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ABSTRACT
The heterogeneous capacitated vehicle routing problem (HCVRP)
aims to optimize the routes of heterogeneous vehicles with capac-
ity constraints to serve a set of customers with demands. Existing
learning-based methods for solving HCVRP have the problem of
weak generalization ability, which means that well-trained model
cannot adapt well to new scenarios with different vehicle or cus-
tomer numbers. To address this issue, by modeling the simultane-
ous decision-making of multiple agents as a sequence of consecu-
tive actions in real time, we propose a pointer network extension
model, which includes a static encoder and a dynamic encoder to
map the current situation to node embeddings and vehicle embed-
dings, respectively. For each element in the consecutive actions
sequence, the decoder of our model uses the probability distribu-
tion obtained from node embeddings and vehicle embeddings as
a 2D array pointer to select a tuple from the combinations of ve-
hicles and nodes (customers and depot). We call this architecture
a 2D Array Pointer network (2D-Ptr). Instead of planning paths
based on the priority order of vehicles, 2D-Ptr plans paths based
on the priority order of actions. In addition, 2D-Ptr consists of a
series of carefully designed attention modules, entitling the model
to be generalizable in the scenarios where additional vehicles (or
customers) are introduced or existing vehicles (or customers) are
removed. We empirically test 2D-Ptr and show its capability for
producing near-optimal solutions through cooperative actions. 2D-
Ptr delivers competitive performance against the state-of-the-art
baselines, and can solve arbitrary instances of the HCVRP without
requiring re-training.
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1 INTRODUCTION
TheHeterogeneousCapacitatedVehicleRoutingProblem (HCVRP)
is a classical combinatorial optimization problem, which aims to
optimize the routes for a fleet of vehicles with different capacity (or
speed) constraints to serve a set of customers with demands [7, 16].
To solve this problem, one option is to use Branch and Bound algo-
rithms to explore the entire search space of possible solutions and
provide the optimal solution [1, 8]. However, for NP-hard problems
like HCVRP, exact solutions can only be computed in a reasonable
amount of time for small input sizes. Therefore, some heuristicmeth-
ods, such as simulated annealing [28] and genetic algorithm [18],
have been proposed to generate approximate solutions through
manually customized heuristic rules to balance the solution quality
and calculation speed.

Recently, deep reinforcement learning (DRL) has shown its suc-
cess in tackling complex combinatorial optimization problems [15,
16, 25, 27]. More specifically, the HCVRP can be modeled as a
Markov decision process, and an action 𝑎𝑡 = (𝑣𝑚, 𝑢𝑛) is selected at
each step 𝑡 , which means that vehicle 𝑣𝑚 is selected to visit node
𝑢𝑛 . This process is repeated until the task is completed. The ad-
vantage of these DRL methods is that they can automatically learn
general patterns from the data, without the need for experts to
manually formulate heuristic rules, and can often achieve similar
solution quality and higher running speed compared with heuristic
algorithms.
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However, most of existing DRL works mainly focus on solving
the combinatorial optimization problem of single vehicle or ho-
mogeneous fleet. Although there are a few DRL algorithms that
can handle HCVRPs [16, 19, 21], they have issues with validity
and generalizability due to the following reasons: 1) For each time
step, each action 𝑎𝑡 consists of two subactions that are executed
sequentially: selecting a vehicle 𝑣𝑚 from the fleet in a predeter-
mined order [21] or using a vehicle selection decoder [16], and
then selecting a node 𝑢𝑛 for 𝑣𝑚 through a node selection decoder.
This two-step action selection method planing paths based on the
priority order of vehicles can easily lead to suboptimal solutions. 2)
Existing works usually assume that the fleet is fixed and unchang-
ing, so a well-trained model for one fleet may generalize well to
problems with different customer sizes, but cannot solve problems
with another fleet without being re-optimized from scratch. This
makes it difficult to deploy the model in the real-world where fleets
may update or change.

To address the above issues, we propose a novel policy network
called 2D-Ptr that consists of three components: node encoder, ve-
hicle encoder and decoder. The node encoder is executed only once
at the first step, which converts the raw features of nodes to node
embeddings. The vehicle encoder is updated for each step, which
embeds the current situation of vehicles into vehicle embeddings.
Unlike the literature [16], which plans paths based on the priority
order of vehicles, the decoder of our model plans paths based on
the priority order of actions. More specifically, with the node em-
beddings U and vehicle embeddings V𝑡 at each step 𝑡 , we have a
probability matrix 𝑃𝑡 , where the value 𝑃𝑡𝑚,𝑛 is positively related
with the dot product of U𝑛 and V𝑡𝑚 . Then the decoder selects a
vehicle as well as its visited node based on the matrix 𝑃𝑡 at each
route construction step. This process is repeated until all customers
are served.

The 2D-Ptr based on the priority order of actions planning paths
can simultaneously solve vehicle selection and node selection prob-
lems within a single action, enabling it to search in a more rational
and broader action space. In addition, we carefully design a series
of attention modules in 2D-Ptr, entitling the model to be generaliz-
able in the scenarios where additional vehicles (or customers) are
introduced or existing vehicles (or customers) are removed. To our
knowledge, this is the first attempt to address both node generaliza-
tion and fleet generalization of HCVRP, while previous works only
involve the former. Experimental results on 12 generated datasets
indicate that 2D-Ptr surpasses existing state-of-the-art techniques
concerning the trade-off between cost and runtime, positioning it
as a valuable tool for various delivery service industries aiming to
enhance efficiency and reduce costs.

