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ABSTRACT
In recent years, offline reinforcement learning (RL) algorithms have
gained considerable attention. However, the role of data sampling
techniques in offline RL has been somewhat overlooked, despite
their potential to enhance online RL performance. Recent research
in offline RL indicates that applying sampling techniques directly
to state-transitions does not consistently improve performance.
Therefore, to better leverage limited offline trajectory data, we
investigate the impact of data sampling processes on offline RL al-
gorithms from a trajectory perspective. In this paper, we introduce
a memory technique, (Prioritized) Trajectory Replay (TR/PTR), to
facilitate trajectory data storage and sampling. Building on TR, we
delve into the potential of trajectory backward sampling, a method
that has already proven effective in online RL, in the offline RL do-
main. Furthermore, to improve the sampling efficiency, we examine
the influence of prioritized sampling based on various trajectory
priority metrics on offline training. Integrating with existing algo-
rithms, our findings demonstrate that data sampling and updates
based on vanilla TR can contribute to more stable training. Also, our
proposed 13 trajectory priority metrics for PTR exhibit outstanding
performance on their respective applicable types of dataset, with
the best-case scenario resulting in performance improvements ex-
ceeding 25%. These performance gains are achieved at a slight extra
cost during the data sampling process, highlighting the significant
advantages of trajectory-based data sampling for offline RL.
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1 INTRODUCTION
Reinforcement learning (RL) has made significant developments in
recent years and has been widely applied in various scenarios [11,
29]. From a functional perspective, researchers typically study RL
algorithms from three aspects: data collection, data sampling, and
training algorithms. Data collection encompasses various methods
for obtaining or generating diverse and comprehensive data, such as
exploration [9, 23, 37] and data augmentation [15]. Data sampling
refers to studying different sampling schemes for existing data, to
improve the learning efficiency [16, 30]. Training algorithms are
what most researchers focus on, seeking to optimize objectives
through various techniques, including 𝑄-value estimation [24],
evolutionary policy [20, 21] and more.

To overcome the high cost of interacting with the environment
in real scenarios, offline RL has received wide attention as a way
to learn good policy based on the fixed dataset [17]. The study
of offline RL can also be broadly categorized into the aforemen-
tioned three groups, but with slight differences. In offline RL, the
existing literature primarily concentrates on devising training al-
gorithms based on conservative value estimation [2, 13, 14], policy
constraints [6, 7, 35], and other aspects [1, 3, 26]. In terms of data
collection, pure offline training does not require exploration for
new data, and research on data augmentation receives certain atten-
tion [22, 34]. Nevertheless, research on data sampling techniques
under offline RL [5] is still at its early stages and lacks a unified
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Figure 1: A motivating example. Top: the illustration of state
transitions in three trajectories started at state 𝑠0, and four
different sampling techniques. Bottom: curves of the esti-
mated maximum 𝑄-value at 𝑠0 learned on these trajectories.
The solid line is the averaged value over 50 seeds, and the
shaded area represents the standard deviation. The oracle
value, capturing the discounted return following trajectory
𝜏2, is slightly less than 8.

and comprehensive conclusion. It is worth noting that experiences
from online RL have revealed that data sampling techniques can in-
deed enhance performance [16, 30]. Therefore, this study primarily
focuses on data sampling techniques to gain a more comprehensive
understanding of their role in offline RL.

To elucidate the effect of data sampling techniques on limited
data, we present an illustrative example in Figure 1. The results indi-
cate that sampling state-transitions directly, whether being uniform
(uni_state) or prioritized (prio_state), results in inferior learning
of the 𝑄-value at the initial state 𝑠0. Even prioritized sampling
(prio_state) offers little advantage over uniform sampling, which
aligns with the findings in [5]. Such sampling could potentially over-
look critical states (e.g., 𝑠1) that act as connections between other
states and 𝑠0, consequently hindering the effective propagation of
subsequent reward signals to 𝑠0. In contrast, when sampling along
trajectories (uni_traj and prio_traj), the propagation of reward sig-
nals to 𝑠0 accelerates, converging faster to the optimal value, which
is more prominent on sparse reward trajectories. Comparatively,
prio_traj efficiently samples the trajectory with higher returns, fur-
ther enhancing training efficiency. Our observation underscore the
significance of considering the entire trajectory when determining
the order of data sampling, which provides more informative in-
sights into offline RL, in contrast to solely focusing on individual
(𝑠, 𝑎) pairs.

To fully discover the potential of data sampling techniques from
a trajectory perspective for offline RL, we propose a plug-and-
play memory, Prioritized Trajectory Replay (PTR), and conduct
a detailed experimental analysis on these techniques, ultimately
improving the performance of existing offline RL algorithms. We

begin by implementing Trajectory Replay (TR), which serves as the
fundamental memory for storing and sampling data in trajectories.
Specifically, we sample and evaluate the data within a trajectory in
a backward order. For instance, given two consecutive states, the
latter one is sampled and evaluated first, followed by the former
one. This allows each state to benefit from the estimated subsequent
states, leading to improved convergence speed and performance
especially on sparse rewards tasks.

