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ABSTRACT
Personality traits, experience level, or physical characteristics can

affect the capacity (or profile) of an agent. For instance, a basketball

player may be right-handed or left-handed, and these two versions

cannot do the same actions. Dribbling past the player may require,

first, understanding its handedness and, accordingly, execute a trick.

Generally, capacities apply to systems where multiple entities can

play the same role in the system, such as different client versions in

protocol analysis, different robots in heterogeneous fleets, different

personality traits in social structure modeling, or different attacker

profiles in cybersecurity. With the capacity of other agents being

unknown at the system’s initialization, the hardness of imperfect

information arises. Our contributions are: (i) introducing Capacity

Alternating-time Temporal Logic (CapATL) to reason about con-

current game structure where agents are bounded to capacities,

(ii) a model-checking algorithm for CapATL, and (iii) a case study
of adaptive honeypot design for cyber deception.
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1 INTRODUCTION
Engineers design increasingly complex systems and specifications

often require books to be written on. It is an illusion to believe that

implementations behave as specified, even after final proofreading

by an expert. Researchers developed formal verification techniques

to tackle this issue and rigorously prove systems’ correctness. Model

checking [12] is the branch of formal verification that aims to

check specifications for all system computations. It relies on three

components: a modeling formalism to abstract the real system, a

specification formalism for expressing non-ambiguous properties,
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and a model-checking algorithm to verify if a given property holds

on a given model.

Verification was applied to closed systems until the early 2000s.

However, the need to analyze open systems appeared because of

their interconnection. The model-checking community get inter-

ested in verifying multi-agent systems (MASs) that depict the in-

teraction between different entities. Most notably, Alur et al. in-
troduced Alternating-time Temporal Logic (ATL) [3] to express

the strategic ability of a set of agents, called coalition, to ensure

temporal objectives. ATL-based logics are interpreted over concur-

rent game structure (CGS): from a given state, each agent chooses

one of its available actions, and the game progresses to a new state

according to the agents’ joint action. For example, the ATL property

𝑟𝑒𝑎𝑑𝐶𝑚𝑑 → ⟨𝑐𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟 ⟩(¬𝑤𝑟𝑖𝑡𝑒) U 𝑟𝑒𝑎𝑑 , could mean “if a read
command arrives, the memory controller can prevent any write in

the register until the read happens”. The success of ATL comes from

its computational simplicity because its model-checking problem

is PTIME-complete. ATL paved the way for a multitude of exten-

sions regarding epistemic [18, 22, 31, 33, 34], quantitative [2, 29],

probabilistic [11, 17, 29, 30], or real-time [10, 13] objectives, as well

as strategy class specifications in the description logic [28, 35, 36].

One of the most active research direction is epistemic ATL-based

extensions. Each agent 𝑎 gets an indistinguishability relation ∼𝑎
on states. If 𝑠 ∼𝑎 𝑠′, agent 𝑎 cannot tell if the system is in state 𝑠

or 𝑠′. It also introduces the notion of uniform strategy, meaning

agents’ strategy must give the same action for indistinguishable

histories. Van der Hoek andWooldridge introduced the first version

of ATEL [33]. It extends ATL with a knowledge operator K𝑎 such

that 𝑎 knows 𝜙 in a state 𝑠 if 𝜙 holds in all indistinguishable states

𝑠′ ∼𝑎 𝑠 . However, the strategic operator did not use uniform strate-

gies, which was counterintuitive because agents can decide their

actions according to information they cannot observe. Jamroga rede-

fined ATEL [18] with the uniformity condition on agents’ strategies

as in [3]. Schobbens [31] imposed the uniformity condition also in

the initial state. Finally, in 2004, Jamroga and van der Hoek defined

ATOL [22] similarly to ATEL, but the coalition knowledge about the

strategy is specified in the language. A fundamental result of ATL

with imperfect information and memoryful strategies (depending

on the whole history) is the undecidability of the model-checking

problem [14]. Consequently, researchers seek workarounds to es-

tablish decidability results like bounded-memory strategies [31],

natural strategies [20, 21], particular information models (static,

dynamic, or recurring) [9], or approximate verification [5, 8, 15, 19].
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Contribution. This paper introduces Capacity Alternating-time

Temporal Logic (CapATL) that extends ATL with the notion of

agents’ capacities. At the system’s initialization, each agent chooses

secretly a capacity, introducing imperfect information. This capac-

ity determines the set of actions available for the agent. This notion

is intuitive since, in various situations, a single agent can encom-

pass different entities. For instance, in sports, the opponent may be

right-handed or left-handed, and the player’s actions may depend

on it. When the game starts, the agents do not know the opponent’s

handedness, but they might identify it during the game and act

consequently. More practically, we see various scenarios where

agents can have different private capacities. In distributed comput-

ing, an agent may run one among different protocol versions and

not declare it publicly. Finding a distributed protocol verifying good

properties where protocol versions are uncertain is challenging.

Conversely, CapATL could easily model it using one capacity per

client version. In robotics, a heterogeneous fleet could be modeled

with a capacity per type of robot. In social structure modeling, the

different personality traits of agents (altruists, adventurous, selfish,

etc.) can be capacities. In cyber security, the attacker’s capacities

can correspond to its resources and skills. Identifying the attacker’s

capacity and responding accordingly is a fundamental and challeng-

ing problem. The contributions of this paper are: (i) introducing
CapATL, to reason about CGS with capacities, (ii) solving CapATL

model checking with a NEXPTIME algorithm, and (iii) a case study
where CapATL synthesizes adaptive cyber honeypots strategies.

Related work. CapATL is closely related to ATEL [31]. Indeed,

CapATL can be reduced to ATEL with an exponential cost on the

number of states (duplicating the CapATL structure for each com-

bination of capacities). However, CapATL semantics considers that

agents have perfect recall, hence, the reduction is into an undecid-

able problem [14] (ATEL with perfect recall). This emphasizes that

CapATL is not just a syntactic sugar for ATEL. In contrast, CapATL

highlights a new decidable fragment of ATEL with perfect recall,

which does not fall into the other known decidable fragments [9].

The notion of capacity helps reasoning on the notion of strategy:

an agent with a capacity constraint has a strategy to achieve a goal

if this strategy uses only actions available for this capacity. Actions

are also specified explicitly in AT(E)L-A [1] and ATLEA [16]: the

strategic operator imposes some agents’ actions for the next transi-

tion only. A more explicit strategy manipulation in the language

is defined in ATLES [35] and IATL [36]. The first adds an explicit

strategy commitment operator, and the second forces agents to

keep their strategy when nested strategic operators have different

coalitions. As opposed to CapATL these logics do not consider mul-

tiple profiles for agents. In 2014, Mogavero et al. defined SL [28]

with more descriptive power regarding strategies because they

are treated as first-order objects and are quantified independently

from agents. While ATL uses a strategy quantifier for agents coali-

tion ⟨𝑌 ⟩ (“there exists a strategy for agents in 𝑌 ”), SL separates

the strategy quantification ∃𝑠 (“there exists a strategy 𝑠”) and the

agent strategy assignment (𝑥, 𝑠) (“agent 𝑥 uses strategy 𝑠”). As such,

SL can give the same strategy to several agents or specify Nash

equilibriums. SL model-checking problem is non-elementary with

respect to the formula size (and PTIME-complete with respect to

the game structure). Several fragments have been studied to reduce

the complexity [7, 28]. However, none of these logics reason about

strategies regarding the actions performed. So, CapATL tackles a

different aspect.

Back in 1993, van der Hoek et al. defined a logic of capabili-

ties [32] where, in each state, each agent is able to perform a given

set of actions. The logic has an operator 𝐴𝑎𝛼 which is true if the

agent 𝑎 can perform the action 𝛼 in the current state. However,

there is no notion of different capacities for a single agent: in Cap-

ATL, the agents must commit to performing the same set of actions

for the whole computation. This dynamic aspect is not present in

the logic of capabilities. Lesperance et al. also proposed a formal

framework to reason about “knowing how to do an action” [24].

Once again, it does not yield the dynamic aspect of CapATL.

Outline. The rest of this paper is organized as follows: our game

structure and logic are introduced respectively in Sections 2 and 3,

the model checking is established in Section 4, a case study is

developed in Section 5, and Section 6 concludes this paper.

2 CGS WITH CAPACITIES
This section defines the system’s modeling formalism and the pos-

sible computations on that system. To follow the tradition of post-

2002 ATL-based logics, we rely on the general framework of CGS,

with two differences. First, we add the notion of capacities in the

structure. Second, we name actions explicitly because they are

particularly meaningful with respect to capacities.

Given a set 𝑋 , P(𝑋 ) denotes the set of subsets of 𝑋 . We write

𝑓 : 𝑋 ⇀ 𝑌 (resp. 𝑔 : 𝑋 → 𝑌 ) to introduce a partial function 𝑓 (resp.

application 𝑔) from a set 𝑋 to a set 𝑌 , and dom(𝑓 ) denotes the do-
main of 𝑓 . The set of positive integers is denoted byN. Definition 2.1
defines the Capacity Concurrent Game Structure (CapCGS).