2 RELATEDWORK
In this section, we mainly review the DRL-based methods for solv-
ing VRPs with a single vehicle, a homogeneous fleet and a hetero-
geneous fleet, respectively.

2.1 Routing a single vehicle or homogeneous
fleet

The Pointer Network [22] is the first work using deepmodel to solve
VRPs. Later, Bello et al. [2] extend it to DRL, training parameters

without relying on ground-truth labels. Inspired by Transformer,
some Attention-based architectures [15, 25, 27] are designed to
replace LSTM-based encoder and decoder, working in parallel and
achieving better performance. Different from the above works that
directly construct solutions, some others combine heuristic algo-
rithms with DRL, optimizing an initial solution iteratively, such
as guiding the search process of LKH according to the output of a
trainable sparse graph network [26], or using a neural network to
select node pairs for the 2-opt operator [24]. In addition, there are
also several works [6, 12] focusing on improving the generalization
of a pre-trained model.

Later, some works focus on the VRPs with a homogeneous fleet,
such as multiple traveling salesman problem (MTSP) and multiple
pick-up and delivery problem (MPDP). SplitNet [17] generates a sin-
gle TSP solution sequence, and then splits it into MTSP sequences
by an attention-based model. Equity-Transformer (ET) sets virtual
depot for each vehicle to split the path, then sequentially gener-
ates actions considering workload balancing in min-max MTSP
and MPDP [20]. Jonas et al. [5] propose a model called JAMPR to
solve the CVRP with time window by constructing multiple tours.
In addition, some scholars tend to use multi-agent reinforcement
learning for collaborative decision-making of the fleet. Zhang et al.
[29] let the agents share the same policy network, and then make
decisions in turn. On the contrary, in MAPDP [30], agents have
independent networks, making decisions together through a fleet
handler resolving possible node selection conflicts.

2.2 Routing a heterogeneous fleet
There are also a few existing DRL-based works focusing on HCVRP.
For example, Vera and Abad [21] train a policy network for node
selection by A2C method, and then apply it to make decisions for
each vehicle alternately, which is one of the pioneers to solve the
HCVRP by DRL. Qin et al. [19] adopt reinforcement learning to
choose from several meta-heuristics with different characteristics
to improve the performance of the heuristic framework. Moreover,
Li et al. [16] consider vehicle selection to be as important as node
selection and propose an effective framework with two selection
decoder, selecting vehicle and node in two steps. However, these
works seldom involve the discussion of fleet generalization, as
they typically assume that the fleet is fixed and the input to the
architecture is constrained by the number of vehicles, which means
that well-trained models cannot adapt to new scenarios where
additional vehicles are introduced or existing vehicles are removed.

3 METHODOLOGY
3.1 Problem Description
Given an HCVRP instance 𝑆 (V,U), where V = {𝑣𝑚}𝑀

𝑚=1 repre-
sents a heterogeneous fleet with 𝑀 vehicles, and U = {𝑢𝑛}𝑁𝑛=0
represents a node set consisting of a depot (𝑢0) and 𝑁 customers,
the HCVRP describes a process that all fully loaded vehicles start
from the depot, and sequentially visit the customers to satisfy their
demands, with the constraints that each customer can be visited
exactly once, and the loading amount for a vehicle during a single
trip can never exceed its capacity. Each vehicle 𝑣𝑚 ∈ R2 has two at-
tributes: capacity (𝜌𝑚) and speed (𝜒𝑚), and each node 𝑢𝑛 ∈ R3 has
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Figure 1: Constructing solution Γ to problem 𝑆 from the se-
quence 𝜏 generated by the policy network 𝜋𝜃

three attributes: x-coordinate (𝑥𝑛), y-coordinate (𝑦𝑛) and demand
(𝑞𝑛). Note that the depot’s demand (𝑞0) is set to 0.

Let Γ = {𝛾𝑚}𝑀
𝑚=1 represent a solution to the problem instance

𝑆 , where 𝛾𝑚 denotes the construction route for each vehicle 𝑣𝑚 ∈
V . Our method aims to approach the optimal solution Γ∗ that
minimizes the maximum travel time of all vehicles, also known as
the min-max objectives [3, 14, 23]. Let 𝑑𝑖𝑠𝑡 (·, ·) denotes the distance
between two sequential nodes, we have

Γ∗ = arg min
Γ

max
𝛾𝑚∈Γ

©«
|𝛾𝑚 |∑︁
𝑗=2

𝑑𝑖𝑠𝑡 (𝛾 𝑗−1
𝑚 , 𝛾

𝑗
𝑚)

𝜒𝑚

ª®¬ , (1)

where |𝛾𝑚 | and 𝛾 𝑗𝑚 ∈ U represent the length of 𝛾𝑚 and the 𝑗-th
term of 𝛾𝑚 , respectively. It is worth noting that due to vehicle
capacity limitations, each vehicle can return to the depot multiple
times for replenishment, and the last station must be at the depot.

