Full Research Paper

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

Strategic Reasoning under Capacity-constrained Agents

Gabriel Ballot
SEIDO Lab, EDF R&D and Télécom Paris, Institut
Polytechnique de Paris
Palaiseau, France
gabriel.ballot@telecom-paris.fr

Jean Leneutre
LTCI, Télécom Paris, Institut Polytechnique de Paris
Palaiseau, France
jean.leneutre@telecom-paris.fr

ABSTRACT

Personality traits, experience level, or physical characteristics can
affect the capacity (or profile) of an agent. For instance, a basketball
player may be right-handed or left-handed, and these two versions
cannot do the same actions. Dribbling past the player may require,
first, understanding its handedness and, accordingly, execute a trick.
Generally, capacities apply to systems where multiple entities can
play the same role in the system, such as different client versions in
protocol analysis, different robots in heterogeneous fleets, different
personality traits in social structure modeling, or different attacker
profiles in cybersecurity. With the capacity of other agents being
unknown at the system’s initialization, the hardness of imperfect
information arises. Our contributions are: (i) introducing Capacity
Alternating-time Temporal Logic (CapATL) to reason about con-
current game structure where agents are bounded to capacities,
(ii) a model-checking algorithm for CapATL, and (iii) a case study
of adaptive honeypot design for cyber deception.

KEYWORDS

multi-agent system verification; strategic reasoning; cybersecurity

ACM Reference Format:

Gabriel Ballot, Vadim Malvone, Jean Leneutre, and Youssef Laarouchi. 2024.
Strategic Reasoning under Capacity-constrained Agents. In Proc. of the 23rd
International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), Auckland, New Zealand, May 6 — 10, 2024, IFAAMAS, 9 pages.

1 INTRODUCTION

Engineers design increasingly complex systems and specifications
often require books to be written on. It is an illusion to believe that
implementations behave as specified, even after final proofreading
by an expert. Researchers developed formal verification techniques
to tackle this issue and rigorously prove systems’ correctness. Model
checking [12] is the branch of formal verification that aims to
check specifications for all system computations. It relies on three
components: a modeling formalism to abstract the real system, a
specification formalism for expressing non-ambiguous properties,

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 — 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

This work is licensed under a Creative Commons Attribution
International 4.0 License.

123

Vadim Malvone
LTCI, Télécom Paris, Institut Polytechnique de Paris
Palaiseau, France
vadim.malvone@telecom-paris.fr

Youssef Laarouchi
SEIDO Lab, EDF R&D
Palaiseau, France
youssef.laarouchi@edf.fr

and a model-checking algorithm to verify if a given property holds
on a given model.

Verification was applied to closed systems until the early 2000s.
However, the need to analyze open systems appeared because of
their interconnection. The model-checking community get inter-
ested in verifying multi-agent systems (MASs) that depict the in-
teraction between different entities. Most notably, Alur et al. in-
troduced Alternating-time Temporal Logic (ATL) [3] to express
the strategic ability of a set of agents, called coalition, to ensure
temporal objectives. ATL-based logics are interpreted over concur-
rent game structure (CGS): from a given state, each agent chooses
one of its available actions, and the game progresses to a new state
according to the agents’ joint action. For example, the ATL property
readCmd — {(controller)(—~write) U read, could mean “if a read
command arrives, the memory controller can prevent any write in
the register until the read happens”. The success of ATL comes from
its computational simplicity because its model-checking problem
is PTIME-complete. ATL paved the way for a multitude of exten-
sions regarding epistemic [18, 22, 31, 33, 34], quantitative [2, 29],
probabilistic [11, 17, 29, 30], or real-time [10, 13] objectives, as well
as strategy class specifications in the description logic [28, 35, 36].

One of the most active research direction is epistemic ATL-based
extensions. Each agent a gets an indistinguishability relation ~,
on states. If s ~4 s’, agent a cannot tell if the system is in state s
or s’. It also introduces the notion of uniform strategy, meaning
agents’ strategy must give the same action for indistinguishable
histories. Van der Hoek and Wooldridge introduced the first version
of ATEL [33]. It extends ATL with a knowledge operator K, such
that a knows ¢ in a state s if ¢ holds in all indistinguishable states
s’ ~q s. However, the strategic operator did not use uniform strate-
gies, which was counterintuitive because agents can decide their
actions according to information they cannot observe. Jamroga rede-
fined ATEL [18] with the uniformity condition on agents’ strategies
as in [3]. Schobbens [31] imposed the uniformity condition also in
the initial state. Finally, in 2004, Jamroga and van der Hoek defined
ATOL [22] similarly to ATEL, but the coalition knowledge about the
strategy is specified in the language. A fundamental result of ATL
with imperfect information and memoryful strategies (depending
on the whole history) is the undecidability of the model-checking
problem [14]. Consequently, researchers seek workarounds to es-
tablish decidability results like bounded-memory strategies [31],
natural strategies [20, 21], particular information models (static,
dynamic, or recurring) [9], or approximate verification [5, 8, 15, 19].

https://orcid.org/0000-0001-5316-0102
https://orcid.org/0000-0001-6138-4229
https://orcid.org/0000-0003-1943-1583
https://orcid.org/0000-0003-2103-5993
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

Full Research Paper

Contribution. This paper introduces Capacity Alternating-time
Temporal Logic (CapATL) that extends ATL with the notion of
agents’ capacities. At the system’s initialization, each agent chooses
secretly a capacity, introducing imperfect information. This capac-
ity determines the set of actions available for the agent. This notion
is intuitive since, in various situations, a single agent can encom-
pass different entities. For instance, in sports, the opponent may be
right-handed or left-handed, and the player’s actions may depend
on it. When the game starts, the agents do not know the opponent’s
handedness, but they might identify it during the game and act
consequently. More practically, we see various scenarios where
agents can have different private capacities. In distributed comput-
ing, an agent may run one among different protocol versions and
not declare it publicly. Finding a distributed protocol verifying good
properties where protocol versions are uncertain is challenging.
Conversely, CapATL could easily model it using one capacity per
client version. In robotics, a heterogeneous fleet could be modeled
with a capacity per type of robot. In social structure modeling, the
different personality traits of agents (altruists, adventurous, selfish,
etc.) can be capacities. In cyber security, the attacker’s capacities
can correspond to its resources and skills. Identifying the attacker’s
capacity and responding accordingly is a fundamental and challeng-
ing problem. The contributions of this paper are: (i) introducing
CapATL, to reason about CGS with capacities, (ii) solving CapATL
model checking with a NEXPTIME algorithm, and (iii) a case study
where CapATL synthesizes adaptive cyber honeypots strategies.

Related work. CapATL is closely related to ATEL [31]. Indeed,
CapATL can be reduced to ATEL with an exponential cost on the
number of states (duplicating the CapATL structure for each com-
bination of capacities). However, CapATL semantics considers that
agents have perfect recall, hence, the reduction is into an undecid-
able problem [14] (ATEL with perfect recall). This emphasizes that
CapATL is not just a syntactic sugar for ATEL. In contrast, CapATL
highlights a new decidable fragment of ATEL with perfect recall,
which does not fall into the other known decidable fragments [9].

The notion of capacity helps reasoning on the notion of strategy:
an agent with a capacity constraint has a strategy to achieve a goal
if this strategy uses only actions available for this capacity. Actions
are also specified explicitly in AT(E)L-A [1] and ATLEA [16]: the
strategic operator imposes some agents’ actions for the next transi-
tion only. A more explicit strategy manipulation in the language
is defined in ATLES [35] and IATL [36]. The first adds an explicit
strategy commitment operator, and the second forces agents to
keep their strategy when nested strategic operators have different
coalitions. As opposed to CapATL these logics do not consider mul-
tiple profiles for agents. In 2014, Mogavero et al. defined SL [28]
with more descriptive power regarding strategies because they
are treated as first-order objects and are quantified independently
from agents. While ATL uses a strategy quantifier for agents coali-
tion (Y) (“there exists a strategy for agents in Y”), SL separates
the strategy quantification 3s (“there exists a strategy s”) and the
agent strategy assignment (x, s) (“agent x uses strategy s”). As such,
SL can give the same strategy to several agents or specify Nash
equilibriums. SL model-checking problem is non-elementary with
respect to the formula size (and PTIME-complete with respect to
the game structure). Several fragments have been studied to reduce

124

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

the complexity [7, 28]. However, none of these logics reason about
strategies regarding the actions performed. So, CapATL tackles a
different aspect.