Definition 2.1 (Capacity Concurrent Game Structure). A CapCGS

⟨Agt,Cap, St,Π, 𝜋,Act, Γ, 𝛾, 𝑑, 𝑜⟩ is a structure with the following

attributes: a set of 𝑛 agents Agt = {1, . . . , 𝑛}, a finite set of capacities
Cap, a finite set of states St, a finite set of atomic propositions Π,
a labeling function 𝜋 : St → P(Π), a finite set of actions Act, a
function Γ : Agt → P(Cap) that assigns a subset of capacities to
each agent, a function 𝛾 : Cap → P(Act) that assigns a subset

of actions to each capacity, a protocol function 𝑑 : Agt × St →
P(Act) where 𝑑 (𝑎, 𝑠) is the set of actions available for the agent
𝑎 ∈ Agt in the state 𝑠 ∈ St and verifies 𝑑 (𝑎, 𝑠) ⊆ ⋃

𝑐∈Γ (𝑎) 𝛾 (𝑐)
and 𝑑 (𝑎, 𝑠) ∩ 𝛾 (𝑐) ≠ ∅ for all 𝑐 ∈ Γ(𝑎), and a partial transition

function 𝑜 : St × Act𝑛 ⇀ St defined for all (𝑠, 𝛼1, . . . , 𝛼𝑛) verifying
𝛼𝑎 ∈ 𝑑 (𝑎, 𝑠) for all 𝑎 ∈ Agt.

The restriction on the protocol function imposes that every agent,

whatever its capacity, has at least one available action, and a transi-

tion exists for all combinations of agents’ available actions.

Example 2.2. Figure 1 is an example of CapCGSwith three agents

Agt = {1, 2, 3}. Agents 1 and 2 have only one capacity Γ(1) = Γ(2) =
{𝑐} and the actions possible for 𝑐 are 𝛾 (𝑐) = {𝛼, 𝛽}. Agent 3 has

two possible capacities Γ(3) = {𝑐1, 𝑐2} and capacity 𝑐1 (resp. 𝑐2) let

the agent do actions 𝛼 and 𝛿 (resp. 𝛽 and 𝛿), i.e., 𝛾 (𝑐1) = {𝛼, 𝛿} and
𝛾 (𝑐2) = {𝛽, 𝛿}. We have Π = {𝑔𝑟𝑎𝑦} and 𝑔𝑟𝑎𝑦 holds only in 𝑠2, i.e.,
𝜋 (𝑠0) = 𝜋 (𝑠1) = ∅ and 𝜋 (𝑠2) = {𝑔𝑟𝑎𝑦}.

In the rest of this paper, we consider a general 𝐶𝑎𝑝𝐶𝐺𝑆 S =

⟨Agt,Cap, St,Π, 𝜋,Act, Γ, 𝛾, 𝑑, 𝑜⟩ with 𝑛 agents. Intuitively, during
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𝑠0 𝑠1𝑠2
𝛼, 𝛼, 𝛿

𝛼, 𝛼, 𝛼

𝛼, 𝛽, 𝛽

𝛼, 𝛽, 𝛼

𝛼, 𝛼, 𝛽

𝛽, 𝛼, 𝛿

𝛼, 𝛼, 𝛿

Agent Capacity Actions

1 𝑐 {𝛼, 𝛽 }
2 𝑐 {𝛼, 𝛽 }
3

𝑐1 {𝛼, 𝛿 }
𝑐2 {𝛽, 𝛿 }

Figure 1: A simple CapCGS with three agents.

a play, each agent 𝑎 ∈ Agt will secretly choose one of its capac-

ities 𝑐 ∈ Γ(𝑎), meaning that 𝑎 can use only the actions in 𝛾 (𝑐).
An interesting question for the verification of complex systems

with capacity constraints (and we will formalize it in Section 3)

is whether a coalition has a strategy to guarantee temporal and

epistemic properties, including identifying the capacity of other

agents. First, we remind some definitions that apply to CGS and are

adapted to CapCGS. A path describes the possible realizations of the
game. It contains information about the succession of states and ac-

tions of all the agents. Formally, a path 𝜌 is a possibly infinite word

𝜌 = 𝑠1 ®𝛼1𝑠2 ®𝛼2 . . . where ®𝛼𝑖 = (𝛼1
𝑖
, . . . , 𝛼𝑛

𝑖
) ∈ Act𝑛 is the agents’

joint action at step 𝑖 . It must satisfy for all 𝑖 , 𝑠𝑖+1 = 𝑜 (𝑠𝑖 , 𝛼1𝑖 , . . . , 𝛼
𝑛
𝑖
).

If a path is finite, it ends with a state. The set of paths, finite paths,

and infinite paths are respectively denoted by Paths, Paths<𝜔 , and
Paths𝜔 . We denote by |𝜌 | the number of states in 𝜌 (𝜌 has |𝜌 | − 1

joint actions), and |𝜌 | = 𝜔 if 𝜌 is infinite. We denote 𝜌’s prefix by

𝜌≤𝑖 = 𝑠1 ®𝛼1 . . . ®𝛼𝑖−1𝑠𝑖 (which has 2𝑖 − 1 symbols) and, if |𝜌 | < 𝜔 , we

denote 𝜌’s last state by last(𝜌). We access 𝜌’s 𝑖th state by 𝜌 [𝑖] = 𝑠𝑖
and, given a joint action ®𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Act𝑛 , we denote by
®𝛼 [𝑎] = 𝛼𝑎 the action of agent 𝑎.

Example 2.3. In the setting of Example 2.2, we can define the

paths 𝜌 = 𝑠1 (𝛼, 𝛼, 𝛽)𝑠0 (𝛼, 𝛼, 𝛿)𝑠1 (𝛼, 𝛼, 𝛽)𝑠0 and, changing the last

transition, 𝜂 = 𝑠1 (𝛼, 𝛼, 𝛽)𝑠0 (𝛼, 𝛼, 𝛿)𝑠1 (𝛼, 𝛽, 𝛼)𝑠0.

We consider agents cannot observe other agents’ actions, but

only the sequence of paths and their actions. Definition 2.4 formal-

izes it with an equivalence relation over paths for each agent, called

indistinguishability relation.

Definition 2.4 (Indistinguishability). Two paths 𝜌 = 𝑠1 ®𝛼1𝑠2 ®𝛼2 . . .
and 𝜂 = 𝑞1 ®𝛽𝑞2 ®𝛽2 . . . are indistinguishable for an agent 𝑎 ∈ Agt,
denoted by 𝜌 ∼𝑎 𝜂, iff (i) |𝜌 | = |𝜂 |, (ii) for all 𝑖 ∈ {1, . . . , |𝜌 |}, 𝑠𝑖 = 𝑞𝑖 ,

and (iii) for all 𝑖 ∈ {1, . . . , |𝜌 | − 1}, ®𝛼𝑖 [𝑎] = ®𝛽𝑖 [𝑎].

A (memoryful) strategy is a function 𝑠 : Paths<𝜔 → Act that
maps each finite path to an action. A strategy 𝑠 for an agent 𝑎 ∈ Agt
is called uniform (for ∼𝑎) if, for all finite paths 𝜌 and 𝜂, 𝜌 ∼𝑎 𝜂

implies 𝑠 (𝜌) = 𝑠 (𝜂). We will use assignment functions similarly

to [28] to assign a strategy or a capacity to an agent.

Definition 2.5 (Memoryful uniform strategy assignment). A mem-

oryful uniform strategy assignment is a partial function 𝜎 : Agt ⇀
(Paths<𝜔 → Act) that assigns memoryful uniform strategies to

agents. For all 𝑎 ∈ dom(𝜎), there must exist a capacity 𝑐 ∈ Γ(𝑎)
such that, for all 𝜌 ∈ Paths<𝜔 , 𝜎 (𝑎) (𝜌) ∈ 𝑑 (𝑎, last(𝜌)) ∩ 𝛾 (𝑐).

Definition 2.6 (Capacity assignment). A capacity assignment is

a partial function 𝜅 : Agt ⇀ Cap that assigns capacities to agents,

s.t., for an agent 𝑎 ∈ Agt, we have 𝜅 (𝑎) ∈ Γ(𝑎).

In ATL, whenever a memoryful strategy satisfies a property𝜙ATL,

then amemoryless strategy (mapping only states to the actions) also

exists to satisfy 𝜙ATL. As such, ATL reasoning needs only to deal

with memoryless strategies. However, this is not true in CapATL

(cf., Theorem 3.4), and we have to reason about the memoryful

class of strategies. This emphasizes that CapATL analysis requires

more involved tools than ATL analysis. For the rest of this paper,

all strategies are memoryful and uniform by default. We say that a

(capacity or strategy) assignment is complete if its domain is Agt.
Agents cannot change capacities on a path 𝜌 in a CapCGS. Con-

sequently, we can rule out the complete capacity assignments that

do not allow the agent to use some actions from 𝜌 . We formalize

this in the notion of 𝜌-compatible assignments.

Definition 2.7 (Path compatible assignments). Given a path 𝜌 =

𝑠1 ®𝛼1 . . . ®𝛼𝑘−1𝑠𝑘 , we let 𝐶 (𝜌) denote the set of possible complete

capacity assignments that may bring about 𝜌 . We have 𝜅 ∈ 𝐶 (𝜌) iff
for all 𝑖 ∈ {1, . . . , 𝑘} and 𝑎 ∈ Agt, ®𝛼𝑖 [𝑎] ∈ 𝛾 (𝜅 (𝑎)).

Example 2.8. Using the paths 𝜌 and 𝜂 defined in Example 2.3, on

the one hand, we have 𝐶 (𝜌) = {𝜅} where 𝜅 (1) = 𝑐 , 𝜅 (2) = 𝑐 , and

𝜅 (3) = 𝑐2. This capacity assignment is the only one that could give

the path 𝜌 . On the other hand, 𝐶 (𝜂) = ∅ because agent 3 has no

capacity that allow actions 𝛼 and 𝛽 in the same path.

Let 𝜌 = 𝑠1 ®𝛼1𝑠2 ®𝛼2 . . . be a path. Notice that we can decompose

𝐶 (𝜌) = ⋂
𝑖∈{1,..., |𝜌 |−1} 𝐶 (𝑠𝑖 ®𝛼𝑖𝑠𝑖+1). This result shows that the multi-

plicity of a same transition in a path and the transition order do not

matter to know what are the compatible capacity assignments. We

can now define the outcomes of a strategy assignment from a state.