3.2 Modeling HCVRP via DRL
The solution Γ can be inferred from the sequence of tuples 𝜏 =

{(𝑣𝑡 , 𝑢𝑡 ), 𝑡 = 0, 1, · · · ,𝑇−1}, where each tuple represents the vehicle
𝑣𝑡 visiting the node 𝑢𝑡 at step 𝑡 , and𝑇 is the length of the sequence,
as shown in Fig.1.We are interested in finding a stochastic policy 𝜋𝜃 ,
which generates the sequence 𝜏 by minimizing the maximum travel
time of all vehicles while satisfying problem constraints. Here, 𝜃
denotes the trainable parameters. To train 𝜋𝜃 in an unsupervised
way, we adopt the REINFORCE with Greedy Rollout Baseline [15]
method to minimize the objective function shown in Eq.1, where
the state space S, the action space A, the state transition function
𝑓 , and the reward R are defined as follows:

• State space S. For each step 𝑡 , we take s𝑡 = (v𝑡 ,u𝑡 ) as the
current state, where v𝑡𝑚 = (𝜒𝑚, 𝜌𝑚, 𝜌𝑡𝑚, 𝛿𝑡𝑚, ℓ𝑡𝑚) and u𝑡𝑛 =

(𝑥𝑛, 𝑦𝑛, 𝑞𝑡𝑛) represent the state of vehicle 𝑣𝑚 and node 𝑢𝑛 ,
respectively. The elements of s𝑡 can be classified into two
categories, among which the elements that change with step
𝑡 based on the state transition function 𝑓 are called dynamic
elements, while the elements that keep fixed throughout the
decision-making process are called static elements. For a
detailed introduction to these elements, please see Tab.1.

• Action spaceA. The action 𝑎𝑡 is defined as selecting a tuple
(𝑣𝑚, 𝑢𝑛) from all combinations of vehicles and nodes, indi-
cating that vehicle 𝑣𝑚 is selected to visit node 𝑢𝑛 at step 𝑡 .

Table 1: The detailed description to the elements of s𝑡

Notation Category Description

𝜒𝑚 Static Speed of 𝑣𝑚
𝜌𝑚 Static Capacity of 𝑣𝑚
𝜌𝑡𝑚 Dynamic Accumulated usage capacity of 𝑣𝑚

at step 𝑡
𝛿𝑡𝑚 Dynamic Accumulated travel time of 𝑣𝑚 at

step 𝑡
ℓ𝑡𝑚 Dynamic The last visited node of 𝑣𝑚
𝑥𝑛 Static X-coordinate of 𝑢𝑛
𝑦𝑛 Static Y-coordinate of 𝑢𝑛
𝑞𝑡𝑛 Dynamic Demand of 𝑢𝑛 at step 𝑡

Instead of dividing the above operations into two steps: vehi-
cle selection and node selection, such as in literature [16], our
method can solve them simultaneously within one action.

• State transition function 𝑓 . Given the current state s𝑡 and
action 𝑎𝑡 = (𝑣𝑖 , 𝑢 𝑗 ), the next state s𝑡+1 can be determined,
i.e., s𝑡+1 = 𝑓 (s𝑡 , 𝑎𝑡 ). More specifically, the elements of s𝑡 are
updated according to the rules described in Tab.2.

Table 2: Transition Rules

s𝑡+1 𝑓 (s𝑡 , 𝑎𝑡 ) Condition

𝜌𝑡+1
𝑚

0 𝑚 = 𝑖 ∧ 𝑗 = 0
𝜌𝑡𝑚 + 𝑞 𝑗 𝑚 = 𝑖 ∧ 𝑗 ≠ 0
𝜌𝑡𝑚 otherwise

𝛿𝑡+1
𝑚

𝛿𝑡𝑚 + 𝑑𝑖𝑠𝑡 (𝑢 𝑗 , ℓ𝑡𝑚)/𝜒𝑚 𝑚 = 𝑖

𝛿𝑡𝑚 otherwise

ℓ𝑡+1
𝑚

𝑢 𝑗 𝑚 = 𝑖

ℓ𝑡𝑚 otherwise

𝑞𝑡+1
𝑛

0 𝑛 = 𝑗

𝑞𝑡𝑛 otherwise

• Reward R. The reward is defined as the negative value of
the maximum travel time of all vehicles, i.e.,

R = − max
𝑚∈{1,· · · ,𝑀 }

𝛿𝑇𝑚,

where 𝛿𝑇𝑚 denotes the accumulated travel time of vehicle 𝑣𝑚
at final step 𝑇 , and𝑀 denotes the number of vehicles.

3.3 2D Array Pointer Network
In this section, we elaborate on the structure of the stochastic policy
network 𝜋𝜃 , which consists of three components: node encoder,
vehicle encoder and decoder, as shown in Fig.2. Below, we describe
these three components separately.