Back in 1993, van der Hoek et al. defined a logic of capabili-
ties [32] where, in each state, each agent is able to perform a given
set of actions. The logic has an operator A which is true if the
agent a can perform the action « in the current state. However,
there is no notion of different capacities for a single agent: in Cap-
ATL, the agents must commit to performing the same set of actions
for the whole computation. This dynamic aspect is not present in
the logic of capabilities. Lesperance et al. also proposed a formal
framework to reason about “knowing how to do an action” [24].
Once again, it does not yield the dynamic aspect of CapATL.

Outline. The rest of this paper is organized as follows: our game
structure and logic are introduced respectively in Sections 2 and 3,
the model checking is established in Section 4, a case study is
developed in Section 5, and Section 6 concludes this paper.

2 CGS WITH CAPACITIES

This section defines the system’s modeling formalism and the pos-
sible computations on that system. To follow the tradition of post-
2002 ATL-based logics, we rely on the general framework of CGS,
with two differences. First, we add the notion of capacities in the
structure. Second, we name actions explicitly because they are
particularly meaningful with respect to capacities.

Given a set X, P(X) denotes the set of subsets of X. We write
f:X — Y (resp. g : X — Y) to introduce a partial function f (resp.
application g) from a set X to a set Y, and dom(f) denotes the do-
main of f. The set of positive integers is denoted by N. Definition 2.1
defines the Capacity Concurrent Game Structure (CapCGS).

Definition 2.1 (Capacity Concurrent Game Structure). A CapCGS
(Agt, Cap, St, IL, 7, Act, T, y, d, 0) is a structure with the following
attributes: a set of n agents Agt = {1, ..., n}, a finite set of capacities
Cap, a finite set of states St, a finite set of atomic propositions II,
a labeling function 7 : St — P(II), a finite set of actions Act, a
function T : Agt — P (Cap) that assigns a subset of capacities to
each agent, a function y : Cap — P(Act) that assigns a subset
of actions to each capacity, a protocol function d : Agt X St —
P (Act) where d(a,s) is the set of actions available for the agent
a € Agt in the state s € St and verifies d(a,s) < Ucer(a) v(c)
and d(a,s) Ny(c) # 0 for all ¢ € T'(a), and a partial transition
function o : St X Act” — St defined for all (s, a1, . .., ap) verifying
aq € d(a,s) for all a € Agt.

The restriction on the protocol function imposes that every agent,
whatever its capacity, has at least one available action, and a transi-
tion exists for all combinations of agents’ available actions.

Example 2.2. Figure 1 is an example of CapCGS with three agents
Agt = {1,2,3}. Agents 1 and 2 have only one capacity I'(1) =T'(2) =
{c} and the actions possible for c are y(c) = {a, f}. Agent 3 has
two possible capacities T'(3) = {c1, c2} and capacity ¢ (resp. c2) let
the agent do actions and § (resp. f and 9), i.e, y(c1) = {a, 8} and
y(c2) = {B, 8}. We have IT = {gray} and gray holds only in s, i.e.,
7(so) = m(s1) = 0 and 7(s2) = {gray}.

In the rest of this paper, we consider a general CapCGS S =
(Agt, Cap, St,I1, 7, Act, T, y, d, o) with n agents. Intuitively, during

Full Research Paper

Agent | Capacity | Actions
1 c {a B}

2 c {a B}

3 c1 {a, 6}
c2 {p.6}

Figure 1: A simple CapCGS with three agents.

a play, each agent a € Agt will secretly choose one of its capac-
ities ¢ € I'(a), meaning that a can use only the actions in y(c).
An interesting question for the verification of complex systems
with capacity constraints (and we will formalize it in Section 3)
is whether a coalition has a strategy to guarantee temporal and
epistemic properties, including identifying the capacity of other
agents. First, we remind some definitions that apply to CGS and are
adapted to CapCGS. A path describes the possible realizations of the
game. It contains information about the succession of states and ac-
tions of all the agents. Formally, a path p is a possibly infinite word
p = s1d120y ... where @; = (al.l, ..,al) € Act” is the agents’
joint action at step i. It must satisfy for all i, sj+1 = o(s;, al.l, A a;’).
If a path is finite, it ends with a state. The set of paths, finite paths,
and infinite paths are respectively denoted by Paths, Paths<“, and
Paths®. We denote by |p| the number of states in p (p has [p| — 1
joint actions), and |p| = w if p is infinite. We denote p’s prefix by
p<i =811 ... dj—1si (which has 2i — 1 symbols) and, if |p| < w, we
denote p’s last state by last(p). We access p’s it state by p[i] = s;
and, given a joint action @ = (ay,...,a,) € Act”, we denote by
@[a] = aq4 the action of agent a.

Example 2.3. In the setting of Example 2.2, we can define the
paths p = si(a, &, f)so(a, @, 0)s1(a, a, f)so and, changing the last
transition, 1 = s1(a, a, B)so(a, a, 8)s1(a, B, &)so-

We consider agents cannot observe other agents’ actions, but
only the sequence of paths and their actions. Definition 2.4 formal-
izes it with an equivalence relation over paths for each agent, called
indistinguishability relation.

Definition 2.4 (Indistinguishability). Two paths p = sj@1s20z . ..
and n = q1 ﬁqg ﬁz ... are indistinguishable for an agent a € Agt,
denoted by p ~4 n,iff (i) |p| = 5|, (i) for alli € {1,...,|p|}. si = qi,
and (iii) for all i € {1,...,|p| - 1}, @[a] = fi[a].

A (memoryful) strategy is a function s : Paths<® — Act that
maps each finite path to an action. A strategy s for an agent a € Agt
is called uniform (for ~) if, for all finite paths p and n, p ~4 1
implies s(p) = s(n). We will use assignment functions similarly
to [28] to assign a strategy or a capacity to an agent.

Definition 2.5 (Memoryful uniform strategy assignment). A mem-
oryful uniform strategy assignment is a partial function o : Agt —
(Paths<® — Act) that assigns memoryful uniform strategies to
agents. For all a € dom(o), there must exist a capacity ¢ € I'(a)
such that, for all p € Paths<®, o(a)(p) € d(a, last(p)) N y(c).

Definition 2.6 (Capacity assignment). A capacity assignment is
a partial function k : Agt — Cap that assigns capacities to agents,
s.t., for an agent a € Agt, we have k(a) € I'(a).

125

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

In ATL, whenever a memoryful strategy satisfies a property gary,
then a memoryless strategy (mapping only states to the actions) also
exists to satisfy @gat. As such, ATL reasoning needs only to deal
with memoryless strategies. However, this is not true in CapATL
(cf., Theorem 3.4), and we have to reason about the memoryful
class of strategies. This emphasizes that CapATL analysis requires
more involved tools than ATL analysis. For the rest of this paper,
all strategies are memoryful and uniform by default. We say that a
(capacity or strategy) assignment is complete if its domain is Agt.

Agents cannot change capacities on a path p in a CapCGS. Con-
sequently, we can rule out the complete capacity assignments that
do not allow the agent to use some actions from p. We formalize
this in the notion of p-compatible assignments.

Definition 2.7 (Path compatible assignments). Given a path p =
$1@1 . .. @15k, We let C(p) denote the set of possible complete
capacity assignments that may bring about p. We have k € C(p) iff
foralli e {1,...,k} and a € Agt, @;[a] € y(x(a)).

Example 2.8. Using the paths p and n defined in Example 2.3, on
the one hand, we have C(p) = {x} where k(1) = ¢, ¥(2) = ¢, and
k(3) = cy. This capacity assignment is the only one that could give
the path p. On the other hand, C() = 0 because agent 3 has no
capacity that allow actions « and f in the same path.

Let p = sq&1s2dz ... be a path. Notice that we can decompose
C(p) = Nie(a,...|p|-1} C(sidisi+1). This result shows that the multi-
plicity of a same transition in a path and the transition order do not
matter to know what are the compatible capacity assignments. We
can now define the outcomes of a strategy assignment from a state.
It returns the extending paths respecting a capacity assignment
and the input strategy assignment.