Building on TR, we further explore the potential of data sampling
from two distinct perspectives. Firstly, from the algorithm updating
standpoint, inspired by [16], we modify the target 𝑄 computation
method by balancing the original target 𝑄-value and SARSA 𝑄

target value [32]. The SARSA 𝑄-value enables us to restrict the up-
date process to solely utilize trajectory data, thereby avoiding the
sampling of out-of-distribution (OOD) actions and mitigating the
extrapolation error. Secondly, from the trajectory sampling perspec-
tive, we propose Prioritized Trajectory Replay (PTR), wherein we
consider various characteristics of trajectories (e.g., quality or un-
certainty) and investigate 13 distinct trajectory priority definitions.
Extensive evaluations lead us to the discovery that prioritizing the
sampling of trajectories with higher upper quartile mean or mean
value of rewards, as well as trajectories with lower uncertainty,
effectively accelerates the learning of offline RL algorithms.

The primary contribution of this paper lies in a concrete analysis
of several trajectory-based data sampling techniques in offline RL,
which are integrated into a unified and plug-in memory structure
- PTR. We emphasize that our work does not aim to propose a
universally state-of-the-art (SOTA) algorithm. Instead, our study
focuses on examining the advantage of basic trajectory sampling
in TR, and exploring the role of various trajectory priorities in PTR.
Our objective is to offer valuable insights for the development of
robust data sampling techniques in offline RL in the future.

2 RELATEDWORK
This section provides an overview of fundamental data sampling
methods and offline RL algorithms, which inspire our considera-
tions of trajectory-based priorities in offline RL.

Data sampling in online RL. Data sampling studies how to effi-
ciently sample data to improve training. In RL, this can be traced
back to [25], which improves planning efficiency by selecting the
next updated state based on priorities. For model-free RL, PER [30]
proposes to replay transitions with high temporal-difference (TD)
error more frequently, which significantly improves the training
efficiency of DQN [24]. Based on PER, several algorithms have
been proposed, which optimize the error-based sampling [18, 28],
or propose other priority metrics [5, 27]. These algorithms mostly
focus on priority-based state-transition sampling. Other research
explores data sampling methods from the perspective of trajectory,
and themost typical ones are EBU [16] and TER [10], which propose
backward sampling of the trajectory. Backward sampling enables
the update process to more promptly and accurately utilize the
reward signals of subsequent states, leading to accelerated learning.

Offline RL. In recent years, a large amount of research has fo-
cused on offline RL algorithms that learn promising policies from
a fixed offline dataset. A key issue that offline RL algorithms need
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to address is how to avoid the impact of estimation errors (extrap-
olation errors) of unseen data in the dataset on policy learning,
since collecting new data is impossible [7, 17]. Common solutions
can be divided into several categories: the first category imposes
a policy constraint, which constrains the distribution of learned
policies to be similar to the distribution of behavioral policies in
the dataset [6, 13]; the second category applies support constraint,
which require the state transition or action values of the learned pol-
icy to be restricted to the actions that appear in the dataset [12, 35];
the third category involves conservative 𝑄-value [1, 2, 14, 19] or
MDP model [36] estimation, which avoid selecting OOD actions
during the policy update process by conservatively estimating un-
seen data.

In offline training, relatively less attention is given to data sam-
pling techniques. Existing literature [5] evaluates several data sam-
pling techniques from a traditional state-transition perspective
based on TD3+BC, but consistent conclusions have not been reached
regarding their effectiveness. Considering the return of trajectories,
ReD [38] uses return-based data re-balance for to improve the sam-
pling probability of transitions on trajectories with higher returns.
Determining the sampling order based on the trajectory return
can be regarded as a special case of approach we undertake. Under
the perspective of trajectory, we investigate data sampling from
two aspects: backward sampling on trajectories, and prioritized
trajectory sampling based on trajectory quality or uncertainty.

3 PRELIMINARY
3.1 Offline Reinforcement Learning
Offline RL refers to RL conducted on offline data. In offline RL, we
have collected several trajectories, called the dataset D = {𝜏 𝑗 }𝑁𝑗=1.
Each trajectory is a sequence of state-action-reward with length
𝑙 : 𝜏 = {(𝑠𝑖 , 𝑎𝑖 , 𝑟𝑖 )}𝑙−1

𝑖=0 , where 𝑠𝑖 represents the state at time 𝑖 , 𝑎𝑖
represents the action taken by the agent at that state, 𝑟𝑖 represents
the immediate reward, and 𝑠𝑖+1 represents the next state. The opti-
mization objective of offline reinforcement learning is usually to
maximize the expected cumulative rewards through the dataset D,
without collecting new data.