3.3.1 Node Encoder. The function of the node encoder is to convert
the raw features of nodes into high-dimensional embeddings U ∈
R(𝑁+1)×𝑑 . Let u0

𝑛 = (𝑥𝑛, 𝑦𝑛, 𝑞0
𝑛) denote the initial features of node
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Figure 2: Architecture of Policy Network 2D-Ptr (𝜋𝜃 )

𝑢𝑛 , we first map it to a new space through a linear layer, i.e.,

ū0
𝑛 =

{
u0
𝑛𝑊 + 𝐷𝑇, if 𝑛 = 0

u0
𝑛𝑊, otherwise.

(2)

Here,𝑊 ∈ R3×𝑑 and 𝐷𝑇 ∈ R𝑑 are trainable parameters. We name
𝐷𝑇 depot token to distinguish between depot and customer during
training.

Let 𝐻 (0) = {ū0
0, · · · , ū

0
𝑁
}, and further transform it to 𝐻 (𝐿)

through 𝐿 identical layers, where each layer has two sublayers,
namely the multi-head Attention (MHA) sublayer and the Feed
Forward (FF) sublayer, with residual connection [9] and batch nor-
malization [11] added. The layer-wise propagation rule is shown
as follows:

𝐻 (𝑙 ) = 𝐵𝑁
(
𝐻 (𝑙 ) +𝑀𝐻𝐴(𝐻 (𝑙 ) , 𝐻 (𝑙 ) , 𝐻 (𝑙 ) )

)
, (3)

𝐻 (𝑙+1) = 𝐵𝑁
(
𝐻 (𝑙 ) + 𝐹𝐹 (𝐻 (𝑙 ) )

)
. (4)

Here, 𝐹𝐹 (·) is a double-layer network with ReLU activation func-
tion, 𝐵𝑁 (·) denotes batch normalization, and𝑀𝐻𝐴(·, ·, ·) is an at-
tention network with 8 heads. For the 𝑖-th head 𝐴𝑇𝑇𝑖 (·, ·, ·), we
have

𝐴𝑇𝑇𝑖 (𝑄,𝐾,𝑉 ) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥
(
[𝑄𝑊𝑄

𝑖
] [𝐾𝑊𝐾

𝑖
]𝑇

√
𝑑𝑖

)
𝑉𝑊𝑉

𝑖 , (5)

𝑀𝐻𝐴(𝑄,𝐾,𝑉 ) =
(
| |8𝑖=1𝐴𝑇𝑇𝑖 (𝑄,𝐾,𝑉 )

)
𝑊𝑂 , (6)

where | | represents the concatenate operation,𝑊𝑂 ∈ R𝑑×𝑑 and
𝑊
𝑄

𝑖
,𝑊𝐾

𝑖
,𝑊𝑉

𝑖
∈ R𝑑×𝑑 ′ are trainable parameters, and 𝑑′ = 𝑑/8

denotes the hidden dimension of each head,
We define the final output of the node encoder as node embed-

dings, i.e., U = 𝐻 (𝐿) , which will be reused for multiple times in the
decoder to construct the solution to the problem instance 𝑆 .

3.3.2 Vehicle Encoder. Unlike fixed node embeddings, vehicle em-
beddings change over step 𝑡 during the decision-making process.
Let v𝑡,0𝑚 = (𝜒𝑚, 𝜌𝑚, 𝜌𝑡𝑚, 𝛿𝑡𝑚) denote the initial representation of
vehicle 𝑣𝑚 at step 𝑡 , we have

v𝑡,1𝑚 = 𝑀𝐿𝑃 (v𝑡,0𝑚 ) + 𝑃𝐸𝑡𝑚𝑊 . (7)

Here, 𝑀𝐿𝑃 (·) is a trainable Multi-layer Perceptron, which maps
the initial features to 𝑑 dimension. 𝑃𝐸𝑡𝑚 = 𝜙 (U, ℓ𝑡𝑚) denotes the
positional encoding obtained by looking up the node embeddings
U with the last visited node ℓ𝑡𝑚 as the index. In such way, we can
get the dynamic features of 𝑣𝑚 at step 𝑡 .

We further input V𝑡,1 = {v𝑡,11 , · · · , v𝑡,1
𝑀
} ∈ R𝑀×𝑑 to a self-

Attention layer, which allows for information exchange among
vehicles, enabling better decision-making from a global perspective,
i.e.,

V𝑡,2 = V𝑡,1 +𝑀𝐻𝐴(V𝑡,1,V𝑡,1,V𝑡,1). (8)
Moreover, we enrich the contextual information for the vehicle
encoder by adopting the cross-Attention layer. We first design the
mask embeddings with U𝑚𝑎𝑠𝑘 , in which we remove the rows of
all served customers ({𝑛 |1 ≤ 𝑛 ≤ 𝑁 ∧ 𝑞𝑡𝑛 = 0}) from U. Then, the
vehicle embeddings V𝑡 at step 𝑡 is obtained by:

V𝑡 = V𝑡,2 +𝑀𝐻𝐴(V𝑡,2,U𝑚𝑎𝑠𝑘 ,U𝑚𝑎𝑠𝑘 ) . (9)

By switching 𝑞𝑡𝑛 of served customers to 0 according to the transition
rules shown in Tab.2, the designed mask embeddings can help to
capture the situational awareness information and highlight the
dynamic features of V𝑡 .