Definition 2.9 (Outcomes). Let s € St and o be a strategy assign-
ment for a coalition Y C Agt. The set of outcomes Out(s,0) C
Paths® is a set of infinite paths 5 = sy@1s2d ... such that s; = s,
C(n) # 0,and, foralli € Nanda € Y, @;[a] = o(a)(s1a1 . . . &i—1Si)-

3 CAPACITY ATL

This section introduces CapATL to reason about the strategic, epis-
temic, and temporal properties of CapCGS. Subsection 3.1 defines
CapATL’s syntax and Subsection 3.2 gives its semantics.

3.1 Syntax

CapATL is an extension of ATL [3] that allows to reason about
capacities. It can express properties like “Can a coalition of agents
guess other agents’ capacities?”. It adds a knowledge operator to
ATL that contains a capacity assignment formula. This subformula
is a propositional formula that characterizes a set of complete ca-
pacity assignments.

Definition 3.1 (CapATL syntax). The following grammar defines
a CapATL formula ¢:

¢ =t Kap(@) | 2p 1 ¢ NG I (V)Y
Yi=XPlodUP$RS
pu=ac|opleng

where ¢ € II is an atomic proposition, Y C Agt is an agent coalition,
a € Agt is an agent, and ¢ € Cap is a capacity.

Full Research Paper

As in ATL, (-) is the strategic operator, and (Y)y means that Y
has a strategy to enforce ¢ (called temporal formula) whatever the
actions of the other agents. The strategic operator is immediately
followed by a temporal operator, either X for “next”, U for “until”,
or R for “release” (the dual of). Finally, K&, is the knowledge
operator and K&, (¢) means that agent a knows that the capacity
assignment verifies ¢ where ¢ is called capacity assignment formula:
it characterizes a set of capacity assignments. For example, a —
c1 A (b ¢y Vb > c3)—where V is defined as usual—characterizes
the set of complete capacity assignments k verifying k(a) = ¢ and
k(b) € {c, c3}. The original syntax for ATL defines the “globally”
operator G ¢ instead of the “release” operator ¢ R ¢. But as noticed
by [23], in ATL, R cannot be inferred from G and U as in CTL, or
from the dual of U because the negation of temporal formula is
not defined. It is noteworthy that our knowledge operator K¢,
deals with a’s knowledge about agents’ capacities, while the usual
knowledge operator in epistemic logics handles properties of the
model (e.g., “Do agents know that the current state has some atomic
proposition £?7).

Syntactic sugar. For 91 and 92 two CapATL or capacity assign-
ment formulae, the disjunction J; V 92 and implication ¢; — &
are defined as usual, as well as T and L. The dual of the strategic
operator is denoted by [Y]y/, meaning “Y cannot avoid ¥, and
the dual ME,,(¢) = =KE, (~¢) means “the capacity assignment
might verify ¢ from agent a’s point of view”. The globally opera-
toris G¢ = L R ¢, and the eventually operator is F¢p = T U §.
The strategic operator is implicitly quantified with an existential
quantifier for the capacity of the strategic coalition (cf., Defini-
tion 3.2). To refine this behavior, a formula of the form ()i where
¢ is a capacity assignment formula involving the agents forming
a coalition Y means that “Y can enforce ¢ using an assignment
verifying ¢”. For instance, {(a — ¢1 A =b — c3) means that the
coalition {a, b} has a strategy to enforce ¢, a can use c; for this
strategy, and b can use a capacity different from cy for this strategy.
The formula (p)y can be derived from the syntax as follows. Let
Y denote the set of agents occurring in ¢ and M = A ey M, (¢)
which is true iff agents in Y can use capacities verifying ¢. We have
(@)X ¢ =(Y)X($ AM), (p)p1 U ¢2 = (Y)$1 U (¢2 A M), and
(@Yp1 R g2 = (V)1 R (¢p2 A M). Finally, for two agents a and b,
we write K&, (b) = Veer(p) Kéap (b) to simplify a formula
meaning that agent a knows agent b’s capacity.

3.2 Semantics

CapATL semantics is formalized through a satisfaction relation for
an infinite path, an index of this path, and a capacity assignment.
Note that ATL uses paths containing only states instead of paths
with states and joint actions because the actions between states do
not matter. However, in CapATL, having the actions is essential to
determine what agents know.

Definition 3.2 (CapATL semantics). Let p be an infinite path, i > 0
be an index, k be a complete capacity assignment, £ be an atomic
proposition, a be an agent, Y be a coalition of agents, (¢, ¢1, ¢2) be
three CapATL formulae, i be a temporal formula, and (9, 91, 92) be
three CapATL or capacity assignment formulae. CapATL semantics
is defined through the following satisfaction relation:

126

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

e (p,ix) ELiff ¢ € n(p[i]),

e (p,i,k) Far ciffk(a) =c,

o (pi,k) E (Ké’ap(fp) iff for all n ~4 p, for all ¥’ € C(n<;), we
have (1,1, ") E ¢,

o (p.ik) O iff (p,iys) I O,

o (pi,k) Ed ASiff (p,i,k) E &1 and (p, i, k) | J2,

o (p,i,x) | (Y)¢, iff there is a strategy assignment o for
Y—called winning strategy—such that, for all outcomes 7 €
Out(pli], o), we have (1, 1,x) E ¢,

* (pik) EXiff (p,i+ 1K) E ¢,

o (p,i,k) E ¢1 U ¢, iff there exists j > i, s.t, we have
(p,j,k) |E ¢2 and for all k where i < k < j, we have
(p. k.x) | ¢1.

o (p,i,k) E ¢1 R ¢y iff either (i) for all j > i, we have
(p, s k) E @2, or (ii) there exists j > i, s.t., (p, j, k) E ¢1 A2
and for all k where i < k < j, we have (p, k,x) | ¢2.

Notice that, for a CapATL formula ¢, (p, i, k) = ¢ depends only
on p<; and ¢, so we may write p<; |= ¢ (in particular s |= ¢ has a
meaning). Moreover, for a capacity assignment formula ¢, (p, i, x) =
¢ depends only on k and ¢, so we may write k |= ¢. Besides, the
semantics of (Y)y has an existential quantification over the strategy
assignments for Y and a universal quantification over the outcomes.
It implies an implicit existential (resp. universal) quantification
over Y (resp. Agt \ Y) capacity assignments compatible with future
actions in each outcome. Agents can change their capacity for each
nested strategic operator. Another approach (not discussed) could
consist in quantifying over capacity assignments only once.

Example 3.3. Consider the system from Example 2.2 illustrated
in Figure 1. The formula ¢ = (1)F (gray A ‘Kczap(?:))—expanded as
(WTU (grayn (‘Kczap(3 —c1) \/‘Kczap(3 — c3)))—is true iff agent 1
can enforce that all paths eventually go in a state labelled gray and
agent 2 knows whether agent 3 has capacity c; or cz. Notice that
‘Kczap(?» — ¢1 V 3 > c2) semantically differs from ‘Kczap(3 =)V
‘KCZaP(S = c2). Indeed, the first is always true because agent 3 has
its capacity among {c1, ¢z}, while the second means that agent 2
knows whether 3 has ¢ or c2. We have sy |= ¢. Indeed, agent 1 can
do @ in sp and in s1. Then, if the computation reaches s, then agent
2 knows agent 3’s capacity (if 2 did a then 3 did a too, so 3 must
have the capacity c1, and similarly if 2 did f). As s; has the gray
property, these paths are winning. Moreover, if after being in s1
the computation goes back to so, then agent 2 also knows agent 3’s
capacity. Agent 1 can then do action f to reach state s.

Theorem 3.4 establishes that agents with memory are strictly
more powerful than agents without memory for CapATL objectives.
This seems intuitive, but it is not true for ATL objectives. It stresses
out that CapATL is way harder than ATL.

THEOREM 3.4. CapATL with memoryful strategies is not equivalent
to CapATL with memoryless strategies.