It returns the extending paths respecting a capacity assignment

and the input strategy assignment.

Definition 2.9 (Outcomes). Let 𝑠 ∈ St and 𝜎 be a strategy assign-

ment for a coalition 𝑌 ⊆ Agt. The set of outcomes Out(𝑠, 𝜎) ⊆
Paths𝜔 is a set of infinite paths 𝜂 = 𝑠1 ®𝛼1𝑠2 ®𝛼2 . . . such that 𝑠1 = 𝑠 ,

𝐶 (𝜂) ≠ ∅, and, for all 𝑖 ∈ N and𝑎 ∈ 𝑌 , ®𝛼𝑖 [𝑎] = 𝜎 (𝑎) (𝑠1 ®𝛼1 . . . ®𝛼𝑖−1𝑠𝑖 ).

3 CAPACITY ATL
This section introduces CapATL to reason about the strategic, epis-

temic, and temporal properties of CapCGS. Subsection 3.1 defines

CapATL’s syntax and Subsection 3.2 gives its semantics.

3.1 Syntax
CapATL is an extension of ATL [3] that allows to reason about

capacities. It can express properties like “Can a coalition of agents

guess other agents’ capacities?”. It adds a knowledge operator to

ATL that contains a capacity assignment formula. This subformula

is a propositional formula that characterizes a set of complete ca-

pacity assignments.

Definition 3.1 (CapATL syntax). The following grammar defines

a CapATL formula 𝜙 :

𝜙 ::= ℓ | K𝑎
cap (𝜑) | ¬𝜙 | 𝜙 ∧ 𝜙 | ⟨𝑌 ⟩𝜓

𝜓 ::= X 𝜙 | 𝜙 U 𝜙 | 𝜙 R 𝜙

𝜑 ::= 𝑎 ↦→ 𝑐 | ¬𝜑 | 𝜑 ∧ 𝜑

where ℓ ∈ Π is an atomic proposition, 𝑌 ⊆ Agt is an agent coalition,

𝑎 ∈ Agt is an agent, and 𝑐 ∈ Cap is a capacity.
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As in ATL, ⟨·⟩ is the strategic operator, and ⟨𝑌 ⟩𝜓 means that 𝑌

has a strategy to enforce𝜓 (called temporal formula) whatever the
actions of the other agents. The strategic operator is immediately

followed by a temporal operator, either X for “next”, U for “until”,

or R for “release” (the dual of U). Finally, K𝑎
cap is the knowledge

operator and K𝑎
cap (𝜑) means that agent 𝑎 knows that the capacity

assignment verifies 𝜑 where 𝜑 is called capacity assignment formula:
it characterizes a set of capacity assignments. For example, 𝑎 ↦→
𝑐1∧ (𝑏 ↦→ 𝑐2∨𝑏 ↦→ 𝑐3)—where ∨ is defined as usual—characterizes

the set of complete capacity assignments 𝜅 verifying 𝜅 (𝑎) = 𝑐1 and

𝜅 (𝑏) ∈ {𝑐2, 𝑐3}. The original syntax for ATL defines the “globally”

operator G 𝜙 instead of the “release” operator 𝜙 R 𝜙 . But as noticed

by [23], in ATL, R cannot be inferred from G and U as in CTL, or

from the dual of U because the negation of temporal formula is

not defined. It is noteworthy that our knowledge operator K𝑎
cap

deals with 𝑎’s knowledge about agents’ capacities, while the usual

knowledge operator in epistemic logics handles properties of the

model (e.g., “Do agents know that the current state has some atomic

proposition ℓ?”).

Syntactic sugar. For 𝜗1 and 𝜗2 two CapATL or capacity assign-

ment formulae, the disjunction 𝜗1 ∨ 𝜗2 and implication 𝜗1 → 𝜗2
are defined as usual, as well as ⊤ and ⊥. The dual of the strategic
operator is denoted by [𝑌 ]𝜓 , meaning “𝑌 cannot avoid 𝜓”, and

the dual M𝑎
cap (𝜑) = ¬K𝑎

cap (¬𝜑) means “the capacity assignment

might verify 𝜑 from agent 𝑎’s point of view”. The globally opera-

tor is G 𝜙 = ⊥ R 𝜙 , and the eventually operator is F𝜙 = ⊤ U 𝜙 .

The strategic operator is implicitly quantified with an existential

quantifier for the capacity of the strategic coalition (cf., Defini-
tion 3.2). To refine this behavior, a formula of the form ⟨𝜑⟩𝜓 where

𝜑 is a capacity assignment formula involving the agents forming

a coalition 𝑌 means that “𝑌 can enforce 𝜓 using an assignment

verifying 𝜑”. For instance, ⟨𝑎 ↦→ 𝑐1 ∧ ¬𝑏 ↦→ 𝑐2⟩𝜓 means that the

coalition {𝑎, 𝑏} has a strategy to enforce 𝜓 , 𝑎 can use 𝑐1 for this

strategy, and 𝑏 can use a capacity different from 𝑐2 for this strategy.

The formula ⟨𝜑⟩𝜓 can be derived from the syntax as follows. Let

𝑌 denote the set of agents occurring in 𝜑 and𝑀 =
∧

𝑎∈𝑌 M𝑎
cap (𝜑)

which is true iff agents in 𝑌 can use capacities verifying 𝜑 . We have

⟨𝜑⟩ X 𝜙 = ⟨𝑌 ⟩ X(𝜙 ∧ 𝑀), ⟨𝜑⟩𝜙1 U 𝜙2 = ⟨𝑌 ⟩𝜙1 U (𝜙2 ∧ 𝑀), and
⟨𝜑⟩𝜙1 R 𝜙2 = ⟨𝑌 ⟩𝜙1 R (𝜙2 ∧ 𝑀). Finally, for two agents 𝑎 and 𝑏,

we write K𝑎
cap (𝑏) =

∨
𝑐∈Γ (𝑏 ) K𝑎

cap (𝑏 ↦→ 𝑐) to simplify a formula

meaning that agent 𝑎 knows agent 𝑏’s capacity.

3.2 Semantics
CapATL semantics is formalized through a satisfaction relation for

an infinite path, an index of this path, and a capacity assignment.

Note that ATL uses paths containing only states instead of paths

with states and joint actions because the actions between states do

not matter. However, in CapATL, having the actions is essential to

determine what agents know.

Definition 3.2 (CapATL semantics). Let 𝜌 be an infinite path, 𝑖 > 0

be an index, 𝜅 be a complete capacity assignment, ℓ be an atomic

proposition, 𝑎 be an agent, 𝑌 be a coalition of agents, (𝜙, 𝜙1, 𝜙2) be
three CapATL formulae,𝜓 be a temporal formula, and (𝜗, 𝜗1, 𝜗2) be
three CapATL or capacity assignment formulae. CapATL semantics

is defined through the following satisfaction relation:

• (𝜌, 𝑖, 𝜅) |= ℓ iff ℓ ∈ 𝜋 (𝜌 [𝑖]),
• (𝜌, 𝑖, 𝜅) |= 𝑎 ↦→ 𝑐 iff 𝜅 (𝑎) = 𝑐 ,

• (𝜌, 𝑖, 𝜅) |= K𝑎
cap (𝜑) iff for all 𝜂 ∼𝑎 𝜌 , for all 𝜅′ ∈ 𝐶 (𝜂≤𝑖 ), we

have (𝜂, 𝑖, 𝜅′) |= 𝜑 ,

• (𝜌, 𝑖, 𝜅) |= ¬𝜗 iff (𝜌, 𝑖, 𝜅) ̸|= 𝜗 ,

• (𝜌, 𝑖, 𝜅) |= 𝜗1 ∧ 𝜗2 iff (𝜌, 𝑖, 𝜅) |= 𝜗1 and (𝜌, 𝑖, 𝜅) |= 𝜗2,

• (𝜌, 𝑖, 𝜅) |= ⟨𝑌 ⟩𝜓 , iff there is a strategy assignment 𝜎 for

𝑌—called winning strategy—such that, for all outcomes 𝜂 ∈
Out(𝜌 [𝑖], 𝜎), we have (𝜂, 1, 𝜅) |= 𝜓 ,

• (𝜌, 𝑖, 𝜅) |= X 𝜙 iff (𝜌, 𝑖 + 1, 𝜅) |= 𝜙 ,

• (𝜌, 𝑖, 𝜅) |= 𝜙1 U 𝜙2 iff there exists 𝑗 ≥ 𝑖 , s.t., we have

(𝜌, 𝑗, 𝜅) |= 𝜙2 and for all 𝑘 where 𝑖 ≤ 𝑘 < 𝑗 , we have

(𝜌, 𝑘, 𝜅) |= 𝜙1,

• (𝜌, 𝑖, 𝜅) |= 𝜙1 R 𝜙2 iff either (i) for all 𝑗 ≥ 𝑖 , we have

(𝜌, 𝑗, 𝜅) |= 𝜙2, or (ii) there exists 𝑗 ≥ 𝑖 , s.t., (𝜌, 𝑗, 𝜅) |= 𝜙1∧𝜙2
and for all 𝑘 where 𝑖 ≤ 𝑘 < 𝑗 , we have (𝜌, 𝑘, 𝜅) |= 𝜙2.