3.3.3 Decoder. Given the node embeddings U ∈ R(𝑁+1)×𝑑 from
node encoder and vehicle embeddings V𝑡 ∈ R𝑀×𝑑 from vehicle
encoder at step 𝑡 , the decoder outputs a probability distribution
𝑃𝑡 ∈ R𝑀×(𝑁+1) as the priority order of all actions, based on which
we get a “2D array pointer” for identifying the 𝑡-th tuple of the
output sequence.

Let 𝛽𝑡𝑚,𝑛 represents the attention score between vehicle 𝑣𝑚 and
node 𝑢𝑛 at step 𝑡 , we have

𝛽𝑡𝑚,𝑛 =


−∞, if 𝑞𝑡𝑛 = 0 ∧ 𝑛 ≠ 0
−∞, if ℓ𝑡𝑚 = 0 ∧ 𝑛 = 0
−∞, if 𝜌𝑚 − 𝜌𝑡𝑚 < 𝑞𝑡𝑛

𝜆𝑡𝑎𝑛ℎ( V
𝑡
𝑚U𝑛√
𝑑

), otherwise,

(10)

where 𝑑 is the dimension of node embeddings (or vehicle embed-
dings), 𝑡𝑎𝑛ℎ(·) is the activation function, and 𝜆 (𝜆 = 10 in our
manuscript) is the manually set hyper-parameter. In the action
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space of𝑀 × (𝑁 + 1), some actions are invalid at step 𝑡 and need to
be masked. For example, 1) the selected customer has been visited
before step 𝑡 (i.e., 𝑞𝑡𝑛 = 0 ∧ 𝑛 ≠ 0); 2) the selected vehicle visits the
depot twice in a row (i.e., ℓ𝑡𝑚 = 0 ∧ 𝑛 = 0); and 3) the demand of
the selected node exceeds the remaining capacity of corresponding
vehicle (i.e., 𝜌𝑚 − 𝜌𝑡𝑚 < 𝑞𝑡𝑛).

The probability of selecting a tuple (𝑣𝑚, 𝑢𝑛) at step 𝑡 is defined
as follows:

𝑃𝑡𝑚,𝑛 =
𝑒𝑥𝑝 (𝛽𝑡𝑚,𝑛)∑
𝑚,𝑛 𝑒𝑥𝑝 (𝛽𝑡𝑚,𝑛)

. (11)

The action 𝑎𝑡 = (𝑣𝑚, 𝑢𝑛) can be selected either by retrieving
the maximum probability greedily or sampling according to the
probability distribution 𝑃𝑡 .

At each step 𝑡 , we select an action 𝑎𝑡 by the policy network 𝜋𝜃 .
We repeat the above steps until all customers have been visited, re-
sulting in a tuple sequence of length𝑇 that can be used to construct
the solution Γ for the problem instance 𝑆 . It is worth noting that
2D-Ptr is composed of a series of attention modules, so its input is
not constrained by the number of vehicles and customers, making
the 2D-Ptr have good generalization.

4 EXPERIMENTS
In this section, we evaluate the effectiveness of the proposed policy
network through a series of experiments. First, its superiority in
HCVRP is verified by comparing it with state-of-the-art methods
(including heuristic algorithms and DRL based methods). Second,
each component’s impact on the performance of system is analyzed
through ablation study. Third, its generalization ability is evaluated
by deploying a well-trained model to new scenarios. To ensure
fair comparisons, all computational experiments are performed on
servers with Hygon C86 7185 CPUs and Vega20 A1 SERVER GPUs.
Our code is available here1, realized by the PyTorch framework.

4.1 Experimental settings
4.1.1 Dataset. Our method aims to solve the generalization prob-
lem of HCVRP, so that a well-trained model can adapt to problem
instances with different numbers of vehicles (𝑀) or customers (𝑁 ).
We consider 12 settings of problem sizes with 𝑀 ∈ {3, 5, 7} and
𝑁 ∈ {40, 60, 80, 100}. For simplicity, we refer to the problem size
with𝑀 vehicles and 𝑁 customers as V𝑀-U𝑁 , e.g., V3-U40.

For all customers and depot, we follow the existing work [16],
sample their coordinates from the grid of [0, 1]× [0, 1] and demands
from the set {1, 2, · · · , 9} according to the uniform distribution.
Here, the demand of the depot is set to 0. As for fleet, existing work
simply keeps it fixed. As a result, the performance of a well-trained
model will drastically deteriorate when applied to another fleet (e.g.,
the capacity or speed of a vehicle is changed). To verify the fleet
generalization, we increase the diversity of fleets in our dataset by
setting each vehicle’s capacity to a discrete value randomly sampled
from the set {20, 21, · · · , 40}, and the speed to a value sampled from
[0.5, 1] according to the uniform distribution.