Proor. Notice that the winning strategy for (1)T(gray/\7(czap (3))
in Example 3.3 is memoryful, and any memoryless strategy could
not be a winning strategy. Indeed, if agent 1 always uses a; (resp.

az) in sg, 1 cannot guarantee F (gray) (resp. T(‘?(Czap(3))). O

Full Research Paper

4 MODEL-CHECKING

This section provides the decidability of the model-checking prob-
lem for CapATL. First, we prove agents do not need to recall all
the past to have a winning strategy. The following explains what
suffices to recall. For two states s, s’ € St, an action @ € Act, and an
agent a € Agt, let T(sas’, a) denote the number of transition from
stos” in S where a does a. The memory of an agent is defined as a
word m = Q1t1Qx2t2 ... Qk, where, for all i, Q; C Stand ¢; = siais;,
with s;, s € St and a; € Act. We denote by cnt(sas’, m) the number
of occurrences of sas” in m. For an agent a, we denote by mg(p)
the memory that a keeps from the finite path p. If p = s € St, then
mqa(p) = {s}. Inductively, for all p € Paths<® where s denotes
last(p), for all @ € Act” and s” € St,

mg(p)slals’{s’} if cnt(salals’,mq(p)) <
mq(pas’) = T(salals’, a), 1)
mg(p) Ws’ otherwise.

where (Q1t1 ... t_10k) Ws' = O1t1 ... t}_1(Qr U {s’}). The mem-
ory mq(p) extracts the transitions sas’” in p from a’s point of view
(only a’s action «) until they appear more than T (sas’, a) times. The
memory also keeps track of the set of states visited by transitions
that appeared more than T(sas’, a) times in the past. Intuitively,
the goal is to extract the least information characterizing the set
of subformulae that were satisfied along the path. The threshold
T(sas’,a) ensures that a transition where a redoes a but other
agents can change their actions (and increase their knowledge) is
recorded and ensures synchronicity for agents in a coalition.

Example 4.1. In the CapCGS from Figure 1, we have T (spas1, 1) =
1 and T(s1asg, 1) = 2 because there is 1 transition from sg to s;
where agent 1 uses action @, and 2 from s; to sg. Now, let p be the
pathso(a, a, 8)s1(a, a, f)so(a, a, d)s1(a, p, a)so(a, a, 8)s1(a, B, a)so.
We have ma(p) = {so}soas1{s1}s1aso{s0,s1}s1850{s0, 51}

We consider the partial order between memories as m < m’
if mis a prefix of m” or if m W s; Wsy--- = m’ for some states
s1,s2.... Notice that, for all a € Agt, m, is increasing for < with
respect to the prefix partial order on paths. The size (number of
symbols) of m4(p) is bounded by 215t13)0)1 = O(2(|St”°|2)), where
[St| and |o| are respectively the number of states and transitions
in S. Let p and 1 be two finite paths and a € Agt. We define the
weak memory equivalence relation ' C Paths<“ x Paths<“ such
that p = 1 iff mg(p) = mg(n). In addition, we define the strong
memory equivalence ~N' C Paths<® x Paths<® such that p ~M
iff p 7' n and last(p) = last(n).

Example 4.2. In Figure 1, let 7 = so(a, @, d)s1(a, a, f), and the
paths n = trso(a, @, 6)s1 and p = r7750. We have n =" u be-
cause mi(n) = my(p) = {so}soasi{s1}s1aso{so,s1}s1aso{s0,s1}-
However, last(n) # last(y) son ¢Q" 78

We define memory-bounded strategy assignments that assign
uniform strategies with respect to the strong memory equivalence.

Definition 4.3 (Memory-bounded strategy assignment). A memory-
bounded strategy assignment o for Y is a strategy assignment such
that, for all a € Y, for all finite paths p and 5, if p *M 7 then

a(a)(p) = a(a)(n).

127

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

Notice that ~, € M C ~™, s0 a memory-bounded strategy
assignment is also uniform with respect to ~,. For a path p and an
equivalence relation ~, we let [[p]]~ denote the equivalence class
of p for ~. The number of equivalence classes for ~T and ~M are
bounded by 2(Istllol) and |st|2(IStllol*), respectively. Theorem 4.4
shows that agents do not need to recall all the history to win a
game. This is an essential result to prove CapATL decidability.

THEOREM 4.4. Let { be a CapATL temporal formula, Y C Agt
an agent coalition, p an infinite path, i an index, and k a complete
capacity assignment. We have (p, i,x) | (Y)¢ if and only if, there
exists a memory-bounded winning strategy assignment forY.

ProoFr. In this proof, we extend the satisfiability for finite path,
denoted by [¢. For p € Paths<® where k = ||, fori € {1,...,k},
for ¢; and ¢, two CapATL formulae, and for a complete capac-
ity assignment x, we let (p,i,x) | ¢1 iff any infinite exten-
sion n of p verifies (n,i,x) | ¢1. We let (p,i,x) Fr ¢1 U ¢2
iff (p, 1, k) |=f ¢2 atanindex [€ {i,...,k} and (p, j, x) |=f ¢1 for
all j € {i,...,1 - 1}. Similarly, we let (p,i,x) [Ef ¢1 R 2 if either
(p.j.x) Ef ¢aforall j € {i,....k}, or (p,Lx) Ef ¢1 A ¢ for
some [€ {i,...,k} and (p, j,x) Ef ¢z forall j € {i,...,I[}. We
extend the definition of memory for the coalition Y = {qa,...,b}
where a < -+ < b. Formally, for s,s” € St and ag, . .., a} € Act, we
define T(sag . ..aps’,Y) the number of transition in S where all
agents a’ € Y does action 4. We define the memory of Y, s.t., for
p € Paths<®, s = last(p), s’ € St,and @ = (ay,...,an) € Act™

if ent(sag ... aps’, my(p)) <
T(sag...ops’,Y),
otherwise.

my(p)sag . ..ops"{s’}
my (pas’) =
my (p) s’

and my(p) = {s} if p = 5. For p,n € Paths<®, we define the re-
lations ~' and zg‘/" C Paths=® x Paths=?, such that p ~J iff
my (p) = my(n), and p ~\! 5 iff my(p) = my(n) and last(p) =
last(n). The partial order on ~{’s equivalence classes is defined as
follows: [Ip]]z$ < 7] ~m iff my(p) < my(n) (which is indepen-
dent of the representatives). We define a partial-history strategy
assignment o : Y — (Paths=® — Act) that gives partial strategies
for each agent in Y. However, there must be P = ;¢ 1.k} Pi, the
union of some equivalence classes Py, .. ., P for z'}‘," such that, for

alla € Y, dom(oy(a)) = P. A partial-history strategy assignment is

zg\-uniform. The outcomes of a partial-history strategy assignment

oy for a coalition Y from a finite path p = s1d1sz . . . A1, denoted
by Outs(p, o), is the set of finite or infinite paths = POUSIet - - -

such that, forall j e Nwithk < j < |p| -1andalla €Y, of(a)
is defined for s1d1 ... &;j—15; and &;[a] = op(a)(s1d1...d;j-15)).
If I = |g] < w, then of(a) is undefined for s1d; ... d;_;s; for all
agents a € Y. It is important to notice that Outy(p, o) gives out-
comes that extend p. Finally, for a finite path p and a path 1 where
n[1] = last(p), we let p - n denote the concatenation of p and n
without its first state.

We can start the proof of the theorem. One direction is imme-
diate, because a memory-bounded strategy is a uniform strategy.
Conversely, suppose (p, i, k) | (Y)y with a winning strategy as-
signment o (for the rest of the proof, p, i, and ¢ will always refer
to this). We want to build a memory-bounded winning strategy
assignment ¢’. The case (Y) X ¢ does not require memory since

Full Research Paper

the agents take only one action. Suppose the formula is (Y)@1 U @5.
Let Q denote the set of finite paths strongly memory equivalent to a
winning outcome prefix, i.e., the finite paths € Paths<® such that
there is y € Out(p[i], o) and j € N verifying < ; zl)\;\ n. Let © be
the set of winning outcomes prefixes that have not satisfied ¢, yet,
ie,®={n<; [n € Out(p[il,0)Aj € NA(n, 1,k) Fp G(P1A~¢2)}
(recall that the choice of the complete capacity assignment k does
not influence the satisfaction of the formula). For a partial-history
strategy assignment oy, let H,, denote the hypothesis “for all
n € Qand p € Outs(n, af), either: (i) u =, i.e, oy is not defined
for n, (ii) (1 1, x) () 1 U $2 where () is | or [F7 depending
on |u|, or (iii) y € Q and [I’?]]z'; < H,u]]:r;;”.

The partial-history strategy assignment og for Y, defined for the
empty set of histories, verifies H, because of the case (i) of Hy,.