Notice that, for a CapATL formula 𝜙 , (𝜌, 𝑖, 𝜅) |= 𝜙 depends only

on 𝜌≤𝑖 and 𝜙 , so we may write 𝜌≤𝑖 |= 𝜙 (in particular 𝑠 |= 𝜙 has a

meaning). Moreover, for a capacity assignment formula𝜑 , (𝜌, 𝑖, 𝜅) |=
𝜑 depends only on 𝜅 and 𝜑 , so we may write 𝜅 |= 𝜑 . Besides, the

semantics of ⟨𝑌 ⟩𝜓 has an existential quantification over the strategy

assignments for 𝑌 and a universal quantification over the outcomes.

It implies an implicit existential (resp. universal) quantification

over 𝑌 (resp. Agt \ 𝑌 ) capacity assignments compatible with future

actions in each outcome. Agents can change their capacity for each

nested strategic operator. Another approach (not discussed) could

consist in quantifying over capacity assignments only once.

Example 3.3. Consider the system from Example 2.2 illustrated

in Figure 1. The formula 𝜙 = ⟨1⟩F (𝑔𝑟𝑎𝑦 ∧ K2

cap (3))—expanded as

⟨1⟩⊤U
(
𝑔𝑟𝑎𝑦∧(K2

cap (3 ↦→ 𝑐1)∨K2

cap (3 ↦→ 𝑐2))
)
—is true iff agent 1

can enforce that all paths eventually go in a state labelled 𝑔𝑟𝑎𝑦 and

agent 2 knows whether agent 3 has capacity 𝑐1 or 𝑐2. Notice that

K2

cap (3 ↦→ 𝑐1 ∨ 3 ↦→ 𝑐2) semantically differs from K2

cap (3 ↦→ 𝑐1) ∨
K2

cap (3 ↦→ 𝑐2). Indeed, the first is always true because agent 3 has
its capacity among {𝑐1, 𝑐2}, while the second means that agent 2

knows whether 3 has 𝑐1 or 𝑐2. We have 𝑠0 |= 𝜙 . Indeed, agent 1 can

do 𝛼 in 𝑠0 and in 𝑠1. Then, if the computation reaches 𝑠2 then agent

2 knows agent 3’s capacity (if 2 did 𝛼 then 3 did 𝛼 too, so 3 must

have the capacity 𝑐1, and similarly if 2 did 𝛽). As 𝑠2 has the 𝑔𝑟𝑎𝑦

property, these paths are winning. Moreover, if after being in 𝑠1
the computation goes back to 𝑠0, then agent 2 also knows agent 3’s

capacity. Agent 1 can then do action 𝛽 to reach state 𝑠2.

Theorem 3.4 establishes that agents with memory are strictly

more powerful than agents without memory for CapATL objectives.

This seems intuitive, but it is not true for ATL objectives. It stresses

out that CapATL is way harder than ATL.

Theorem 3.4. CapATLwithmemoryful strategies is not equivalent
to CapATL with memoryless strategies.

Proof. Notice that thewinning strategy for ⟨1⟩F (𝑔𝑟𝑎𝑦∧K2

cap (3))
in Example 3.3 is memoryful, and any memoryless strategy could

not be a winning strategy. Indeed, if agent 1 always uses 𝛼1 (resp.

𝛼2) in 𝑠0, 1 cannot guarantee F (𝑔𝑟𝑎𝑦) (resp. F (K2

cap (3))). □
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4 MODEL-CHECKING
This section provides the decidability of the model-checking prob-

lem for CapATL. First, we prove agents do not need to recall all

the past to have a winning strategy. The following explains what

suffices to recall. For two states 𝑠, 𝑠′ ∈ St, an action 𝛼 ∈ Act, and an
agent 𝑎 ∈ Agt, let 𝑇 (𝑠𝛼𝑠′, 𝑎) denote the number of transition from

𝑠 to 𝑠′ in S where 𝑎 does 𝛼 . The memory of an agent is defined as a

word𝑚 = 𝑄1𝑡1𝑄2𝑡2 . . . 𝑄𝑘 , where, for all 𝑖 , 𝑄𝑖 ⊆ St and 𝑡𝑖 = 𝑠𝑖𝛼𝑖𝑠
′
𝑖
,

with 𝑠𝑖 , 𝑠
′
𝑖
∈ St and 𝛼𝑖 ∈ Act. We denote by cnt(𝑠𝛼𝑠′,𝑚) the number

of occurrences of 𝑠𝛼𝑠′ in𝑚. For an agent 𝑎, we denote by𝑚𝑎 (𝜌)
the memory that 𝑎 keeps from the finite path 𝜌 . If 𝜌 = 𝑠 ∈ St, then
𝑚𝑎 (𝜌) = {𝑠}. Inductively, for all 𝜌 ∈ Paths<𝜔 where 𝑠 denotes

last(𝜌), for all ®𝛼 ∈ Act𝑛 and 𝑠′ ∈ St,

𝑚𝑎 (𝜌 ®𝛼𝑠′) =

𝑚𝑎 (𝜌)𝑠 ®𝛼 [𝑎]𝑠′{𝑠′} if cnt(𝑠 ®𝛼 [𝑎]𝑠′,𝑚𝑎 (𝜌)) <

𝑇 (𝑠 ®𝛼 [𝑎]𝑠′, 𝑎),
𝑚𝑎 (𝜌) ⊎ 𝑠′ otherwise.

(1)

where (𝑄1𝑡1 . . . 𝑡𝑘−1𝑄𝑘 ) ⊎ 𝑠′ = 𝑄1𝑡1 . . . 𝑡𝑘−1 (𝑄𝑘 ∪ {𝑠′}). The mem-

ory𝑚𝑎 (𝜌) extracts the transitions 𝑠𝛼𝑠′ in 𝜌 from 𝑎’s point of view

(only 𝑎’s action 𝛼) until they appear more than𝑇 (𝑠𝛼𝑠′, 𝑎) times. The

memory also keeps track of the set of states visited by transitions

that appeared more than 𝑇 (𝑠𝛼𝑠′, 𝑎) times in the past. Intuitively,

the goal is to extract the least information characterizing the set

of subformulae that were satisfied along the path. The threshold

𝑇 (𝑠𝛼𝑠′, 𝑎) ensures that a transition where 𝑎 redoes 𝛼 but other

agents can change their actions (and increase their knowledge) is

recorded and ensures synchronicity for agents in a coalition.

Example 4.1. In the CapCGS from Figure 1, we have𝑇 (𝑠0𝛼𝑠1, 1) =
1 and 𝑇 (𝑠1𝛼𝑠0, 1) = 2 because there is 1 transition from 𝑠0 to 𝑠1
where agent 1 uses action 𝛼 , and 2 from 𝑠1 to 𝑠0. Now, let 𝜌 be the

path 𝑠0 (𝛼, 𝛼, 𝛿)𝑠1 (𝛼, 𝛼, 𝛽)𝑠0 (𝛼, 𝛼, 𝛿)𝑠1 (𝛼, 𝛽, 𝛼)𝑠0 (𝛼, 𝛼, 𝛿)𝑠1 (𝛼, 𝛽, 𝛼)𝑠0.
We have𝑚2 (𝜌) = {𝑠0}𝑠0𝛼𝑠1{𝑠1}𝑠1𝛼𝑠0{𝑠0, 𝑠1}𝑠1𝛽𝑠0{𝑠0, 𝑠1}.

We consider the partial order between memories as 𝑚 ≤ 𝑚′

if 𝑚 is a prefix of 𝑚′
or if 𝑚 ⊎ 𝑠1 ⊎ 𝑠2 · · · = 𝑚′

for some states

𝑠1, 𝑠2. . . . Notice that, for all 𝑎 ∈ Agt,𝑚𝑎 is increasing for ≤ with

respect to the prefix partial order on paths. The size (number of

symbols) of𝑚𝑎 (𝜌) is bounded by 2
|St |

3|𝑜 |! = 𝑂 (2( |St | |𝑜 |2 ) ), where
|St| and |𝑜 | are respectively the number of states and transitions

in S. Let 𝜌 and 𝜂 be two finite paths and 𝑎 ∈ Agt. We define the

weak memory equivalence relation ≈m
𝑎 ⊆ Paths<𝜔 ×Paths<𝜔 such

that 𝜌 ≈m
𝑎 𝜂 iff𝑚𝑎 (𝜌) = 𝑚𝑎 (𝜂). In addition, we define the strong

memory equivalence ≈M
𝑎 ⊆ Paths<𝜔 × Paths<𝜔 such that 𝜌 ≈M

𝑎 𝜂

iff 𝜌 ≈m
𝑎 𝜂 and last(𝜌) = last(𝜂).

Example 4.2. In Figure 1, let 𝜏 = 𝑠0 (𝛼, 𝛼, 𝛿)𝑠1 (𝛼, 𝛼, 𝛽), and the

paths 𝜂 = 𝜏𝜏𝑠0 (𝛼, 𝛼, 𝛿)𝑠1 and 𝜇 = 𝜏𝜏𝜏𝑠0. We have 𝜂 ≈m
1

𝜇 be-

cause 𝑚1 (𝜂) = 𝑚1 (𝜇) = {𝑠0}𝑠0𝛼𝑠1{𝑠1}𝑠1𝛼𝑠0{𝑠0, 𝑠1}𝑠1𝛼𝑠0{𝑠0, 𝑠1}.
However, last(𝜂) ≠ last(𝜇) so 𝜂 ̸≈M

1
𝜇.

We define memory-bounded strategy assignments that assign

uniform strategies with respect to the strong memory equivalence.

Definition 4.3 (Memory-bounded strategy assignment). Amemory-

bounded strategy assignment 𝜎 for 𝑌 is a strategy assignment such

that, for all 𝑎 ∈ 𝑌 , for all finite paths 𝜌 and 𝜂, if 𝜌 ≈M
𝑎 𝜂 then

𝜎 (𝑎) (𝜌) = 𝜎 (𝑎) (𝜂).