4.1.2 Baseline. Three state-of-the-art DRL-based methods are se-
lected as baselines: 1)AM [15], learning a Transformer-based model

1https://github.com/farkguidao/2D-Ptr

via REINFORCE for solving the standard VRPs; 2) ET [20], a state-of-
the-art method for min-max MTSP and MPDP, generating sequen-
tial actions and considering an equitable workload; 3) DRL𝐿𝑖 [16],
a DRL-based method proposed by Li et al. for solving the HCVRP,
in which each action consists of two subactions that are executed
sequentially. We also employ three well known heuristic methods
for comparison, which include: 4) GA [13], Genetic Algorithm;
5) SA [10], Simulated Annealing; 6) SISR [4], a state-of-the-art
heuristic algorithm for solving CVRP and its variants.

The original ET and AM are not designed for HCVRP, and thus
we modify their input layers and decoder masks to accept het-
erogeneous features of the vehicles as input, while keeping other
network structures unchanged. In addition, AM can only construct
solution for a single vehicle, therefore we follow the settings of
literature [16] and assign vehicles to take turns to decide the next
node. As for the heuristic methods, the hyper-parameters are found
by trial and error. The configuration details of all the baselines and
our method are given in Appendix.

4.1.3 Evaluation metrics. Following [16], we use 3 metrics includ-
ing the average objective value, the average gap of objective value
relative to SISR (the best heuristic baseline) and the average compu-
tation time. For DRL-based solvers, there are two strategies avail-
able for the decoder during testing: 1) Greedy, which constructs
the solution by selecting actions with the maximum probability; 2)
Sampling, which retrieves the best one from 𝑘 solutions obtained by
sampling actions based on probability distribution. Here, we set 𝑘
to 1280 and 12800, and term them as Sample1280 and Sample12800,
respectively.

4.2 Comparative Study
Tab.3 shows the experimental results of different methods, from
which we can draw the following conclusions: 1) Heuristic methods
have excellent performance in most problem instances, especially
SISR achieving the smallest objective values. However, these meth-
ods are very time-consuming, especially on the large problem scales
like V7-U100, even taking more than 1000 seconds. 2) Compared to
heuristic methods, DRL-based methods exhibit significant speed im-
provements with comparable performance. With the advantage of
offline training, DRL-based methods can learn common patterns of
instances, which saves a substantial amount of online computation
time; 3) Although with slightly longer computation time, both Sam-
ple1280 and Sample12800 achieve smaller objective values and gaps
than Greedy, which demonstrates the effectiveness of sampling
strategy in improving the solution quality; 4) 2D-Ptr outperforms
all DRL-based baselines in terms of objective value and gap. We
attribute it to the proposed policy network planning paths based
on the priority order of actions, which can simultaneously solve
vehicle selection and node selection problems within a single action,
enabling it to search in a more rational and broader action space.
The experimental results in Fig.3 validate our hypothesis, where
we record the validation objective values of 2D-Ptr and DRL𝐿𝑖 (the
best DRL-based baseline) based on the Greedy strategy during the
training process. From the experimental results, it can be seen that
with the support of the proposed policy network, 2D-Ptr can be
quickly optimized in the correct direction.
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Table 3: Performance Comparison. Each test set has 1280 fixed problem instances. The notation (g.), (s.1280) and (s.12800) refer
to Greedy, Sample1280 and Sample12800, respectively.

Methods U40 U60 U80 U100
obj. gap(%) time(s) obj. gap(%) time(s) obj. gap(%) time(s) obj. gap(%) time(s)

V3

SISR 4.77 0.00 262.62 6.57 0.00 478.38 8.52 0.00 750.26 10.29 0.00 1084.84
GA 6.35 33.22 241.92 9.21 40.25 411.16 12.32 44.68 612.47 15.33 48.93 845.08
SA 5.07 6.27 229.47 7.04 7.16 382.52 9.17 7.60 561.95 11.13 8.13 765.30

AM (g.) 6.32 32.57 0.10 8.49 29.2 0.14 10.81 26.93 0.19 12.68 23.23 0.25
AM (s.1280) 5.48 14.93 0.18 7.62 16.07 0.34 9.92 16.45 0.50 11.82 14.82 0.72
AM (s.12800) 5.37 12.61 0.83 7.49 14.08 1.86 9.77 14.67 3.18 11.66 13.29 4.56

ET (g.) 5.60 17.35 0.21 7.58 15.46 0.28 9.76 14.61 0.38 11.74 14.08 0.45
ET (s.1280) 5.20 9.01 0.29 7.14 8.64 0.52 9.19 7.88 0.74 11.20 8.84 1.02
ET (s.12800) 5.15 7.97 1.06 7.08 7.80 2.34 9.12 7.04 4.03 11.13 8.10 6.28
DRL𝐿𝑖 (g.) 5.47 14.66 0.23 7.43 13.07 0.34 9.64 13.22 0.46 11.44 11.13 0.58

DRL𝐿𝑖 (s.1280) 5.09 6.79 0.42 6.97 6.12 0.73 9.10 6.78 1.10 10.90 5.94 1.48
DRL𝐿𝑖 (s.12800) 5.05 5.91 1.66 6.91 5.23 3.38 9.02 5.89 5.61 10.82 5.15 7.97

2D-Ptr (g.) 5.29 10.92 0.13 7.20 9.63 0.20 9.24 8.53 0.27 11.12 8.04 0.31
2D-Ptr (s.1280) 4.96 3.91 0.20 6.82 3.87 0.32 8.85 3.86 0.44 10.71 4.11 0.55
2D-Ptr (s.12800) 4.92 3.09 0.88 6.77 3.08 1.53 8.78 3.13 2.39 10.65 3.44 3.05