Now, suppose Ho holds for some partial-history strategy as-
signment for Y that is not defined for all histories. The following
builds a partial-history strategy assignment ¢’. with strictly larger
history domain and such that 7‘((,} holds. If, for all 5 € Q, all out-

comes y € Outp(n, of) are such that we are in case (ii) of Hy,
then any extension 0} of oy for all histories verifies H,/ and has a

strictly larger history domain. Otherwise, we can let P = [[u]] ~m be
the equivalence class for ~J' of a finite outcome y € Outf (7, of)
for some 7 € Q, such that y falls in case (i) or (iii) of Ho,. Let
last(P) be the non-empty set of states last(my(n)) with n € P
(last(P) does not depend on the choice of the representatives € P
because P is an equivalence class for ~'). We build the ATL model
Cp= <AgtP, Stp, Ilp, np, Actp, dp, 0p> where

Agtp = Agt,

Stp = last(P) U{W, L} where W and L are fresh states,

I1p = {win, last},

Actp = Act U {loop} where loop is a fresh action,

ap(W) = {win}, np(L) = 0, and np(s) = {last} if s €
last(P),

e for a € Agt and s € last(P), dp(a, W) = dp(a,L) = {loop},

dp(a,s) = d(a,s)NAg where Ag = U epne Urec () Y(x(a)).

The intuition is that agent a is allowed to do an action « iff
s = p[j] for an outcome i € Out(p|i], o) that did not satisfy
¢2 at index j and a may do « after < in S.

e op(W,loop,...,loop) = W, op(L,loop,...,loop) = L, and,
fors € last(P) and @ = (a3, ..., an) € dp(1,s)X---Xdp(n,s),

’

s’ if 3y € P, last(n) = s and nas’ € P,
W if 3n € P, last(y) = s, and nas” € Q\ P,

L otherwise.

op(s,a1,...,an) =

We consider the ATL formula ¢ar. = (Y)aTLlast U win where
(-)ATL is the strategic operator in ATL.

Let us prove all states s € {last(n) | n € PN QA (,1,x) [
¢1 U P2} verify s EATL PATL, i.e., prove that all last state s of a finite
path n from case (i) or (iii) ofﬂgf, such that n € P, verifies s EaTL
¢aTL. Let such a path 5 and state s = last(y) withn € PN Q and
(1,1,%) r 1 U $2. We first show we can take y € ®©NPand j € N
such that p[j] = s. Indeed, n € P N Q so there is y € Out(p[i], o)
and j € N such that puc; zl}" n. We can change the actions of
agents in Agt \ Y in y, and even so, we will have p € Out(p[i], o)
and p< zg\//\ n (because outcomes contains all possible actions for

128

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

agents outside the coalition Y). In particular, we can take actions
of Agt \ Y such that p¢; zx\gt n, where the equivalence is for all

agents. If (u<j, 1,x) Ef ¢1 U ¢z, then (1, 1,x) Ef 1 U ¢; too (by
the similarity of yi<; and n when p<; zf\" . 1), which was assumed
false. So (,Ugj, 1, K) '=f g(¢1 A —|(]52) (because (y, 1, K) '= ¢1 Uu ¢2)
This proves that yi<j € P N ©. For the rest of the proof, the symbols
s, g and j will only refer to these.

Let oaTL the strategy assignment such that, for all finite path 5
in Cp starting from s and a € Y, if all states of 7 are in last(P) then
oxTL(a)(n) = 0(a) (< - 1), and, if 5 ends in L or M, oxri (a)(n) =
loop. As ji<j € PN O, each action of an agent a € Y is in Ag, so
the strategy oar| is feasible in Cp. We claim that oa7| is winning
for s |= PaTL. Let n € OutaTL (s, oaTL), where Outar| is defined as
Definition 2.9 but disregards the capacities (it is like the outcomes
in ATL but records the actions to form a path). There are three
cases: (i) all states from 7 are in last(P), (ii) n reaches L, or (iii) n
reaches W. We show that the two first cases are absurd.

Suppose, all states from 7 are in last(P). By the definition of
my, all the combinations of actions for agents in Y between two
consecutive states of 1 appear in p. As such, we can replace all
transitions qaq’ from n by a transition qﬁq/ ~y qdq’ (where
~y= (\agey ~a) that appears in p. After replacement, n is still
an outcome from Outaty (s, oaTL) since we changed only Agt \ Y’s
actions. Moreover, the path p - 1 is in Out(p[i], o) and it verifies
(-1n.1,k) E G($1 A —¢2) (because it stays forever in last(P) using
previously used actions for all agents). This is absurd because it is
an outcome of the winning strategy o.

Suppose np = s1d1 . .. sp@L ... reaches state L for the first time at
index k+1 (so s € last(P)). By definition of op and dp (in particular
the definition of A,), there is a finite path p’ € P N © such that
@y is feasible by a complete capacity assignment k¥’ € C(y’). Once
again, we can modify actions of agents in Agt \ Y in n<; and p/
such that k¥ € C(y') N C(n<k), and we let A = i’ - n<j. We have
A € P with last(A) = si. There is a unique state sz,; € St such that
AdySk41 is a path in S. Defined as such, A@g s is also the prefix
of an outcome in Out(p[i], o), and consequently, Adsi4q € Q. If
AdySk4+1 € P, then A should reach g instead of L, which is absurd.
If, A& sg41 € P, according to Equation (4), should reach W instead
of L, which is also absurd.

Finally, n reaches W and s |=a1L ¢aTL, and this is true for all
states s € {last(n) | n € PN QA (9,1, k) Ef d1 U 2}

A famous result about ATL is that having a winning strategy im-
plies having a winning memoryless strategy for all states satisfying
the formula [3]. We denote by o)1, such a winning memoryless
strategy. Let a]’, denote the partial-history strategy assignment
such that, for a € Y and n € Paths<®,if 5 € dom(or(a)) then
ap(a)(n) = or(a)(y) and, if n € P, or(a)(n) = op (a)(last(y)).
Notice that this second case never redefines a value of O'f(a) be-
cause partial-history strategy assignments assign strategy with the
same history domain for each agent. Let77 € Qand A € Outz (7, 0'}).
In most cases, Waff results from Waf directly, but the case where
A<j € P for some j requires more attention. In the CGS Cp, agents
in Agt\ Y have more possible actions than in the CapCGS S because
they are not constrained by theirs capacities. Consequently, the
guaranty to stay in last(P) until making a transition corresponding

Full Research Paper

to reaching W holds. This means that for some k; > j, we have
A<k, € Q with Hﬂskl]]z';; > II/lSj]]z$. If of’s strategies were de-
fined for A<y, either (4,1, k) (r) $1 U2 (and 7{0} is satisfied), or
we can take ky > kq such that [[Askz]]x;? > [[Askl]];r;, etc. As there

is a bounded number of equivalence classes for z'{," at some point
(A, 1,x) '=(f) ¢1 U ¢2 or A € Q with [[A]]zg > [[llgj]]zf{/‘. Finally,
(HU} holds with 0} defined for strictly more histories. By induction
and the finiteness of the number of zy’s equivalence classes, we
can take the strategy assignment o’ (as the limit of the finite induc-
tion) defined for all histories. All outcomes n € Out(p[i], o’) verify
(1, 1,x) E ¢1 U ¢2. Notice that the strategy o’ is only uniform for
z'{(" by definition. This means that agents remember also the actions
of other agents of the coalition. However, we can prove that we
can build a memory-bounded strategy assignment from ¢’ because
all agents in Y can compute ¢’ and assume each other agent will
follow the plan, and because a same transition sas’ is remembered
T(sas’, a) times by each agent a according to Equation (1).

This finishes the proof for the case (p, i,x) E (Y)$1 U ¢2. The
case (Y)@1 R ¢2 is similar except that the reduction into ATL uses
the ATL formula ¢ = (Y)atLwin R last. O

Given Theorem 4.4, we can reduce CapATL model checking to
memoryless ATEL model checking, which implies the following.

THEOREM 4.5 (CAPATL DECIDABILITY). CapATL model-checking
problem is decidable. The problem is in NEXPTIME.