Notice that ∼𝑎 ⊆ ≈M
𝑎 ⊆ ≈m

𝑎 , so a memory-bounded strategy

assignment is also uniform with respect to ∼𝑎 . For a path 𝜌 and an

equivalence relation ∼, we let [[𝜌]]∼ denote the equivalence class

of 𝜌 for ∼. The number of equivalence classes for ≈m
𝑎 and ≈M

𝑎 are

bounded by 2
( |St | |𝑜 |2 )

and |St|2( |St | |𝑜 |2 ) , respectively. Theorem 4.4

shows that agents do not need to recall all the history to win a

game. This is an essential result to prove CapATL decidability.

Theorem 4.4. Let 𝜓 be a CapATL temporal formula, 𝑌 ⊆ Agt
an agent coalition, 𝜌 an infinite path, 𝑖 an index, and 𝜅 a complete
capacity assignment. We have (𝜌, 𝑖, 𝜅) |= ⟨𝑌 ⟩𝜓 if and only if, there
exists a memory-bounded winning strategy assignment for 𝑌 .

Proof. In this proof, we extend the satisfiability for finite path,

denoted by |=𝑓 . For 𝜌 ∈ Paths<𝜔 where 𝑘 = |𝜂 |, for 𝑖 ∈ {1, . . . , 𝑘},
for 𝜙1 and 𝜙2 two CapATL formulae, and for a complete capac-

ity assignment 𝜅, we let (𝜌, 𝑖, 𝜅) |=𝑓 𝜙1 iff any infinite exten-

sion 𝜂 of 𝜌 verifies (𝜂, 𝑖, 𝜅) |= 𝜙1. We let (𝜌, 𝑖, 𝜅) |=𝑓 𝜙1 U 𝜙2
iff (𝜌, 𝑙, 𝜅) |=𝑓 𝜙2 at an index 𝑙 ∈ {𝑖, . . . , 𝑘} and (𝜌, 𝑗, 𝜅) |=𝑓 𝜙1 for

all 𝑗 ∈ {𝑖, . . . , 𝑙 − 1}. Similarly, we let (𝜌, 𝑖, 𝜅) |=𝑓 𝜙1 R 𝜙2 if either

(𝜌, 𝑗, 𝜅) |=𝑓 𝜙2 for all 𝑗 ∈ {𝑖, . . . , 𝑘}, or (𝜌, 𝑙, 𝜅) |=𝑓 𝜙1 ∧ 𝜙2 for

some 𝑙 ∈ {𝑖, . . . , 𝑘} and (𝜌, 𝑗, 𝜅) |=𝑓 𝜙2 for all 𝑗 ∈ {𝑖, . . . , 𝑙}. We

extend the definition of memory for the coalition 𝑌 = {𝑎, . . . , 𝑏}
where 𝑎 < · · · < 𝑏. Formally, for 𝑠, 𝑠′ ∈ St and 𝛼𝑎, . . . , 𝛼𝑏 ∈ Act, we
define 𝑇 (𝑠𝛼𝑎 . . . 𝛼𝑏𝑠′, 𝑌 ) the number of transition in S where all

agents 𝑎′ ∈ 𝑌 does action 𝛼𝑎′ . We define the memory of 𝑌 , s.t., for
𝜌 ∈ Paths<𝜔 , 𝑠 = last(𝜌), 𝑠′ ∈ St, and ®𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ Act𝑛 :

𝑚𝑌 (𝜌 ®𝛼𝑠′) =

𝑚𝑌 (𝜌)𝑠𝛼𝑎 . . . 𝛼𝑏𝑠′{𝑠′} if cnt(𝑠𝛼𝑎 . . . 𝛼𝑏𝑠′,𝑚𝑌 (𝜌)) <

𝑇 (𝑠𝛼𝑎 . . . 𝛼𝑏𝑠′, 𝑌 ),
𝑚𝑌 (𝜌) ⊎ 𝑠′ otherwise.

and𝑚𝑌 (𝜌) = {𝑠} if 𝜌 = 𝑠 . For 𝜌, 𝜂 ∈ Paths<𝜔 , we define the re-
lations ≈m

𝑌
and ≈M

𝑌
⊆ Paths<𝜔 × Paths<𝜔 , such that 𝜌 ≈m

𝑌
𝜂 iff

𝑚𝑌 (𝜌) = 𝑚𝑌 (𝜂), and 𝜌 ≈M
𝑌

𝜂 iff 𝑚𝑌 (𝜌) = 𝑚𝑌 (𝜂) and last(𝜌) =

last(𝜂). The partial order on ≈m
𝑌
’s equivalence classes is defined as

follows: [[𝜌]]≈m
𝑌

≤ [[𝜂]]≈m
𝑌
iff𝑚𝑌 (𝜌) ≤ 𝑚𝑌 (𝜂) (which is indepen-

dent of the representatives). We define a partial-history strategy
assignment 𝜎𝑓 : 𝑌 → (Paths<𝜔 ⇀ Act) that gives partial strategies
for each agent in 𝑌 . However, there must be 𝑃 =

⋃
𝑖∈{1,...,𝑘 } 𝑃𝑖 , the

union of some equivalence classes 𝑃1, . . . , 𝑃𝑘 for ≈M
𝑌
, such that, for

all 𝑎 ∈ 𝑌 , dom(𝜎𝑓 (𝑎)) = 𝑃 . A partial-history strategy assignment is

≈M
𝑌
-uniform. The outcomes of a partial-history strategy assignment

𝜎𝑓 for a coalition𝑌 from a finite path 𝜌 = 𝑠1 ®𝛼1𝑠2 . . . ®𝛼𝑘−1𝑠𝑘 , denoted
by Out𝑓 (𝜌, 𝜎𝑓 ), is the set of finite or infinite paths 𝜂 = 𝜌 ®𝛼𝑘𝑠𝑘+1 . . .
such that, for all 𝑗 ∈ N with 𝑘 ≤ 𝑗 ≤ |𝜂 | − 1 and all 𝑎 ∈ 𝑌 , 𝜎𝑓 (𝑎)
is defined for 𝑠1 ®𝛼1 . . . ®𝛼 𝑗−1𝑠 𝑗 and ®𝛼𝑖 [𝑎] = 𝜎𝑓 (𝑎) (𝑠1 ®𝛼1 . . . ®𝛼 𝑗−1𝑠 𝑗 ).
If 𝑙 = |𝜂 | < 𝜔 , then 𝜎𝑓 (𝑎) is undefined for 𝑠1 ®𝛼1 . . . ®𝛼𝑙−1𝑠𝑙 for all
agents 𝑎 ∈ 𝑌 . It is important to notice that Out𝑓 (𝜌, 𝜎𝑓 ) gives out-
comes that extend 𝜌 . Finally, for a finite path 𝜌 and a path 𝜂 where

𝜂 [1] = last(𝜌), we let 𝜌 · 𝜂 denote the concatenation of 𝜌 and 𝜂

without its first state.

We can start the proof of the theorem. One direction is imme-

diate, because a memory-bounded strategy is a uniform strategy.

Conversely, suppose (𝜌, 𝑖, 𝜅) |= ⟨𝑌 ⟩𝜓 with a winning strategy as-

signment 𝜎 (for the rest of the proof, 𝜌 , 𝑖 , and 𝜎 will always refer

to this). We want to build a memory-bounded winning strategy

assignment 𝜎′. The case ⟨𝑌 ⟩ X 𝜙 does not require memory since
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the agents take only one action. Suppose the formula is ⟨𝑌 ⟩𝜙1U𝜙2.

Let Ω denote the set of finite paths strongly memory equivalent to a

winning outcome prefix, i.e., the finite paths 𝜂 ∈ Paths<𝜔 such that

there is 𝜇 ∈ Out(𝜌 [𝑖], 𝜎) and 𝑗 ∈ N verifying 𝜇≤ 𝑗 ≈M
𝑌

𝜂. Let Θ be

the set of winning outcomes prefixes that have not satisfied 𝜙2 yet,

i.e.,Θ = {𝜂≤ 𝑗 | 𝜂 ∈ Out(𝜌 [𝑖], 𝜎)∧ 𝑗 ∈ N∧(𝜂, 1, 𝜅) |=𝑓 G(𝜙1∧¬𝜙2)}
(recall that the choice of the complete capacity assignment 𝜅 does

not influence the satisfaction of the formula). For a partial-history

strategy assignment 𝜎𝑓 , let H𝜎𝑓
denote the hypothesis “for all

𝜂 ∈ Ω and 𝜇 ∈ Out𝑓 (𝜂, 𝜎𝑓 ), either: (i) 𝜇 = 𝜂, i.e., 𝜎𝑓 is not defined

for 𝜂, (ii) (𝜇, 1, 𝜅) |=(𝑓 ) 𝜙1 U 𝜙2 where |=(𝑓 ) is |= or |=𝑓 depending

on |𝜇 |, or (iii) 𝜇 ∈ Ω and [[𝜂]]≈m
𝑌
< [[𝜇]]≈m

𝑌
”.

The partial-history strategy assignment 𝜎∅ for 𝑌 , defined for the

empty set of histories, verifies H𝜎∅ because of the case (i) of H𝜎∅ .