3.2 Prioritized Experience Replay
Off-policy RL algorithms store historical experience in a replay
memory. In traditional training, training data is uniformly sam-
pled from the replay memory [24]. PER (Prioritized Experience
Replay) [30] prioritizes sampling data from the memory based on
the TD-error of state-transitions, leading to significant improve-
ment in DQN training efficiency. Specifically, the distribution 𝑃 ( 𝑗)
used for sampling transition 𝑗 is defined as follows:

𝑃 ( 𝑗) =
𝑝𝛼
𝑗∑

𝑘 𝑝
𝛼
𝑘

, 𝑠 .𝑡 ., 𝑝𝑘 = |𝑟𝑘 + 𝛾𝑘𝑄target (𝑠𝑘+1,

arg max
𝑎

𝑄 (𝑠𝑘+1, 𝑎)) −𝑄 (𝑠𝑘 , 𝑎𝑘 ) | + 𝜖

(1)

where 𝑝 𝑗 is the priority of transition 𝑗 , 𝛼 determines how much
prioritization is used, 𝛾 is the discount factor, 𝑄 (·) and 𝑄target (·)
represent the𝑄-value and target𝑄-value for state-action pair (𝑠, 𝑎),
and 𝜖 is a small constant that prevents priorities from being zero. In
this way, PER can prioritize high-priority transitions based on the

scale of TD-error, thereby accelerating the agent’s learning process.
In our research, we also propose to employ prioritized sampling
during the training of offline RL algorithms. What distinguishes
our proposal from PER is our use of trajectory perspective to define
priority 𝑝 , which leads to a better adaptation to offline learning.
Additionally, we place emphasis on presenting a comparison about
different sampling strategies, thus to ensure a fair analysis, we set
the hyper-parameters 𝛼 to 1.

4 TRAJECTORY REPLAY
In this section, we introduce Trajectory Replay (TR), a replay mem-
ory for storing offline data as complete trajectories and sampling
batch data from a trajectory perspective. First, we describe the
details of TR, including the technique of backward trajectory sam-
pling used to sample from stored trajectories. We then introduce a
weighted target computation based on TR, akin to EBU [16].

4.1 Trajectory Replay (TR)
To implement batch data sampling based on trajectory sequence,
we maintain a basic replay memory storing the data in the form
of trajectory, called Trajectory Replay, which differs from the tra-
ditional memory storing data as separate transitions. In EBU [16],
it is suggested that sampling data in backward order on a trajec-
tory is beneficial for online learning. Therefore, in this paper, we
adopt backward sampling along this insight, as the default sam-
pling order of TR. Such sampling based on TR is expected to offer
certain advantages by making more timely and comprehensive use
of information from successor state transitions.

Figure 2 illustrates the process of data sampling based on TR, in
which |𝑁 | trajectories in the offline dataset are stored. The available
trajectories set stores all trajectories that have not been sampled
currently. At the beginning, we sample |B| trajectories from it and
add them to the sampled trajectories set. At each time step, the last
state transition of |B| trajectories are moved to the data batch B
for algorithm training. When all transitions of a trajectory in the
sampled trajectories set have been moved to B, a new trajectory is
required to be sampled from the available trajectories set to fill up
the sampled trajectories set.

In such vanilla TR-based data sampling, the update objectives
of critic or policy model is not changed, and any RL algorithm is
applicable. Given the data batch B, a typical optimization objective
following deterministic actor-critic algorithm [31] is as follows:

J (𝜃 ) = E(𝑠𝑡 ,𝑎𝑡 ,𝑟𝑡 ,𝑠𝑡+1 )∼B

[
1
2
(
𝑄𝜃 (𝑠𝑡 , 𝑎𝑡 ) −𝑄tg (𝑠𝑡 , 𝑎𝑡 )

)2 ]
,

𝑄tg (𝑠𝑡 , 𝑎𝑡 ) = 𝑟𝑡 + 𝛾𝑄𝜃 (𝑠𝑡+1, 𝜋 (𝑠𝑡+1)),
(2)

where 𝜃 and 𝜃 represent the parameters of critic network and target
critic network, respectively, and 𝜋 (·) represents the policy distribu-
tion.

Trajectory replay serves as the cornerstone for studying data
sampling techniques in this study, providing the fundamental frame-
work for data storage, sampling, and updates from a trajectory
perspective. Subsequently, we delve deeper into two main aspects
as shown in Figure 2: 1 the training process based on TR in Sec-
tion 4.2, and 2 the process of sampling trajectories according to
different trajectory priority metrics in Section 5.
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Figure 2: Overview of the process of data sampling based on Trajectory Replay. Offline data is stored and sampled as trajectories,
and basically, we conduct a backward order for sampling trajectories to acquire the necessary batch data of each training round.