Proor. We proceed with a reduction to ATEL [31] model check-
ing. We will use the memoryless semantic with uniform strat-
egy space in ATEL, over CGS with imperfect information. Let
S = (Agt, Cap, St,IL, 7, Act, T, y, d, 0) be a CapCGS and ¢ be a Cap-
ATL formula without nested strategic operators. We first build Cg =
(Agts, Sts,Is, ms, Acts, ds, 05, {=ataeagts >, a CGS with imper-
fect information such that, given two finite paths p, 5 € Paths<%,

° Agt s = Agt,

e Stg is the (finite) set of equivalence classes of ~M

o I g contains IT and a fresh proposition ¢ for eac?lgtcomplete
capacity assignment k.

 ms(llply) = m(last(p)) U Ugecp)

e Actg = Act,

- fora e Agtds(a. [l) = d(@last(p))Usec(p) Y(x(@).

o ford = (a1,....an) €ds(1, [[p]]z/xt)x- --xdg(n, [Ip]]z%gt),

g
we let the transition og([[pllm »a1,...,an) = [nllom iff
Agt Agt

palast(n) N, 1.
o for a € Agt, we set [[p]]z//:\gt =, [[U]]“%gt iff Hp]]zg = H;ﬂ]zy.

Let KateL and (-)aTeL be the knowledge and strategic operators in
ATEL. We transform ¢ into an ATEL formula ¢a7g| by replacing (Y)
by (Y)ateL and K&, (¢) by K¢, (¢7) where ¢” is the conjunction
of (—#c) for all complete capacity assignment x such that « £ ¢.
By Theorem 4.4, we have s | ¢ iff [[s]] M EATEL PATEL-

The model-checking procedure is the following: (i) we build the
ATEL model (in exponential time) that is exponentially larger than
the initial CapCGS, (ii) for each subformula of the form ¢’ = (Y)¥,
starting from the innermost formulae, we compute the set of states

129

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

Figure 2: The CGS with imperfect information obtained from
the model-checking transformation on the CapCGS from
Figure 1.

s € St such that [[s !, where ¢, is obtained
I]]z/’;/‘gt EATEL ¢ATEL ¢ATEL

as described above, (iii) we label each state s from the previous
step with a fresh proposition £ and replace the subformula ¢’ by
{y in the original formula ¢, (iv) we iterate to step (ii) until the
outermost formula, (v) we return the set of states that validate the
outermost formula. In step (ii), the states of the form [[s]| M are

distinguishable from all other states by all agents. So the question
whether [s]] m [FATEL ¢j7g, should hold with the same strategy
Agt

from states equivalent to [[s]] _.» does not apply (cf, [22]). The
Agt

construction time and size of Cg are exponential with respect to
S and memoryless ATEL model-checking without nested strategic
operators is NP-complete [31] (but happens on an exponential size
model). Step (ii) runs a polynomial number of time with respect
to the formula length (once for each strategic operator). Finally,
CapATL model checking is in NEXPTIME. O

Example 4.6. We display a simple example of the model-checking
procedure based on the CapCGS of Figure 1 from Example 2.2. Af-
ter transformation, we get the CGS with imperfect information
from Figure 2. We display only the states generated by path start-
ing in sg. States linked with a dashed line are equivalent for =;.
Let x1 (resp. x2) be the complete capacity assignment such that
k1(3) = c1 (resp. k2(3) = c2). Gray states have the atomic propo-
sition gray, double states have £, thick states have #,, and nor-
mal edges states have the last two. The state qq is [[SO]]“/Tgt and

the other states are the equivalence classes for the paths in S

reaching them from g with the same transitions. For instance,

a1 = [so(a.a 5)51]]z24g‘ and g6 = [[so(a, @, d)s1(a B, ﬂ)So]]zQAgt~
The formula ¢ = (1)F (gray A ‘Kclap(?})) from Example 3.3 and

Figure 1 turns into ¢pateL = ()aTeLF (gray A (“K/Z\TEL(E,<1 A =be,) V

(K/-Z\TEL([KZ A —,))). So, we have that sy |= ¢ holds because qo [=ATEL
¢ATEL holds.

5 CASE STUDY

We consider a team of security engineers that wants to design a
honeypot to identify an attacker in their company network. They
assume three different types of attacker, denoted by atty, atts, and
atts, which differ because they master different vulnerabilities. It

Full Research Paper

I initial state
W attacker gets the reward
H honeypot hacked

2 exploit ey done on vul;

3 exploit ez3 done on vuly

P, 1 d
S2, €23, 1 mj plugge:
P, my plugged

Ey long exploits attempt

Figure 3: CapCGS for the case study.

is known that att; can do the exploits ez, €13, and eq, while atty
masters e12 and ez3, and att3 knows eq3, €23, and e3. Precisely, the
team designs two virtual machines, m; and my, with different vul-
nerabilities, namely vul; in m1, and both vuly and vuls in my. They
identify that vul; suffers from the exploits ej2 and ey3 that induce
a different intermediary state (E12 and Ep3, respectively) in the
system. Moreover, depending on the service exposed on my, the
vulnerability vuly can be directly exploited by ey3 if the service is
s2 or e3 if the service is s;. Vulnerability vuly also suffers from
e12 with service s; and ej3 with service sy. However, in the two
latter cases (called long exploits), the system goes in an intermediary
state Ep and the exploit success depends on the environment: in the
random case r; the attack succeeds, and in the case ry the attack
fails. To avoid this randomness, the engineers enable the honeypot
to produce a fake output (denoted by f) to make the attacker think
the attack succeeded, whatever the environment random choice
r1 or ra. As mentioned, my is also vulnerable to vuls if the service
is s1 (resp. s2) and the attacker uses the advanced exploit e; (resp.
e3). The exploitation of vuls is dangerous because the attacker can
compromise the honeypot and get root access to the host machine.
Finally, the engineers decide to put a file of mock passwords in the
machine mjy accessible if the attacker exploits vuly.

Thus, we can formalize the problem as a three-agent CapCGS
where the first agent is the defender (D = 1), the second is the
attacker (A = 2), and the third is the environment (E = 3). The
defender has two capacities: I'(D) = {real, honeypot} represent-
ing a real system or a honeypot. The attacker has three capacities
T'(A) = {atty, atty, atts}, one for each attacker profile, and the envi-
ronment has a unique capacity I'(E) = {env}. Here are the actions
available to each capacity in this scenario. For the real defender,
y(real) = {p1, p2,di,da, s1,s2,n}: i.e, plug (resp. disconnect) the
machine m; with p; (resp. d1) and my with pa (resp. dz), set ser-
vice 1 with sy and 2 with sy, or skip with n. The honeypot has one
additional action f to produce a fake output and pretend the long
exploits of vuly succeeded whatever the environment’s random-
ness, so y(honeypot) = {p1, p2, d1, da, s1, s2, f, n}. Finally, y(att;) =
{e12, e13, e1,n}, y(atts) = {e12,ex3,n}, y(atts) = {e13, €3, e3,n},
and the environment has y(env) = {ri, rz, n}. The agents, capaci-
ties, and actions are summarized in Tables 1 and 2. Moreover, the
CapCGS in Figure 3 formalizes the system according to the descrip-
tion, where some loop transitions are ignored for clarity.

We want to ensure that the honeypot can detect the attacker pro-
file, that the attacker does not determine that the system is not real,
and that the honeypot is not compromised. The following formula
can express the desired property, where the atomic proposition

130

AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

Agent Capacity Actions
D honeypot | {p1,p2,di.da, 51,52, f, n}
real {p1, p2,d1,d3, 51,52, n}
atty {e12, €13, €1, n}
A atty {e12, e23,n}
atts {e13, €23, €3, 1}
E env {ri,ra,n}

Table 1: Agents, capacities, and actions for the case study.

Action Description
P1 plug machine mp
P2 plug machine my
dy disconnect machine my
ds disconnect machine m;
S1 use service $1 on mg
S2 use service sz on my
f fake long exploits success of vuly
e1 exploit e1 against vul3
e3 exploit e3 against vul3
e exploit 12 against vuly or vuly
e13 exploit e13 against vuly or vuly
€23 exploit ep3 against vuly or vuly
r random environment choice 1
ry random environment choice ry
n do nothing

Table 2: Actions description for the case study.

hacked holds only in H and win holds only in W:
(D > honeypot)(~hacked) U (M, (D > real) Awin AKZ,(A))

It turns out that state I verifies this property in the model. The
winning strategy for the defender is to first use p; in I, then use p
the second time and s; in P, if the computation was in E23 and sy
if the computation was in Ejy. Finally, the defender can use f in
Ej, and still the attacker cannot be sure the defender is a honeypot
because the environment might have done ry.