Now, suppose H𝜎𝑓
holds for some partial-history strategy as-

signment for 𝑌 that is not defined for all histories. The following

builds a partial-history strategy assignment 𝜎′
𝑓
with strictly larger

history domain and such thatH𝜎 ′
𝑓
holds. If, for all 𝜂 ∈ Ω, all out-

comes 𝜇 ∈ Out𝑓 (𝜂, 𝜎𝑓 ) are such that we are in case (ii) of H𝜎𝑓
,

then any extension 𝜎′
𝑓
of 𝜎𝑓 for all histories verifiesH𝜎 ′

𝑓
and has a

strictly larger history domain. Otherwise, we can let 𝑃 = [[𝜇]]≈m
𝑌
be

the equivalence class for ≈m
𝑌
of a finite outcome 𝜇 ∈ Out𝑓 (𝜂, 𝜎𝑓 )

for some 𝜂 ∈ Ω, such that 𝜇 falls in case (i) or (iii) of H𝜎𝑓
. Let

last(𝑃) be the non-empty set of states last(𝑚𝑌 (𝜂)) with 𝜂 ∈ 𝑃

(last(𝑃) does not depend on the choice of the representatives 𝜂 ∈ 𝑃

because 𝑃 is an equivalence class for ≈m
𝑌
). We build the ATL model

C𝑃 =
〈
Agt𝑃 , St𝑃 ,Π𝑃 , 𝜋𝑃 ,Act𝑃 , 𝑑𝑃 , 𝑜𝑃

〉
where

• Agt𝑃 = Agt,
• St𝑃 = last(𝑃) ∪ {𝑊, 𝐿} where𝑊 and 𝐿 are fresh states,

• Π𝑃 = {𝑤𝑖𝑛, 𝑙𝑎𝑠𝑡},
• Act𝑃 = Act ∪ {𝑙𝑜𝑜𝑝} where 𝑙𝑜𝑜𝑝 is a fresh action,

• 𝜋𝑃 (𝑊 ) = {𝑤𝑖𝑛}, 𝜋𝑃 (𝐿) = ∅, and 𝜋𝑃 (𝑠) = {𝑙𝑎𝑠𝑡} if 𝑠 ∈
last(𝑃),

• for 𝑎 ∈ Agt and 𝑠 ∈ last(𝑃), 𝑑𝑃 (𝑎,𝑊 ) = 𝑑𝑃 (𝑎, 𝐿) = {𝑙𝑜𝑜𝑝},
𝑑𝑃 (𝑎, 𝑠) = 𝑑 (𝑎, 𝑠)∩𝐴𝑎 where𝐴𝑎 =

⋃
𝜇∈𝑃∩Θ

⋃
𝜅∈𝐶 (𝜇 ) 𝛾 (𝜅 (𝑎)).

The intuition is that agent 𝑎 is allowed to do an action 𝛼 iff

𝑠 = 𝜇 [ 𝑗] for an outcome 𝜇 ∈ Out(𝜌 [𝑖], 𝜎) that did not satisfy
𝜙2 at index 𝑗 and 𝑎 may do 𝛼 after 𝜇≤ 𝑗 in S.

• 𝑜𝑃 (𝑊, 𝑙𝑜𝑜𝑝, . . . , 𝑙𝑜𝑜𝑝) = 𝑊 , 𝑜𝑃 (𝐿, 𝑙𝑜𝑜𝑝, . . . , 𝑙𝑜𝑜𝑝) = 𝐿, and,

for 𝑠 ∈ last(𝑃) and ®𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ 𝑑𝑃 (1, 𝑠)×· · ·×𝑑𝑃 (𝑛, 𝑠),

𝑜𝑃 (𝑠, 𝛼1, . . . , 𝛼𝑛) =

𝑠′ if ∃𝜂 ∈ 𝑃 , last(𝜂) = 𝑠 and 𝜂 ®𝛼𝑠′ ∈ 𝑃 ,

𝑊 if ∃𝜂 ∈ 𝑃 , last(𝜂) = 𝑠 , and 𝜂 ®𝛼𝑠′ ∈ Ω \ 𝑃 ,
𝐿 otherwise.

We consider the ATL formula 𝜙ATL = ⟨𝑌 ⟩ATL𝑙𝑎𝑠𝑡 U 𝑤𝑖𝑛 where

⟨·⟩ATL is the strategic operator in ATL.

Let us prove all states 𝑠 ∈ {last(𝜂) | 𝜂 ∈ 𝑃 ∩ Ω ∧ (𝜂, 1, 𝜅) ̸|=𝑓

𝜙1U𝜙2} verify 𝑠 |=ATL 𝜙ATL, i.e., prove that all last state 𝑠 of a finite
path 𝜂 from case (i) or (iii) of H𝜎𝑓

, such that 𝜂 ∈ 𝑃 , verifies 𝑠 |=ATL
𝜙ATL. Let such a path 𝜂 and state 𝑠 = last(𝜂) with 𝜂 ∈ 𝑃 ∩ Ω and

(𝜂, 1, 𝜅) ̸|=𝑓 𝜙1U𝜙2. We first show we can take 𝜇 ∈ Θ∩𝑃 and 𝑗 ∈ N
such that 𝜇 [ 𝑗] = 𝑠 . Indeed, 𝜂 ∈ 𝑃 ∩ Ω so there is 𝜇 ∈ Out(𝜌 [𝑖], 𝜎)
and 𝑗 ∈ N such that 𝜇≤ 𝑗 ≈M

𝑌
𝜂. We can change the actions of

agents in Agt \ 𝑌 in 𝜇, and even so, we will have 𝜇 ∈ Out(𝜌 [𝑖], 𝜎)
and 𝜇≤ 𝑗 ≈M

𝑌
𝜂 (because outcomes contains all possible actions for

agents outside the coalition 𝑌 ). In particular, we can take actions

of Agt \ 𝑌 such that 𝜇≤ 𝑗 ≈M
Agt 𝜂, where the equivalence is for all

agents. If (𝜇≤ 𝑗 , 1, 𝜅) |=𝑓 𝜙1 U 𝜙2, then (𝜂, 1, 𝜅) |=𝑓 𝜙1 U 𝜙2 too (by

the similarity of 𝜇≤ 𝑗 and 𝜂 when 𝜇≤ 𝑗 ≈M
Agt 𝜂), which was assumed

false. So (𝜇≤ 𝑗 , 1, 𝜅) |=𝑓 G(𝜙1 ∧ ¬𝜙2) (because (𝜇, 1, 𝜅) |= 𝜙1 U 𝜙2).

This proves that 𝜇≤ 𝑗 ∈ 𝑃 ∩Θ. For the rest of the proof, the symbols

𝑠 , 𝜇 and 𝑗 will only refer to these.

Let 𝜎ATL the strategy assignment such that, for all finite path 𝜂

in C𝑃 starting from 𝑠 and 𝑎 ∈ 𝑌 , if all states of 𝜂 are in last(𝑃) then
𝜎ATL (𝑎) (𝜂) = 𝜎 (𝑎) (𝜇≤ 𝑗 · 𝜂), and, if 𝜂 ends in 𝐿 or𝑀 , 𝜎ATL (𝑎) (𝜂) =
𝑙𝑜𝑜𝑝 . As 𝜇≤ 𝑗 ∈ 𝑃 ∩ Θ, each action of an agent 𝑎 ∈ 𝑌 is in 𝐴𝑎 , so

the strategy 𝜎ATL is feasible in C𝑃 . We claim that 𝜎ATL is winning

for 𝑠 |= 𝜙ATL. Let 𝜂 ∈ OutATL (𝑠, 𝜎ATL), where OutATL is defined as

Definition 2.9 but disregards the capacities (it is like the outcomes

in ATL but records the actions to form a path). There are three

cases: (i) all states from 𝜂 are in last(𝑃), (ii) 𝜂 reaches 𝐿, or (iii) 𝜂
reaches𝑊 . We show that the two first cases are absurd.

Suppose, all states from 𝜂 are in last(𝑃). By the definition of

𝑚𝑌 , all the combinations of actions for agents in 𝑌 between two

consecutive states of 𝜂 appear in 𝜇. As such, we can replace all

transitions 𝑞 ®𝛼𝑞′ from 𝜂 by a transition 𝑞 ®𝛽𝑞′ ∼𝑌 𝑞 ®𝛼𝑞′ (where

∼𝑌=
⋂

𝑎∈𝑌 ∼𝑎) that appears in 𝜇. After replacement, 𝜂 is still

an outcome from OutATL (𝑠, 𝜎ATL) since we changed only Agt \ 𝑌 ’s
actions. Moreover, the path 𝜇 · 𝜂 is in Out(𝜌 [𝑖], 𝜎) and it verifies

(𝜇 ·𝜂, 1, 𝜅) |= G(𝜙1∧¬𝜙2) (because it stays forever in last(𝑃) using
previously used actions for all agents). This is absurd because it is

an outcome of the winning strategy 𝜎 .

Suppose𝜂 = 𝑠1 ®𝛼1 . . . 𝑠𝑘 ®𝛼𝑘𝐿 . . . reaches state 𝐿 for the first time at

index 𝑘+1 (so 𝑠𝑘 ∈ last(𝑃)). By definition of 𝑜𝑃 and𝑑𝑃 (in particular

the definition of 𝐴𝑎), there is a finite path 𝜇′ ∈ 𝑃 ∩ Θ such that

®𝛼𝑘 is feasible by a complete capacity assignment 𝜅′ ∈ 𝐶 (𝜇′). Once
again, we can modify actions of agents in Agt \ 𝑌 in 𝜂≤𝑘 and 𝜇′

such that 𝜅′ ∈ 𝐶 (𝜇′) ∩𝐶 (𝜂≤𝑘 ), and we let 𝜆 = 𝜇′ · 𝜂≤𝑘 . We have

𝜆 ∈ 𝑃 with last(𝜆) = 𝑠𝑘 . There is a unique state 𝑠𝑘+1 ∈ St such that

𝜆 ®𝛼𝑘𝑠𝑘+1 is a path in S. Defined as such, 𝜆 ®𝛼𝑘𝑠𝑘+1 is also the prefix

of an outcome in Out(𝜌 [𝑖], 𝜎), and consequently, 𝜆 ®𝛼𝑘𝑠𝑘+1 ∈ Ω. If
𝜆 ®𝛼𝑘𝑠𝑘+1 ∈ 𝑃 , then 𝜆 should reach 𝑠𝑘+1 instead of 𝐿, which is absurd.