4.2 Weighted Backward Update based on TR
A key challenge in offline RL is the extrapolation error arising from
𝑄-value estimation. Although TR implements a basic trajectory-
based sampling process, it does not take into account alleviating the
extrapolation error, which can limit offline RL performance. Our
research shows that a SARSA-like target can be introduced based
on TR’s trajectory backward sampling process to completely avoid
accessing OOD actions when calculating TD error during training.
The critic target in Eq. 2 is now as follows:

𝑄target (𝑠𝑡 , 𝑎𝑡 ) = 𝑟𝑡 + 𝛾𝑄target (𝑠𝑡+1, 𝑎𝑡+1), (3)

where𝑄target (𝑠𝑡+1, 𝑎𝑡+1) is the target𝑄-value, calculated in the next
time step in the same trajectory. Optimizing Eq. 3 can be considered
as an implicit support constraint as OOD actions are avoided.

Based on it, we modify the computation of the target 𝑄 by bal-
ancing the original target in Eq. 2 and the vanilla SARSA target, to
introduce the implicit support constraint in Eq. 3. We obtain the
following weighted form of target estimation:

𝑄target (𝑠𝑡 , 𝑎𝑡 ) = 𝑟𝑡 + 𝛾 [(1 − 𝛽)𝑄target (𝑠𝑡+1, 𝑎𝑡+1)
+ 𝛽𝑄𝜃 (𝑠𝑡+1, 𝜋 (𝑠𝑡+1))],

(4)

where 𝛽 is the hyper-parameter that controls howmuch the original
target should be used.

5 PRIORITIZED TRAJECTORY REPLAY
Building upon Trajectory Replay, we have developed a weighted
target to improve learning efficiency. In this section, we shift our fo-
cus from the updating process to enhancing the trajectory sampling
process depicted in Figure 2. To enhance the performance through
more properly sampling trajectories, we introduce several novel
trajectory priority metrics to prioritize trajectories during sam-
pling. These metrics primarily consider two key factors: the quality
of the trajectory return and the degree of trajectory uncertainty.

Instead of uniformly sampling from the available trajectories,
we introduce a probabilistic sampling approach that incorporates
trajectory priority metrics for trajectory 𝜏 𝑗 , denoted as pri(𝜏 𝑗 ), to
prioritize trajectories. To avoid potential biases towards high prior-
ity trajectories, we use the ranking order, denoted as rank(pri(𝜏 𝑗 )),
as a measure to determine the sampling probability 𝑝𝜏 𝑗 , rather than
relying solely on the absolute value of pri(𝜏 𝑗 ). Assigning appro-
priate priority to each trajectory through its rank ensures that all
available trajectories are able to be utilized effectively. To this end,

we define the prioritized sampling probability distribution 𝑃 (𝜏 𝑗 )
for all available trajectories as follows:

𝑃 (𝜏 𝑗 ) =
𝑝𝜏 𝑗∑
𝑘 𝑝𝜏𝑘

, s.t., 𝑝𝜏 𝑗 =
1

rank(pri(𝜏 𝑗 ))
. (5)

5.1 Priority based on Trajectory Quality
Higher quality trajectories have been found to be more beneficial
for offline RL [7]. To this end, we propose utilizing trajectory quality
as a priority metric during the data sampling process to prioritize
high-quality trajectories. Recognizing that using return as a metric
may unfairly prioritize longer trajectories, we introduce alternative
measures such as the mean of trajectory rewards, including upper
quartile mean (UQM) and upper half mean (UHM). In this regard,
we define six distinct metrics to assess trajectory quality, as follows:

• Return. The undiscounted sum rewards of the trajectory.
• Avg. reward. The averaged reward of the trajectory.
• UQM reward. The averaged reward of the top 25% state
transitions in the trajectory.

• UHM reward. The averaged reward of the top 50% state
transitions in the trajectory.

• Min reward. The minimum reward of the trajectory.
• Max reward. The maximum reward of the trajectory.

Trajectory priority pri(𝜏 𝑗 ) is established based on these metrics to
prioritize the sampling of high-quality trajectories. In particular,
Return and Avg. reward reflect the overall performance of the trajec-
tory, while UQM reward, UHM reward, and Max reward reflect the
quality of the best transitions in the trajectory. On the other hand,
Min reward prioritizes trajectories with higher minimum reward
values, indicating a more stringent criterion for high quality.

5.2 Priority based on Trajectory Uncertainty
Within the context of offline RL, uncertainty serves as a pivotal
metric by quantifying the level of disagreement present among
𝑄 estimates. Such disagreement indicates a lack of confidence in
the estimated 𝑄-value for a given state-action pair. Thus, a higher
degree of uncertainty indicates greater unreliability in the knowl-
edge of the state-action pair, making it unwise and infeasible to
use it for policy execution. Taking a trajectory perspective, we de-
fine trajectory priority based on uncertainty, such that trajectories
exhibiting lower degrees of uncertainty are assigned greater prior-
ity during sampling. Specifically, we establish trajectory priority
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Table 1: Normalized average returns of TR and baselines on Gym Mujoco, Antmaze, Adroit tasks in D4RL. The averaged
performance and standard deviation of multiple runs are reported.