6 CONCLUSION

This paper introduces CapATL to reason about MAS where agents
are bounded to capacities that restrict their possible actions. The
capacities account for the diversity of entities that may play the role
of an agent. We proved the decidability of CapATL model checking
in NEXPTIME. A cyber deception use case showed CapATL applica-
bility and the practical properties to design and pilot an adaptable
honeypot, considering the uncertain profiles of the agents.

There are several directions to continue working on CapATL. We
would like to investigate different approximations and restrictions
to find an efficient model-checking algorithm, satisfactory for real-
world applications. We plan to look at quantitative aspects, such as
in [4, 25-27], but for capacities. Moreover, we can extend our idea
to SL [6, 7, 28]. Finally, we want to investigate further the theory
of capacities too, for including them in a powerful language.

ACKNOWLEDGMENTS

This work was carried out within SEIDO Lab, a joint research lab-
oratory covering research topics in the field of smart grids, e.g.,
distributed intelligence, service collaboration, cybersecurity, and
privacy. It involves researchers from academia (Télécom Paris, Télé-
com SudParis, CNRS LAAS) and industry (EDF R&D).

Full Research Paper AAMAS 2024, May 6-10, 2024, Auckland, New Zealand

REFERENCES [18] Wojciech Jamroga. 2003. Some Remarks on Alternating Temporal Epis-

[1] Thomas Agotnes. 2006. Action and Knowledge in Alternating-Time Temporal temic Logic, In l?"ormal Approaches to Multi-Agent Systems. F ormal Ap-

Logic. Synth. 149, 2 (2006), 375-407. https://doi.org/10.1007/S11229-005-3875-8 proaches to Multi-Agent Systems. https://www.semanticscholar.org/paper/

[2] Natasha Alechina, Brian Logan, Nguyen Hoang Nga, and Abdur Rakib. 2010. 37e42747212142¢f57bb4b36dcd12920225765b1 . . .

Resource-Bounded Alternating-Time Temporal Logic. In Proceedings of the 9th [19] Wojciech]amroga, le:hal Knaplk, Damlan Kl}r’pleWSkl’ and Lukasz MlkUIskl'

International Conference on Autonomous Agents and Multiagent Systems: vol- 201?. Approxm*fate Verification of Strategic Abilities uqder Imperfect AInfo‘rmatlon.

ume 1 - Volume 1 (Toronto, Canada) (AAMAS °10). International Foundation for Artificial Intelligence 277 (2019), 103172. https://doi.org/10.1016/j.artint.2019.
Autonomous Agents and Multiagent Systems, Richland, SC, 481-488. 103.17'2) . .

[3] Rajeev Alur, Thomas A. Henzinger, and Orna Kupferman. 2002. Alternating- [20] Wojciech Jamroga, Vadim Malvone, and Aniello Murano. 2019. Natural strategic

ability. Artif. Intell. 277 (2019). https://doi.org/10.1016/j.artint.2019.103170

Time Temporal Logic. Journal of the ACM 49, 5 (Sept. 2002), 672-713. https: . X X i
Wojciech Jamroga, Vadim Malvone, and Aniello Murano. 2019. Natural Strategic

//doi.org/10.1145/585265.585270 [21] Woje , u t
[4] Benjamin Aminof, Vadim Malvone, Aniello Murano, and Sasha Rubin. 2018. Ability under Imperfect Information. In Pmceedmgs of the_ 18th I_nternatlonal
Graded Modalities in Strategy Logic. Information and Computation 261 (2018), Conference on Autonomous Agents and MultiAgent Systems, Efllth Elkind, Mfmuela
634-649. https:/doi.org/10.1016/j.ic.2018.02.022 Veloso, Noa Agmon, and Matth'ew E. Taylor (Eds.). International Foundation for
Autonomous Agents and Multiagent Systems, Montreal, QC, Canada, 962-970.
http://dl.acm.org/citation.cfm?id=3331791
Wojciech Jamroga and Wiebe van der Hoek. 2004. Agents That Know How to
Play. Fundamenta Informaticae 63 (2004), 185-219. 2-3.
Frangois Laroussinie, Nicolas Markey, and Ghassan Oreiby. 2008. On the Expres-
siveness and Complexity of ATL. Logical Methods in Computer Science 4, 2 (May
2008). https://doi.org/10.2168/LMCS-4(2:7)2008

[5] Francesco Belardinelli, Angelo Ferrando, and Vadim Malvone. 2023. An
Abstraction-Refinement Framework for Verifying Strategic Properties in Multi-
Agent Systems with Imperfect Information. Artificial Intelligence 316 (March
2023), 103847. https://doi.org/10.1016/j.artint.2022.103847

Francesco Belardinelli, Angelo Ferrando, Wojciech Jamroga, Vadim Malvone, and
Aniello Murano. 2023. Scalable Verification of Strategy Logic through Three-
Valued Abstraction. In Proceedings of the Thirty-Second International Joint Con-

[22

[23

l6

=

ference on Artificial Intelligence, IJCAI 2023, 19th-25th August 2023, Macao, SAR, (24] YVE_S' Lespérance, Hector J. I'Jevesqu'e, Faggzhen Lin, and RiFhard B Scherl. 2000.
China, ijcai.org, Macao, China, 46-54. https://doi.org/10.24963/ijcai.2023/6 Ability and Knowmg How in the Situation Calculus. Studia Logica 66, 1 (2000),
[7] Francesco Belardinelli, Wojciech Jamroga, Damian Kurpiewski, Vadim Malvone, 165T186' https://dm.f)rg/l&1023/A:10%6761331498 .
and Aniello Murano. 2019. Strategy Logic with Simple Goals: Tractable Reasoning [25] Vadim Malvt?ne, Fabio Mogavero, Aniello Murano, and L9redana Sorrentlpo.
about Strategies. In Proceedings of the Twenty-Eighth International Joint Conference 2018. Reasoning about graded sFrategy quantlﬁgrs. Information and Computation
on Artificial Intelligence, IJCAI 2019, Macao, China, August 10-16, 2019, Sarit Kraus 259 '(2018)1 390-411. ht'tps://dm.org/10,1016/1,1c,2917,03,010 3 o
(Ed.). ijcai.org, Macao, China, 88-94. https://doi.org/10.24963/ijcai.2019/13 [26] Vadim Mal'vone and Aniello Murano. 2017. Reasoning About Additional Winning
[8] Francesco Belardinelli, Alessio Lomuscio, Vadim Malvone, and Emily Yu. 2022. St'rategles in Two-Player Games. In Multi-Agent Systems and Agr‘eement Technolo-
Approximating Perfect Recall When Model Checking Strategic Abilities: Theory sles - 15”.’ European Conference, EUMAS 2017, qnd 5th International Conference,
and Applications. §. Artif. Intell. Res. 73 (2022), 897-932. https://doi.org/10.1613/ AT 2017, Evry, France, December 14-15, 2017, Revised Selected Papers (Lecture Notes
jair.1.12539 in Computer Science, Vol. 10767), Francesco Belardinelli and Estefania Argente
[9] Raphaél Berthon, Bastien Maubert, and Aniello Murano. 2017. Decidability (Eds.). Springer, 163-171. https://doi.org/10.1007/978-3-030-01713-2_12
[27] Vadim Malvone, Aniello Murano, and Loredana Sorrentino. 2018. Additional

Results for ATL* with Imperfect Information and Perfect Recall. In Proceedings of S A - X
the 16th Conference on Autonomous Agents and MultiAgent Systems (Sio Paulo, Winning Strategies in Reachability Games. Fundam. Informaticae 159, 1-2 (2018),

Brazil) (AAMAS °17). International Foundation for Autonomous Agents and 175-195. https://doi.f)rg/10.3233/FI—2018—1662))

Multiagent Systems, Richland, SC, 1250-1258. Fabio Mogavero, Aniello Murano, Giuseppe Perelli, and Moshe Y. Vardi. 2014.
[10] Thomas Brihaye, Véronique Bruyere, and Jean-Francois Raskin. 2005. On Optimal Reasoning abf)ut Stratggles: On the Model-Checking Problgm. ACM Transactions