If, 𝜆 ®𝛼𝑘𝑠𝑘+1 ∉ 𝑃 , according to Equation (4), 𝜂 should reach𝑊 instead

of 𝐿, which is also absurd.

Finally, 𝜂 reaches𝑊 and 𝑠 |=ATL 𝜙ATL, and this is true for all

states 𝑠 ∈ {last(𝜂) | 𝜂 ∈ 𝑃 ∩ Ω ∧ (𝜂, 1, 𝜅) ̸|=𝑓 𝜙1 U 𝜙2}.
A famous result about ATL is that having a winning strategy im-

plies having a winning memoryless strategy for all states satisfying

the formula [3]. We denote by 𝜎′ATL such a winning memoryless

strategy. Let 𝜎′
𝑓
denote the partial-history strategy assignment

such that, for 𝑎 ∈ 𝑌 and 𝜂 ∈ Paths<𝜔 , if 𝜂 ∈ dom(𝜎𝑓 (𝑎)) then
𝜎′
𝑓
(𝑎) (𝜂) = 𝜎𝑓 (𝑎) (𝜂) and, if 𝜂 ∈ 𝑃 , 𝜎′

𝑓
(𝑎) (𝜂) = 𝜎′ATL (𝑎) (last(𝜂)).

Notice that this second case never redefines a value of 𝜎𝑓 (𝑎) be-
cause partial-history strategy assignments assign strategy with the

same history domain for each agent. Let 𝜂 ∈ Ω and 𝜆 ∈ Out𝑓 (𝜂, 𝜎′𝑓 ).
In most cases,H𝜎 ′

𝑓
results fromH𝜎𝑓

directly, but the case where

𝜆≤ 𝑗 ∈ 𝑃 for some 𝑗 requires more attention. In the CGS C𝑃 , agents
in Agt\𝑌 have more possible actions than in the CapCGSS because

they are not constrained by theirs capacities. Consequently, the

guaranty to stay in last(𝑃) until making a transition corresponding
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to reaching𝑊 holds. This means that for some 𝑘1 ≥ 𝑗 , we have

𝜆≤𝑘1 ∈ Ω with [[𝜆≤𝑘1 ]]≈m
𝑌
> [[𝜆≤ 𝑗 ]]≈m

𝑌
. If 𝜎𝑓 ’s strategies were de-

fined for 𝜆≤𝑘1 , either (𝜆, 1, 𝜅) |=(𝑓 ) 𝜙1U𝜙2 (andH𝜎 ′
𝑓
is satisfied), or

we can take 𝑘2 ≥ 𝑘1 such that [[𝜆≤𝑘2 ]]≈m
𝑌
> [[𝜆≤𝑘1 ]]≈m

𝑌
, etc. As there

is a bounded number of equivalence classes for ≈M
𝑌
, at some point

(𝜆, 1, 𝜅) |=(𝑓 ) 𝜙1 U 𝜙2 or 𝜆 ∈ Ω with [[𝜆]]≈m
𝑌
> [[𝜆≤ 𝑗 ]]≈m

𝑌
. Finally,

H𝜎 ′
𝑓
holds with 𝜎′

𝑓
defined for strictly more histories. By induction

and the finiteness of the number of ≈M
𝑌
’s equivalence classes, we

can take the strategy assignment 𝜎′ (as the limit of the finite induc-

tion) defined for all histories. All outcomes 𝜂 ∈ Out(𝜌 [𝑖], 𝜎′) verify
(𝜂, 1, 𝜅) |= 𝜙1 U 𝜙2. Notice that the strategy 𝜎

′
is only uniform for

≈M
𝑌

by definition. This means that agents remember also the actions

of other agents of the coalition. However, we can prove that we

can build a memory-bounded strategy assignment from 𝜎′ because
all agents in 𝑌 can compute 𝜎′ and assume each other agent will

follow the plan, and because a same transition 𝑠𝛼𝑠′ is remembered

𝑇 (𝑠𝛼𝑠′, 𝑎) times by each agent 𝑎 according to Equation (1).

This finishes the proof for the case (𝜌, 𝑖, 𝜅) |= ⟨𝑌 ⟩𝜙1 U 𝜙2. The

case ⟨𝑌 ⟩𝜙1 R 𝜙2 is similar except that the reduction into ATL uses

the ATL formula 𝜙 ′ATL = ⟨𝑌 ⟩ATL𝑤𝑖𝑛 R 𝑙𝑎𝑠𝑡 . □

Given Theorem 4.4, we can reduce CapATL model checking to

memoryless ATEL model checking, which implies the following.

Theorem 4.5 (CapATL decidability). CapATL model-checking
problem is decidable. The problem is in NEXPTIME.

Proof. We proceed with a reduction to ATEL [31] model check-

ing. We will use the memoryless semantic with uniform strat-

egy space in ATEL, over CGS with imperfect information. Let

S = ⟨Agt,Cap, St,Π, 𝜋,Act, Γ, 𝛾, 𝑑, 𝑜⟩ be a CapCGS and 𝜙 be a Cap-

ATL formula without nested strategic operators.We first build CS =〈
AgtS, StS,ΠS, 𝜋S,ActS, 𝑑S, 𝑜S, {≡𝑎}𝑎∈AgtS

〉
, a CGS with imper-

fect information such that, given two finite paths 𝜌, 𝜂 ∈ Paths<𝜔 ,

• AgtS = Agt,
• StS is the (finite) set of equivalence classes of ≈M

Agt,

• ΠS contains Π and a fresh proposition ℓ𝜅 for each complete

capacity assignment 𝜅.

• 𝜋S ( [[𝜌]]≈M
Agt

) = 𝜋 (last(𝜌)) ∪⋃
𝜅∈𝐶 (𝜌 ) ℓ𝜅

• ActS = Act,
• for𝑎 ∈ Agt,𝑑S (𝑎, [[𝜌]]≈M

Agt
) = 𝑑 (𝑎, last(𝜌))∩⋃𝜅∈𝐶 (𝜌 ) 𝛾 (𝜅 (𝑎)),

• for ®𝛼 = (𝛼1, . . . , 𝛼𝑛) ∈ 𝑑S (1, [[𝜌]]≈M
Agt

)×· · ·×𝑑S (𝑛, [[𝜌]]≈M
Agt

),
we let the transition 𝑜S ( [[𝜌]]≈M

Agt
, 𝛼1, . . . , 𝛼𝑛) = [[𝜂]]≈M

Agt
iff

𝜌 ®𝛼 last(𝜂) ≈M
Agt 𝜂,

• for 𝑎 ∈ Agt, we set [[𝜌]]≈M
Agt

≡𝑎 [[𝜂]]≈M
Agt

iff [[𝜌]]≈M
𝑎
= [[𝜂]]≈M

𝑎
.

Let KATEL and ⟨·⟩ATEL be the knowledge and strategic operators in

ATEL.We transform𝜙 into an ATEL formula𝜙ATEL by replacing ⟨𝑌 ⟩
by ⟨𝑌 ⟩ATEL andK𝑎

cap (𝜑) byK𝑎
ATEL (𝜑

′) where 𝜑 ′ is the conjunction
of (¬ℓ𝜅 ) for all complete capacity assignment 𝜅 such that 𝜅 ̸ |= 𝜑 .

By Theorem 4.4, we have 𝑠 |= 𝜙 iff [[𝑠]]≈M
Agt

|=ATEL 𝜙ATEL.
The model-checking procedure is the following: (i) we build the

ATEL model (in exponential time) that is exponentially larger than

the initial CapCGS, (ii) for each subformula of the form 𝜙 ′ = ⟨𝑌 ⟩𝜓 ,
starting from the innermost formulae, we compute the set of states
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Figure 2: The CGS with imperfect information obtained from
the model-checking transformation on the CapCGS from
Figure 1.

𝑠 ∈ St such that [[𝑠]]≈M
Agt

|=ATEL 𝜙 ′ATEL, where 𝜙
′
ATEL is obtained

as described above, (iii) we label each state 𝑠 from the previous

step with a fresh proposition ℓ𝜙 ′ and replace the subformula 𝜙 ′ by
ℓ𝜙 in the original formula 𝜙 , (iv) we iterate to step (ii) until the
outermost formula, (v) we return the set of states that validate the

outermost formula. In step (ii), the states of the form [[𝑠]]≈M
Agt

are

distinguishable from all other states by all agents. So the question

whether [[𝑠]]≈M
Agt

|=ATEL 𝜙 ′ATEL should hold with the same strategy

from states equivalent to [[𝑠]]≈M
Agt

does not apply (cf., [22]). The

construction time and size of CS are exponential with respect to

S and memoryless ATEL model-checking without nested strategic

operators is NP-complete [31] (but happens on an exponential size

model). Step (ii) runs a polynomial number of time with respect

to the formula length (once for each strategic operator). Finally,

CapATL model checking is in NEXPTIME. □

Example 4.6. We display a simple example of the model-checking

procedure based on the CapCGS of Figure 1 from Example 2.2. Af-

ter transformation, we get the CGS with imperfect information

from Figure 2. We display only the states generated by path start-

ing in 𝑠0. States linked with a dashed line are equivalent for ≈1.