Task Name TD3+BC
(Reproduced)

TD3+BC
(TR)

EDAC
(Reproduced)

EDAC
(TR)

IQL
(Reproduced)

IQL
(TR)

halfcheeh-medium-v2 48.14±0.2 48.01±0.4 66.73±2.07 64.01±2.42 48.36±0.2 47.90±0.3
hopper-medium-v2 59.60±6.5 60.93±3.5 78.19±18.81 89.92±14.41 58.98±2.4 66.12±2.6
walker2d-medium-v2 83.70±2.5 83.87±1.2 71.60±31.38 87.16±2.28 78.35±5.4 79.78±1.8
halfcheetah-medium-replay-v2 44.51±0.7 43.92±0.6 64.31±1.39 57.79±4.26 43.45±0.7 43.47±0.3
hopper-medium-replay-v2 52.55±19.5 61.80±14.6 97.16±9.45 32.01±5.47 88.36±12.3 97.30±5.8
walker2d-medium-replay-v2 79.86±6.7 56.87±30.4 25.55±24.39 5.39±5.89 78.77±9.2 75.41±14.3
halfcheetah-medium-expert-v2 91.53±5.6 93.35±0.7 71.72±8.70 68.87±15.288 91.80±4.0 95.19±0.4
hopper-medium-expert-v2 94.57±9.8 104.45±11.6 28.44±7.211 28.65±10.82 86.86±24.6 84.37±28.4
walker2d-medium-expert-v2 110.57±0.7 110.16±0.4 114.00±1.02 112.64±1.05 112.11±0.7 110.43±0.3
Total 665.03 663.36 617.71 546.44 687.03 699.97

pen-cloned-v1 60.39±26.4 66.84±28.7 0.12±6.12 1.02±4.24 66.00±5.8 73.46±3.0
hammer-cloned-v1 0.52±0.2 0.42±0.1 0.21±0.01 0.22±0.37 3.40±0.2 1.84±1.1
door-cloned-v1 -0.11±0.0 -0.05±0.1 -0.35±0.13 -0.33±0.02 0.07±0.3 0.29±0.4
relocate-cloned-v1 -0.25±0.0 -0.23±0.0 -0.05±0.08 -0.17±0.10 -0.06±0.0 -0.06±0.0
pen-expert-v1 131.03±18.7 133.39±15.5 -1.07±1.52 6.36±8.84 136.51±4.8 138.24±4.8
hammer-expert-v1 128.62±0.4 128.63±0.3 0.25±0.15 0.39±0.54 127.87±0.2 127.61±0.5
door-expert-v1 106.10±0.3 106.26±0.4 3.63±6.33 16.27±28.25 105.53±0.2 105.56±0.4
relocate-expert-v1 105.74±3.8 103.34±5.8 -0.35±0.00 -0.35±0.00 105.46±1.0 103.66±0.7
Total 532.05 538.60 2.38 23.41 544.78 550.60

antmaze-umaze-v0 60.39±26.4 66.84±28.7 - - 74.43±11.8 74.60±8.7
antmaze-umaze-diverse-v0 0.00±0.0 0.00±0.0 - - 56.12±5.9 49.40±9.4
antmaze-medium-play-v0 35.50±34.6 46.00±39.9 - - 69.40±7.4 62.60±11.3
antmaze-medium-diverse-v0 17.00±26.5 21.00±31.0 - - 73.20±4.7 68.20±14.9
antmaze-large-play-v0 0.00±0.0 34.40±12.1 - - 38.64±12.2 41.40±10.5
antmaze-large-diverse-v0 0.00±0.0 11.40±8.7 - - 41.14±13.6 53.20±9.8
Total 83.90 205.40 - - 352.93 349.40

metrics based on the mean, upper quartile mean (UQM), and lower
quartile mean (LQM) of all state-action pairs’ uncertainty values
present within the trajectory, as follows:

• Lower mean unc. The reciprocal of the average uncertainty
of all state-action pairs.

• Lower LQM unc. The reciprocal of the average uncertainty
of bottom 25% state-action pairs.

• Lower UQM unc. The reciprocal of the average uncertainty
of top 25% state-action pairs.

Alternatively, we can assign higher priority to trajectories with
higher uncertainty, obtaining the following trajectory priority met-
rics by taking the reciprocals of the aforementioned values: Higher
mean unc., Higher LQM unc., and Higher UQM unc., respectively.

By incorporating trajectory priority, we upgrade TR to Priori-
tized Trajectory Replay (PTR), achieving probabilistic sampling
of trajectories. We anticipate that prioritizing trajectories with
higher quality would be more suitable for sparse reward tasks,
where the reward signals exhibit significant variations on these tra-
jectories and thus require an emphasis on trajectories with higher
value for learning during probabilistic sampling. Also, we expect
that prioritizing trajectories with lower uncertainty can be effec-
tive in dense reward tasks, which can aid in accurately estimating
the level of uncertainty. Conversely, prioritizing trajectories with
higher uncertainty is not expected to work well, as errors from data
with high uncertainty can accumulate severely for finite data and
hinder learning. Section 6 provides a comprehensive and detailed
empirical evaluation of these distinct trajectory priority metrics.