Timed Strategies. In International Conference on Formal Modeling and Analysis on Computational Logic 15, 4 (Aug. 2014), 1-47. https://doi.org/10.1145/2631917

of Timed Systems (SpringerLink), Paul Pettersson and Wang Yi (Eds.). Springer, Hoang Nga Nguyen and Abdur'Rakib. 2019. 'Probabilistic ResourcejBounded
Springer Berlin Heidelberg, Berlin, Heidelberg, 49-64. Alternating-Time Temporal Logic. In Proceedings of the 18th International Con-

ference on Autonomous Agents and MultiAgent Systems (Montreal QC, Canada)

S
&,

[29

[11] Taolue Chen and Jian Lu. 2007. Probabilistic Alternating-Time Temporal Logic i 8 : .
and Model Checking Algorithm, In Fourth International Conference on Fuzzy (AAMAS 1?). International Foundation for Autonomous Agents and Multiagent
Systems and Knowledge Discovery (FSKD 2007). Fourth International Conference Systel?ls, Richland, SC, 2141-2143.) o)
on Fuzzy Systems and Knowledge Discovery (FSKD 2007) 2, 35-39. https://doi. [30] Henning Schnoor. 2010. Strategic Planning for Probabilistic Games with In-
org/10.1109/FSKD.2007.458 complete Information. In Proceedings of the 9th International Conference on Au-
[12] Edmund M. Clarke, Thomas A. Henzinger, Helmut Veith, Roderick Bloem, et al. tonomous,Agents and Multiagent Sysfems: volume 1 - Volume 1 (Toronto, anada)
2018. Handbook of Model Checking. Springer eBook Collection, Vol. 10. Springer (AAMAS 19)' International Foundation for Autonomous Agents and Multiagent
Cham, Cham. ~https:/doi.org/10.1007/978-3-319-10575-8 Includes bibliographi- Systems, Richland, SC, 1057-1064. o
cal references. [31] Pierre-Yves Schobbens. 2004. Alternating-Time Logic with Imperfect Recall.
[13] Alexandre David, Peter G. Jensen, Kim Guldstrand Larsen, Axel Legay, Didier Electronic Notes in Theoretical Computer Science 85, 2 (?004), 82-93. h'ttps'://df)i.
Lime, Mathias Grund Serensen, and Jakob H. Taankvist. 2014. On Time with 0rg/1‘0.1016/51571—0661(05)82604—0 LCMAS 2003, Logic and Communication in
Minimal Expected Cost!. In Automated Technology for Verification and Analysis, Mgltl—Agent Systems.))
Franck Cassez and Jean-Francois Raskin (Eds.). Springer, Cham, 129-145. [32] Wlebe.\{a_n der Hoelf, B. van L1n.der, and John-Jules .ChA Mey_en 1994. A Logic of
[14] Catalin Dima and Ferucio Laurentiu Tiplea. 2011. Model-Checking ATL un- Caplablhtlejs. In Logical Ifoundatwn's ofC'umputer Sczer?ce, AY?!I Nerode and Yu. V.
der Imperfect Information and Perfect Recall Semantics Is Undecidable. CoRR Matiyasevich (Eds.). Springer Berlin Heidelberg, Berlin, Heidelberg, 366-378.
abs/1102.4225 (2011). https://hal.science/hal-01699948 [33] Wiebe van der Hoek and Michael J. Wooldridge. 2002. Tractable Multiagent
[15] Angelo Ferrando and Vadim Malvone. 2023. Towards the Verification of Strategic Planning for Epistemic Goals. In The First International Joint Conference on

Properties in Multi-Agent Systems with Imperfect Information. In Proceedings of Autonomous Agents & Multiagent Systems. ACM, Bologna, Italy, 1167-1174.

the 2023 International Conference on Autonomous Agents and Multiagent Systems, htt'ps://doi.org/lo.l 145/545056.545095 . .
AAMAS 2023, Noa Agmon, Bo An, Alessandro Ricci, and William Yeoh (Eds.). [34] Wiebe van der Hoek and Michael J. Wooldridge. 2003. Cooperation, Knowledge,
ACM, 793-801. https:/doi.org/10.5555/3545946.3598713 and Time: Alternating-Time Temporal Epistemic Logic and Its Applications. Stud

[16] Andreas Herzig, Emiliano Lorini, and Dirk Walther. 2013. Reasoning about ngica 75,1 (200_3)’ 125-157. https://dm.orAg/lo.1023/A:1A026185103185)
Actions Meets Strategic Logics. In Logic, Rationality, and Interaction, Davide D“k Walther, Wlebe van der Hogk, and Mlchael Wooldpdge. 2007. Alternating-
Grossi, Olivier Roy, and Huaxin Huang (Eds.). Springer Berlin Heidelberg, Berlin, Time Temporal Logic with Exphmt»Strategles. In Proceedings of the 11{h conference
Heidelberg, 162-175. on Theore{icql aspects of ra{zonallty qnd knowledge (Brussels, Belgium) (TARK

[17] Xiaowei Huang, Kaile Su, and Chenyi Zhang. 2012. Probabilistic Alternating- 07). Association for Computing Machinery, New York, NY, USA, 269-278. https:
Time Temporal Logic of Incomplete Information and Synchronous Perfect Recall, //doi.org/10.1 145/132424?~1324285 o)

In Proceedings of the Twenty-Sixth AAAI Conference on Artificial Intelligence, [36 Thomas Agotnes, Va'lentu'l Goranko, and WOJC‘e?h Jamroga. 2007. Alternating-
July 22-26, 2012, Toronto, Ontario, Canada, Jérg Hoffmann and Bart Selman Time Temporal Logics with Irrevocable Strategies. In Proceedings of the 11th

(Eds.). Proceedings of the AAAI Conference on Artificial Intelligence 26, 1, 765-771. conference on Theoretical aspects of rationality and knowledge (Brussels, Belgium)
https://doi.org/10.1609/aaai.v26i1.8214 (TARK °07). Association for Computing Machinery, New York, NY, USA, 15-24.

https://doi.org/10.1145/1324249.1324256

@
i

131

https://doi.org/10.1007/S11229-005-3875-8
https://doi.org/10.1145/585265.585270
https://doi.org/10.1145/585265.585270
https://doi.org/10.1016/j.ic.2018.02.022
https://doi.org/10.1016/j.artint.2022.103847
https://doi.org/10.24963/ijcai.2023/6
https://doi.org/10.24963/ijcai.2019/13
https://doi.org/10.1613/jair.1.12539
https://doi.org/10.1613/jair.1.12539
https://doi.org/10.1109/FSKD.2007.458
https://doi.org/10.1109/FSKD.2007.458
https://doi.org/10.1007/978-3-319-10575-8
https://hal.science/hal-01699948
https://doi.org/10.5555/3545946.3598713
https://doi.org/10.1609/aaai.v26i1.8214
https://www.semanticscholar.org/paper/37e42747212142ef57bb4b36dcd12920225765b1
https://www.semanticscholar.org/paper/37e42747212142ef57bb4b36dcd12920225765b1
https://doi.org/10.1016/j.artint.2019.103172
https://doi.org/10.1016/j.artint.2019.103172
https://doi.org/10.1016/j.artint.2019.103170
http://dl.acm.org/citation.cfm?id=3331791
https://doi.org/10.2168/LMCS-4(2:7)2008
https://doi.org/10.1023/A:1026761331498
https://doi.org/10.1016/j.ic.2017.08.010
https://doi.org/10.1007/978-3-030-01713-2_12
https://doi.org/10.3233/FI-2018-1662
https://doi.org/10.1145/2631917
https://doi.org/10.1016/S1571-0661(05)82604-0
https://doi.org/10.1016/S1571-0661(05)82604-0
https://doi.org/10.1145/545056.545095
https://doi.org/10.1023/A:1026185103185
https://doi.org/10.1145/1324249.1324285
https://doi.org/10.1145/1324249.1324285
https://doi.org/10.1145/1324249.1324256

	Abstract
	1 Introduction
	2 CGS with Capacities
	3 Capacity ATL
	3.1 Syntax
	3.2 Semantics

	4 Model-Checking
	5 Case Study
	6 Conclusion
	Acknowledgments
	References

