators. A natural question

is if we can generalize the approach to deterministic action with QF-

LE-SSAs and even general stochastic actions. As aforementioned,

an important feature of stochastic action is that they will introduce

new correlations among facts. Hence, the challenges lie in how to

modify the graph to reflect such a change in correlations.

In fact, two types of correlations may be introduced: logical cor-

relations and numerical correlations. Logical correlations are in the

form of logical disjunctions. In the block world domain (Example

2.10), the ground action move(𝐴, 𝐵,𝐶) introduces a logical corre-
lation among the facts eh(𝐴) and eh(𝐶): whatever the initial PKB
is, after the deterministic action move(𝐴, 𝐵,𝐶), eh(𝐴) ≡ ¬eh(𝐶) is
believed with full degree. This is in contrast to the deterministic

actions with SCF-SSAs where classical progression will only yield

negations and conjunctions. Therefore, for the progression of de-

terministic actions with QF-LE-SSAs, there are two sub-questions:

1) how to identify such logical correlations and 2) how to edit the

graph to insert such correlations. For 1), transferring the result

of progression into conjunctive normal form (CNF) might not be

satisfactory as CNF might contain redundant logical correlations.

E.g. the two clauses (𝑃 ∨𝑄 ∨ 𝑅) ∧ (𝑃 ∨𝑄 ∨ ¬𝑅) in CNF expressed

two pairs of correlations, yet it could also be simplified to one pair,

i.e. 𝑃 ∨𝑄 . Hence, perhaps what we are interested in is the minimal

CNF formula. Yet, the minimal circuit problem is proven to be Σ𝑃
2
-

complete in [7]. For 2) simply adding edges among facts for new

correlations does not work, as the resulting graph might not be

chordal. E.g. adding an edge between eh(𝐴) and eh(𝐷) to the path

eh(𝐴)-eh(𝐵)-eh(𝐶)-eh(𝐷) yields a circle of length 4 (see Fig. (1c)).

What makes the situation worse is the numerical correlations.

Numerical correlations exist in the form of the numerical likeli-

hood of stochastic actions. Simply changing the structure of the

graph will not help to capture such correlations. For instance, in

Example 4.7, the procedure Progress yields a graph with a single

edge eh(𝐵)-eh(𝐶) for the ground action putground (𝐴). Likewise,
for the ground action putground (𝐶), procedure Progress generates
a graph with one edge eh(𝐴)-eh(𝐵). Imagine a stochastic action

that includes both putground (𝐴) and putground (𝐶) as alternatives
with, say half-and-half likelihood, a natural thought of updating

the graph according to the stochastic action perhaps is to merge

the two graphs resulting a graph as in Fig. (1a), nevertheless, the

progression of the WR-PKB in Eq (5) computed as Theorem 3.3 is

not factorizable according to it. In fact, simply merging the graph

does not capture the half-and-half numerical correlation among

putground (𝐴) and putground (𝐶). This observationmakes the graph

editing approach to probabilistic progression less promising.

5 RELATEDWORK AND CONCLUSION
The situation calculus is perhaps one of the most popular languages

for actions in KR, although there are others. In the fluent calculus

[34] has explored the progression of categorical knowledge with

noisy actions. Classical categorical progression focuses on succinct-

ness of progression includes [32]. In [22], using Bayesian networks,

an account of progression is provided, but no characterization is

given as to under what conditions the representation is guaran-

teed to remain factorizable. In dynamic epistemic logic, there are

accounts of probabilities [12], but the progression on a knowledge

basis is not explicitly considered. There are various formalisms

for capturing probabilities and logic, but not explicitly considering

actions; e.g. [2] and [25], amongst others.

In machine learning, formalisms for representing probabilities

and updating them over time exist, like Dynamic Bayesian Net-

works [8] and Kalman filters [35]. Our result on factored represen-

tations can be seen as a version of dynamic Bayesian networks

but while allowing for distinct actions (and not simply time steps).

Our world-representations result can be seen as a richer version of

Kalman filters which allowing for local effect action theories. The

nature of our inquiry in terms of the underlying representation

language makes our results largely orthogonal to probabilistic plan-

ning languages [29], including probabilistic STRIPS [39]. There, the

emphasis is on states and their transitions after noisy actions, but

often under the assumption that the successor state is immediately

visible. Our formalism, however, is a general-purpose epistemic

language for degrees of belief where the effects of actions may not

be observable. However, it is clearly possible that with some effort

one could implement a fragment of our language using probabilistic

planning languages, or vice versa: the semantics for some proba-

bilistic planning languages could be given using the underlying

belief logic. Likewise, relating our results to POMDPs [10] and re-

lational POMDPs [30] might allow us to reason about projection

using one of these tools.

We study probabilistic progression for two representations of

PKBs and show that the world-level representation is the most

obvious choice if noisy actions are considered whereas the factored

representation is advantageous if only deterministic actions are

considered. For future work, leveraging progression to implement

agents executing belief-based programs [5, 16, 19] is interesting.

Besides, looking into ways to connect the situation calculus theory

with probabilistic planning [39] and probabilistic decision theory

[30] will allow for better cross-fertilization of formalisms, and lay

the foundations for cognitive robotics [13].
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