6 EXPERIMENT
To reveal the consistency between our analysis and the perfor-
mance of TR/PTR, and demonstrate the advantage over baselines,
we conduct experiments to address the following questions:
RQ1 (Trajectory replay): Can vanilla trajectory sampling of
TR bring an improvement to offline RL algorithms by efficiently
using information from successor state transitions?
RQ2 (Weighted target based on TR): Can modifying the critic
target to SARSA-style target or weighted target bring further
improvement to the performance?
RQ3 (Prioritized trajectory replay): Without changing the
critic target, can the prioritized trajectory sampling bring consis-
tent performance improvement, and what are the characteristics
of different trajectory priority metrics?

6.1 Baseline Algorithms and Implementation
Details

Benchmark. In order to comprehensively analyze the advantages
and disadvantages of various proposed data sampling mechanisms
from a trajectory perspective, we conduct empirical evaluations on
the D4RL benchmark [4], focusing primarily on the Mujoco -v2
datasets (dense reward), Adroit -v1 datasets (sparse reward), and
AntMaze -v0 datasets (sparse reward).

Baselines. Baseline algorithms include (i) TD3+BC [6], which
uses regularization terms of behavior cloning to constrain the learn-
ing policy, (ii) IQL [12], which uses expectile regression to focus on
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Table 2: Normalized average returns of SARSA-style and
weighted target critic based on TR on GymMujoco, Antmaze,
Adroit tasks in D4RL. The averaged performance and stan-
dard deviation of 5 runs are reported.

Task Name TD3+BC
(SARSA)

TD3+BC
(weighted)

TD3+BC
(Paper)

IQL
(Paper)

halfcheeh-m 45.85±0.30 48.13±0.38 48.3 47.4
hopper-m 61.60±7.73 61.60±7.73 59.3 66.3
walker2d-m 84.63±4.89 84.63±4.89 83.7 78.3
halfcheetah-m-r 34.95±1.71 43.91±0.79 44.6 44.2
hopper-m-r 31.15±9.72 49.83±18.08 60.9 94.7
walker2d-m-r 46.45±25.02 86.28±2.47 81.8 73.9
halfcheetah-m-e 52.34±4.69 93.63±1.04 90.7 86.7
hopper-m-e 105.50±6.16 105.50±6.16 98.0 91.5
walker2d-m-e 106.80±3.10 110.76±0.32 110.1 109.6

Total 567.96 684.26 677.4 692.4

antmaze-u 71.17±3.63 92.53±2.21 78.6 87.5
antmaze-u-d 44.10±21.78 58.45±7.85 71.4 62.2
antmaze-m-p 0.00±0.00 71.08±9.20 10.6 71.2
antmaze-m-d 0.00±0.00 72.33±6.81 3.0 70.0
antmaze-l-p 0.00±0.00 28.80±6.36 0.2 39.6
antmaze-l-d 0.00±0.00 18.87±29.75 0.0 47.5

Total 19.21 342.06 193.8 378.0

pen-cloned 65.67±36.25 75.75±34.63 - 37.3
hammer-cloned 0.70±0.76 0.93±1.05 - 2.1
door-cloned -0.15±0.02 -0.08±0.05 - 1.6
relocate-cloned -0.16±0.05 -0.04±0.06 - -0.2
pen-expert 134.61±15.15 145.84±13.97 - -
hammer-expert 127.36±0.76 129.18±0.66 - -
door-expert 105.69±1.92 105.69±1.92 - -
relocate-expert 104.22±2.67 104.22±2.67 - -

Total 537.92 562.49 - -

in-sample actions and avoids querying the values of unseen actions,
(iii) EDAC [1], which implements conservative estimation of critic
based on ensemble 𝑄 networks.

The most critical hyper-parameters in TD3+BC is 𝛼 used to
control the weights of RL and imitation learning. On Mujoco tasks,
we set 𝛼 to 2.5 and the reproduced results are similar to those
reported in the original paper. On the Antmaze and Adroit datasets,
we conduct a hyperparameter search in the ranges 0.0001, 0.05,
0.25, 2.5, 25, 36, 50, 100, resulting in better results than previously
reported. Themost important hyper-parameters of EDAC algorithm
are the 𝑛 used to control the number of ensembles, and 𝜂, the
weight of the ensemble gradient diversity term. To make it easier to
verify the advantage, we set 𝑛 to 3 for mujoco-medium-replay-v2
datasets and 10 for others. We use the default hyper-parameters
for IQL, as recorded in the original paper. All hyper-parameters
mentioned above are listed in the Appendix.