Let 𝜅1 (resp. 𝜅2) be the complete capacity assignment such that

𝜅1 (3) = 𝑐1 (resp. 𝜅2 (3) = 𝑐2). Gray states have the atomic propo-

sition 𝑔𝑟𝑎𝑦, double states have ℓ𝜅1 , thick states have ℓ𝜅2 , and nor-

mal edges states have the last two. The state 𝑞0 is [[𝑠0]]≈M
Agt

and

the other states are the equivalence classes for the paths in S
reaching them from 𝑞0 with the same transitions. For instance,

𝑞1 = [[𝑠0 (𝛼, 𝛼, 𝛿)𝑠1]]≈M
Agt

and 𝑞6 = [[𝑠0 (𝛼, 𝛼, 𝛿)𝑠1 (𝛼, 𝛽, 𝛽)𝑠0]]≈M
Agt
.

The formula 𝜙 = ⟨1⟩F (𝑔𝑟𝑎𝑦 ∧ K1

cap (3)) from Example 3.3 and

Figure 1 turns into 𝜙ATEL = ⟨1⟩ATELF (𝑔𝑟𝑎𝑦∧ (K2

ATEL (ℓ𝜅1 ∧ ¬ℓ𝜅2 ) ∨
K2

ATEL (ℓ𝜅2 ∧ ¬ℓ𝜅1 ))). So, we have that 𝑠0 |= 𝜙 holds because𝑞0 |=ATEL
𝜙ATEL holds.

5 CASE STUDY
We consider a team of security engineers that wants to design a

honeypot to identify an attacker in their company network. They

assume three different types of attacker, denoted by 𝑎𝑡𝑡1, 𝑎𝑡𝑡2, and

𝑎𝑡𝑡3, which differ because they master different vulnerabilities. It
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Figure 3: CapCGS for the case study.

is known that 𝑎𝑡𝑡1 can do the exploits 𝑒12, 𝑒13, and 𝑒1, while 𝑎𝑡𝑡2
masters 𝑒12 and 𝑒23, and 𝑎𝑡𝑡3 knows 𝑒13, 𝑒23, and 𝑒3. Precisely, the

team designs two virtual machines,𝑚1 and𝑚2, with different vul-

nerabilities, namely 𝑣𝑢𝑙1 in𝑚1, and both 𝑣𝑢𝑙2 and 𝑣𝑢𝑙3 in𝑚2. They

identify that 𝑣𝑢𝑙1 suffers from the exploits 𝑒12 and 𝑒23 that induce

a different intermediary state (𝐸12 and 𝐸23, respectively) in the

system. Moreover, depending on the service exposed on𝑚2, the

vulnerability 𝑣𝑢𝑙2 can be directly exploited by 𝑒23 if the service is

𝑠2 or 𝑒13 if the service is 𝑠1. Vulnerability 𝑣𝑢𝑙2 also suffers from

𝑒12 with service 𝑠1 and 𝑒13 with service 𝑠2. However, in the two

latter cases (called long exploits), the system goes in an intermediary

state 𝐸2 and the exploit success depends on the environment: in the

random case 𝑟1 the attack succeeds, and in the case 𝑟2 the attack

fails. To avoid this randomness, the engineers enable the honeypot

to produce a fake output (denoted by 𝑓 ) to make the attacker think

the attack succeeded, whatever the environment random choice

𝑟1 or 𝑟2. As mentioned,𝑚2 is also vulnerable to 𝑣𝑢𝑙3 if the service

is 𝑠1 (resp. 𝑠2) and the attacker uses the advanced exploit 𝑒1 (resp.

𝑒3). The exploitation of 𝑣𝑢𝑙3 is dangerous because the attacker can

compromise the honeypot and get root access to the host machine.

Finally, the engineers decide to put a file of mock passwords in the

machine𝑚2 accessible if the attacker exploits 𝑣𝑢𝑙2.

Thus, we can formalize the problem as a three-agent CapCGS

where the first agent is the defender (𝐷 = 1), the second is the

attacker (𝐴 = 2), and the third is the environment (𝐸 = 3). The

defender has two capacities: Γ(𝐷) = {𝑟𝑒𝑎𝑙, ℎ𝑜𝑛𝑒𝑦𝑝𝑜𝑡} represent-
ing a real system or a honeypot. The attacker has three capacities

Γ(𝐴) = {𝑎𝑡𝑡1, 𝑎𝑡𝑡2, 𝑎𝑡𝑡3}, one for each attacker profile, and the envi-

ronment has a unique capacity Γ(𝐸) = {𝑒𝑛𝑣}. Here are the actions
available to each capacity in this scenario. For the real defender,

𝛾 (𝑟𝑒𝑎𝑙) = {𝑝1, 𝑝2, 𝑑1, 𝑑2, 𝑠1, 𝑠2, 𝑛}: i.e., plug (resp. disconnect) the

machine𝑚1 with 𝑝1 (resp. 𝑑1) and𝑚2 with 𝑝2 (resp. 𝑑2), set ser-

vice 1 with 𝑠2 and 2 with 𝑠2, or skip with 𝑛. The honeypot has one

additional action 𝑓 to produce a fake output and pretend the long

exploits of 𝑣𝑢𝑙2 succeeded whatever the environment’s random-

ness, so 𝛾 (ℎ𝑜𝑛𝑒𝑦𝑝𝑜𝑡) = {𝑝1, 𝑝2, 𝑑1, 𝑑2, 𝑠1, 𝑠2, 𝑓 , 𝑛}. Finally, 𝛾 (𝑎𝑡𝑡1) =
{𝑒12, 𝑒13, 𝑒1, 𝑛}, 𝛾 (𝑎𝑡𝑡2) = {𝑒12, 𝑒23, 𝑛}, 𝛾 (𝑎𝑡𝑡3) = {𝑒13, 𝑒23, 𝑒3, 𝑛},
and the environment has 𝛾 (𝑒𝑛𝑣) = {𝑟1, 𝑟2, 𝑛}. The agents, capaci-
ties, and actions are summarized in Tables 1 and 2. Moreover, the

CapCGS in Figure 3 formalizes the system according to the descrip-

tion, where some loop transitions are ignored for clarity.

We want to ensure that the honeypot can detect the attacker pro-

file, that the attacker does not determine that the system is not real,

and that the honeypot is not compromised. The following formula

can express the desired property, where the atomic proposition

Agent Capacity Actions

𝐷
ℎ𝑜𝑛𝑒𝑦𝑝𝑜𝑡 {𝑝1, 𝑝2, 𝑑1, 𝑑2, 𝑠1, 𝑠2, 𝑓 , 𝑛}

𝑟𝑒𝑎𝑙 {𝑝1, 𝑝2, 𝑑1, 𝑑2, 𝑠1, 𝑠2, 𝑛}

𝐴
𝑎𝑡𝑡1 {𝑒12, 𝑒13, 𝑒1, 𝑛}
𝑎𝑡𝑡2 {𝑒12, 𝑒23, 𝑛}
𝑎𝑡𝑡3 {𝑒13, 𝑒23, 𝑒3, 𝑛}

𝐸 𝑒𝑛𝑣 {𝑟1, 𝑟2, 𝑛}
Table 1: Agents, capacities, and actions for the case study.

Action Description

𝑝1 plug machine𝑚1

𝑝2 plug machine𝑚2

𝑑1 disconnect machine𝑚1

𝑑2 disconnect machine𝑚2

𝑠1 use service 𝑠1 on𝑚2

𝑠2 use service 𝑠2 on𝑚2

𝑓 fake long exploits success of 𝑣𝑢𝑙2
𝑒1 exploit 𝑒1 against 𝑣𝑢𝑙3
𝑒3 exploit 𝑒3 against 𝑣𝑢𝑙3
𝑒12 exploit 𝑒12 against 𝑣𝑢𝑙1 or 𝑣𝑢𝑙2
𝑒13 exploit 𝑒13 against 𝑣𝑢𝑙1 or 𝑣𝑢𝑙2
𝑒23 exploit 𝑒23 against 𝑣𝑢𝑙1 or 𝑣𝑢𝑙2
𝑟1 random environment choice 𝑟1
𝑟2 random environment choice 𝑟2
𝑛 do nothing

Table 2: Actions description for the case study.

ℎ𝑎𝑐𝑘𝑒𝑑 holds only in 𝐻 and𝑤𝑖𝑛 holds only in𝑊 :

⟨𝐷 ↦→ ℎ𝑜𝑛𝑒𝑦𝑝𝑜𝑡⟩(¬ℎ𝑎𝑐𝑘𝑒𝑑)U (M𝐴
cap (𝐷 ↦→ 𝑟𝑒𝑎𝑙)∧𝑤𝑖𝑛∧K𝐷

cap (𝐴))

It turns out that state 𝐼 verifies this property in the model. The

winning strategy for the defender is to first use 𝑝1 in 𝐼 , then use 𝑝2
the second time and 𝑠1 in 𝑃2 if the computation was in 𝐸23 and 𝑠2
if the computation was in 𝐸12. Finally, the defender can use 𝑓 in

𝐸2, and still the attacker cannot be sure the defender is a honeypot

because the environment might have done 𝑟1.

6 CONCLUSION
This paper introduces CapATL to reason about MAS where agents

are bounded to capacities that restrict their possible actions. The

capacities account for the diversity of entities that may play the role

of an agent. We proved the decidability of CapATL model checking

in NEXPTIME. A cyber deception use case showed CapATL applica-

bility and the practical properties to design and pilot an adaptable

honeypot, considering the uncertain profiles of the agents.

There are several directions to continue working on CapATL. We

would like to investigate different approximations and restrictions

to find an efficient model-checking algorithm, satisfactory for real-

world applications. We plan to look at quantitative aspects, such as

in [4, 25–27], but for capacities. Moreover, we can extend our idea

to SL [6, 7, 28]. Finally, we want to investigate further the theory

of capacities too, for including them in a powerful language.
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