V5

SISR 2.94 0.00 260.21 4.00 0.00 484.14 5.10 0.00 759.17 6.17 0.00 1098.69
GA 4.88 66.10 342.84 6.89 72.29 564.44 8.95 75.55 820.15 10.93 77.24 1099.14
SA 3.21 9.18 314.29 4.39 9.74 509.72 5.61 10.02 735.63 6.80 10.20 983.37

AM (g.) 4.15 41.15 0.10 5.51 37.76 0.15 6.87 34.84 0.20 8.10 31.42 0.24
AM (s.1280) 3.54 20.66 0.19 4.82 20.69 0.33 6.19 21.46 0.52 7.45 20.75 0.70
AM (s.12800) 3.46 17.84 0.84 4.72 18.19 1.84 6.08 19.26 3.19 7.33 18.86 4.50

ET (g.) 3.57 21.45 0.20 4.76 19.15 0.30 6.01 17.75 0.37 7.25 17.51 0.46
ET (s.1280) 3.29 11.98 0.33 4.46 11.59 0.55 5.64 10.65 0.75 6.85 11.02 0.94
ET (s.12800) 3.26 10.85 1.17 4.42 10.5 2.58 5.59 9.62 4.12 6.79 10.13 5.27
DRL𝐿𝑖 (g.) 3.59 22.36 0.27 4.71 17.93 0.40 5.97 17.07 0.54 7.06 14.49 0.67

DRL𝐿𝑖 (s.1280) 3.24 10.28 0.52 4.34 8.47 0.88 5.54 8.64 1.36 6.65 7.76 1.87
DRL𝐿𝑖 (s.12800) 3.20 8.83 2.12 4.29 7.31 4.18 5.48 7.45 7.03 6.58 6.71 9.99

2D-Ptr (g.) 3.34 13.58 0.13 4.48 12.01 0.20 5.65 10.71 0.24 6.75 9.40 0.32
2D-Ptr (s.1280) 3.09 5.27 0.22 4.20 5.01 0.36 5.36 5.11 0.50 6.46 4.73 0.63
2D-Ptr (s.12800) 3.06 4.26 1.07 4.16 4.02 1.85 5.32 4.21 2.94 6.41 3.92 3.75

V7

SISR 2.29 0.00 262.55 2.91 0.00 486.60 3.69 0.00 764.84 4.45 0.00 1102.31
GA 4.35 90.36 444.18 5.98 105.29 715.44 7.58 105.30 1019.83 9.10 104.61 1362.07
SA 2.50 9.24 397.85 3.30 13.38 638.45 4.17 13.09 908.11 5.01 12.58 1196.24

AM (g.) 3.15 37.79 0.10 4.15 42.45 0.16 5.18 40.54 0.19 6.13 37.81 0.24
AM (s.1280) 2.66 16.29 0.20 3.63 24.68 0.34 4.64 25.80 0.53 5.58 25.46 0.70
AM (s.12800) 2.60 13.78 0.83 3.55 22.04 1.90 4.55 23.30 3.25 5.47 23.16 4.58

ET (g.) 2.69 17.69 0.20 3.58 22.93 0.29 4.43 19.98 0.41 5.23 17.59 0.47
ET (s.1280) 2.46 7.65 0.32 3.33 14.49 0.53 4.17 12.88 0.76 4.98 11.99 0.99
ET (s.12800) 2.43 6.42 1.25 3.30 13.2 2.48 4.13 11.87 4.01 4.94 11.09 5.70
DRL𝐿𝑖 (g.) 2.67 16.81 0.28 3.60 23.49 0.45 4.52 22.46 0.60 5.38 20.87 0.79

DRL𝐿𝑖 (s.1280) 2.43 6.06 0.58 3.25 11.59 1.07 4.13 11.94 1.60 4.98 11.82 2.27
DRL𝐿𝑖 (s.12800) 2.40 4.96 2.46 3.20 10.03 5.11 4.07 10.34 8.23 4.91 10.43 12.15

2D-Ptr (g.) 2.50 9.33 0.13 3.31 13.81 0.19 4.14 12.26 0.24 4.92 10.49 0.32
2D-Ptr (s.1280) 2.35 2.73 0.23 3.09 6.01 0.36 3.90 5.65 0.55 4.68 5.22 0.69
2D-Ptr (s.12800) 2.33 2.02 1.24 3.05 4.86 1.98 3.86 4.58 3.43 4.64 4.30 4.42

4.3 Ablation Study
In this section, we further investigate the impact of each component
of 2D-Ptr on performance improvement. We name the four variants
that remove depot token, positional encoding, self-Attention layer
(vehicle), and cross-Attention layer as Var𝐷𝑇 , Var𝑃𝐸 , Var𝑆𝐴 and

Var𝐶𝐴 , respectively. As shown in Tab.4, all four variants of 2D-Ptr
result in performance degradation on the V5-U60 problem size.