Implementation details. To ensure code conciseness, readability,
and a fair and identical experimental evaluation across algorithms,
we reproduce the baseline algorithms based on the CORL reposi-
tory [33] and implement various sampling techniques. Unless other-
wise specified, all results reported in the following for the baseline
algorithms are the results we have reproduced ourselves. For our
methods, various data sampling techniques are implemented based

on a plug-and-play memory module, TR/PTR, within about only
200 lines of code. Such module can be easily integrated with any
offline RL algorithms by simply replacing the initialization and
sampling processes of the original replay buffer with those of PTR.
The only hyper-parameter 𝛽 is used to construct the weighted critic
target, and we conduct grid searches mainly using values from
0.05, 0.25, 0.5, 0.75, 0.95, 0.98 in the experiments. In basic TR and
trajectory-based priority sampling, no hyper-parameters needs to
be fine-tuned. The supplementary materials include our code.

6.2 Evaluation of Trajectory Replay
We first evaluate TR, the basic trajectory perspective-based data
sampling technique with trajectory backward sampling. We present
the reproduced results of the baseline algorithm and the perfor-
mance improvements achieved by combining TR in Table 1.

For the majority of datasets, the vanilla trajectory sampling and
the trajectory backward update processes based on TR do not lead to
performance degradation. In fact, there are even performance gains
observed, particularly notable in scenarios with sparse rewards such
as the TD3+BC(TR) on the "Antmaze" dataset and the EDAC(TR)
on the "Adroit" dataset. This supports the efficacy of trajectory
backward sampling as an approach for efficiently utilizing reward
information from subsequent state transitions, which is consistent
with previous research on online scenarios.

However, for some dense reward datasets, the advantages of
TR, specifically the enhanced reward propagation, are limited. On
walker2d-medium-replay-v2 and hopper-medium-replay-v2,
there is even a noticeable decrease in performance. This highlights
the urgent need for deeper investigate of data sampling techniques
based on TR to improve offline RL algorithms’ performance.

6.3 Evaluation of Backward Weighted Update
Following TR, we introduce two target critic forms, namely a vanilla
SARSA-style target (Eq. 3) and a weighted target (Eq. 4). The former
strictly constrains actions by utilizing all action information in the
trajectory during the update process, while the latter balances the
original target and vanilla SARSA-style target, thereby relaxing the
action range constraint of the former. The corresponding weight
values, denoted by 𝛽 , are provided in the Appendix.

Results in Table 2 show that the vanilla SARSA-style target based
on TR, exhibits stable performance on Adroit and simple Antmaze
datasets. However, when applied to more complex tasks, the SARSA-
style target exhibits instability. This instability primarily stems
from the algorithm’s overly simplistic and brute-force approach
of avoiding out-of-distribution actions, which is inadequate for
ensuring stable optimization in challenging tasks.

Compared to basic TR and SARSA-style target, the weighted tar-
get strategy significantly improves the performance and overcomes
the issue of performance degradation in complex tasks. It achieves
the best performance on nearly all datasets, and its results are com-
parable to, or even better than, those achieved by IQL, which is
considered to be much better than TD3+BC.

Nevertheless, a notable limitation of the weighted target is its
reliance on the tuning of the weight 𝛽 . Thus, it is imperative to
consider optimizing the target form or exploring alternative data
sampling techniques based on TR.
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Figure 3: Comparison of the performance of PTR+TD3+BC compared to TD3+BC under different trajectory priority metrics.
The results are averaged for 5 runs. The Antmaze and Adroit datasets are highlighted in red and deep blue, respectively. Without
causing confusion, we also differentiate the datasets under three benchmarks by different colors (Mujoco, Adroit, Antmaze).

6.4 Evaluation of Prioritized Trajectory
Sampling

In this section, we evaluate PTR, which optimizes the trajectory
sampling process of TR. We implement two types of trajectory pri-
ority metrics based on trajectory quality and trajectory uncertainty.
Table 3 presents the summary of performance for datasets on each
of the three environments. Figure 3 illustrates the performance
advantages of PTR under some excellent trajectory priority metrics
on various datasets, compared to the baseline algorithm TD3+BC.

On sparse-reward datasets (Antmaze and Adroit), it is advisable
to prioritize higher quality trajectories during sampling. Those
sampling approaches mitigate the instability of TD3+BC training
and improves performance compared to uniform sampling of TR.
Among them, prioritizing trajectories with higher mean rewards
(Avg. or UQM reward) is more beneficial and stable. Furthermore,
prioritizing trajectories without low rewards (Min reward) on the

trajectory has a significant impact on some datasets and is more
stable overall than other trajectory quality metrics on TD3+BC.

On dense-reward datasets, prioritizing trajectories with lower
uncertainty gains better or equivalent performance. This highlights
the ability of uncertainty to capture the characteristics of dense
reward trajectories. The metric Lower UQM unc., which seeks trajec-
tories with lower uncertainty, is the best performing metric in these
cases. On the other hand, estimating uncertainty of data with sparse
reward signals can be challenging, and thus, the performance of
uncertainty-based metrics is limited on sparse-reward datasets.

Additionally, for tasks when there are significant differences
in trajectories returns, such as mujoco-medium-expert datasets,
prioritized sampling based on trajectory quality is also a good
option, to prioritize the use of higher-quality data. However, these
may harm performance on the mujoco-replay datasets.
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Table 3: Overall performance comparison of various trajectory priority metrics based on TD3+BC and IQL. The reported results
are the sum of the average performance over 5 runs.

env. baseline TR Return Avg_r UQM_r UHM_r Min_r Max_r L_mean L_LQM L_UQM U_mean U_LQM U_UQM

TD
3B

C Mujoco 665.03 663.36 643.72 630.66 623.35 633.63 677.83 603.02 691.75 692.85 710.89 542.22 541.25 540.16
Antmaze 83.90 205.40 254.33 254.73 222.60 219.20 256.93 75.73 62.40 50.40 168.87 48.20 169.00 43.80
Adroit 532.05 538.60 549.89 545.62 529.58 557.20 532.85 518.19 534.52 547.93 531.25 540.11 547.75 30.79

IQ
L Mujoco 687.03 699.97 723.49 688.29 712.98 718.61 613.51 653.34 724.93 719.04 719.25 595.81 614.43 589.05

Antmaze 352.93 349.40 362.60 375.60 386.60 385.80 338.40 299.80 220.20 202.20 260.20 277.60 336.00 240.80
Adroit 544.78 550.60 551.36 551.45 548.42 550.39 544.79 550.12 549.59 546.88 548.23 549.05 549.21 541.34

Table 4: The comparison of various priority metrics

The dataset property TR
Uniform

PTR
Quality

PTR
Uncertainty

Sparse reward trajectories ✔ ✔ ✘

Dense reward trajectories ✘ - ✔

Many but not all high quality
trajectories - ✔ -

We also notice, that solely considering the maximum reward
along trajectories Max reward is overly simplistic, and pursuing
trajectories with higher uncertainty for prioritized sampling often
performs poorly. This aligns with our consistent understanding of
the role of uncertainty in offline training, namely, data with high
uncertainty can be detrimental to offline training due to substantial
extrapolation errors caused.

In summary, PTR can be seamlessly integrated with various
algorithms at a minimal implementation cost, offering a plug-and-
play solution that significantly enhances performance by simply
replacing the data sampling process. Table 4 provides a concise
summary of the most suitable datasets for different sampling tech-
niques. Sparse reward data favors prioritized sampling based on
trajectory quality, while dense reward data leans towards prior-
ity sampling of trajectories with lower uncertainty. Noting that
no single metric dominates across all dataset types, emphasizing
the importance of adopting proper sampling techniques to achieve
high gains. Trajectory-based sampling, overall, yields substantial
performance gains in offline RL training.

6.5 Computational Cost Comparison
We conduct experiments on a singlemachinewith aNVIDIAGeForce
1080Ti 11GB GPU, and record the computational cost of different
sampling techniques of PTR based on TD3+BC in Table 5. We record
the average training time for each epoch (i.e., 1000 training steps).

The results indicate that trajectory-based sampling incurs a
slightly higher computational cost, with an increase of 1 seconds
per epoch compared to TD3+BC. This is primarily due to the main-
tenance of the available trajectories set during the sampling pro-
cess. Besides, the uncertainty-based prioritized trajectory sampling
requires less than 3 seconds more per epoch in contrast to quality-
based sampling. This additional cost can be attributed to the con-
tinuous updating of the uncertainty value, which determines the
sampling probability. These results imply that our PTR can extract

Table 5: Computational costs.

Sampling Method Average Training Time(s/epoch)

TD3+BC 33.91
TR 35.24
PTR (quality) 34.88
PTR (uncertainty) 37.94

more comprehensive information from limited data while main-
taining a relatively low extra computational cost.

7 CONCLUSION AND LIMITATION
This paper investigates the effects of data sampling techniques,
including trajectory-based backward sampling and priority-based
trajectory sampling, on offline RL from the perspective of trajec-
tories. We propose PTR to integrate these trajectory-based data
sampling techniques as a plug-and-play replay memory module,
which can be easily combined with any offline RL algorithm. Eval-
uation on D4RL datasets shows that trajectory-based backward
sampling performs well, especially on sparse reward tasks. For sam-
pling trajectories, using reward mean, UQM, minimum value, or
the reciprocal of uncertainty mean as metrics to guide probabil-
ity sampling generally produces better results. This study aims to
contribute and inspire further research on offline RL algorithms
from the perspective of data sampling techniques. We also hope to
inspire more attention from various fields to data sampling tech-
niques, such as evolutionary RL [8].

This work still has some limitations that need to be addressed
in future research, such as the lack of theoretical discussion on
the convergence of the proposed weighted target and the chal-
lenge to improve performance on extremely hard datasets like
door-cloned-v1. Moreover, guiding the process of collecting of-
fline data based on our findings on trajectory quality and uncer-
tainty is of great importance in real industrial scenarios.
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