Our results demonstrate the importance of positional encoding,
self-Attention, and cross-Attention for supporting the vehicle en-
coder. By incorporating the last visited node information of each
vehicle into vehicle embeddings, the positional encoding helps to

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1243



0 20 40
Epoch

5.5

6.0

6.5

Va
lid

at
io

n 
O

bj
ct

iv
e 

Va
lu

e

2D-Ptr
DRLLi

(a) V3-U40 (Small)

0 20 40
Epoch

4.5

5.0

5.5

Va
lid

at
io

n 
O

bj
ct

iv
e 

Va
lu

e

2D-Ptr
DRLLi

(b) V5-U60 (Medium)

0 20 40
Epoch

5.0

5.5

6.0

6.5

Va
lid

at
io

n 
O

bj
ct

iv
e 

Va
lu

e

2D-Ptr
DRLLi

(c) V7-U100 (Large)

Figure 3: Convergence curves on different problem sizes. All results are presented in terms of the mean and standard deviation
of five runs with different random seeds. 2D-Ptr consistently outperforms DRL𝐿𝑖 by a big margin.
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Figure 4: Generalization performance. The smaller the performance gap, the stronger the generalization.

Table 4: Ablation study for the components of 2D-Ptr.

Methods Greedy Sample1280 Sample12800
obj. gap(%) obj. gap(%) obj. gap(%)

Var𝐷𝑇 4.51 12.73 4.21 5.30 4.17 4.26
Var𝑃𝐸 4.77 19.32 4.39 9.72 4.33 8.32
Var𝑆𝐴 4.54 13.61 4.23 5.92 4.18 4.70
Var𝐶𝐴 4.55 13.84 4.26 6.53 4.21 5.40
2D-Ptr 4.48 12.01 4.20 5.01 4.16 4.02

introduce crucial location information and create order bias among
vehicles, enabling simultaneous decision-making to be modeled as a
sequential process. In addition, the exchange of information among
vehicles through the self-Attention layer promotes the collabora-
tion of multiple vehicles, resulting in more robust decision-making
from a global perspective. With respect to the cross-Attention layer,
we believe its significant improvement is due to the rich contextual
information provided by mask embedding, which enables vehicles
to grasp task progress in real-time and adjust their embeddings
based on remaining tasks.

As for the depot token, we find it is useful in addressing het-
erogeneous problems in node encoder. The depot is a place for
vehicles to refill. Therefore, it allows vehicles to visit multiple times,

which is different from the nature of customers. Depot token is a
trainable vector that helps bridge the gap between customers and
depot, thereby generating higher quality embeddings.

4.4 Generalization Study
This subsection tests the generalization ability of the well-trained
model to a new scenario. To save online computation time, our
model is trained offline. Since differences might exist between the
training data and real scenarios, the generalization ability of well-
trained model is rather critical.

Here, we conduct experiments to apply the policy learned for a
problem size to different ones without any further tuning. 1) Fix
fleet size to 7, and test the performance of well-trained models
learned for V7-U40, V7-U60, V7-U80, and V7-U100 on all four sce-
narios; 2) Fix customer size to 100, and test the performance of
well-trained models learned for V3-U100, V5-U100, and V7-U100 on
all three scenarios; 3) Test the performance of well-trained models
learned for V3-U40, V5-U60, and V7-U100 on all three scenarios.
Note that the latter two settings add additional validation of models’
generalization to different fleet sizes, which has not been considered
in existing works. The experimental results based on the strategy
of Sample12800 are shown in Fig.4.

From the experimental results, we observe that when the training
and testing settings are the same, 2D-Ptr can achieve the smallest
objective value. Although the performance of 2D-Ptr degrades when
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applied to different settings, the change is very small. For example,
in Fig.4(b), applying the policy of V3-U100 to V5-U100 results in
almost the same objective value with the best settings (i.e., applying
the policy of V5-U100 to V5-U100). In addition, the performance
of 2d-ptr in the new scenarios is higher than that of most models
(baselines) trained for this scenario. For example, in Fig.4(c), the
model of 2D-Ptr trained on V3-U40 achieves an objective value of
4.69 in solving V7-U100, outperforming SA (5.01) and DRL𝐿𝑖 (4.91),
etc. This once again validates the generalization ability of 2D-Ptr.

5 CONCLUSION
In this paper, by factorizing HCVRP into the sequence encoder-
decoder form, we propose a pointer network extension model called
2D-Ptr to learn a policy for the route construction based on the
min-max objective function. Instead of planning paths based on the
priority order of vehicles, 2D-Ptr plans paths based on the priority
order of actions. Specifically, the policy network outputs a 2D array
pointer to select a tuple from all combinations of vehicles and nodes
as the element of sequence 𝜏 , which is further used to construct
the solution Γ. In addition, 2D-Ptr consists of a series of carefully
designed attention modules, so that it can be used to automate the
task of routing a heterogeneous fleet for any configuration.

Our method surpasses existing state-of-the-art techniques con-
cerning the trade-off between cost and runtime. Through our ex-
periments, we have demonstrated the superior performance as well
as excellent generalization ability of 2D-Ptr, positioning it as a valu-
able tool for various delivery service industries aiming to enhance
efficiency and reduce costs. Future work will extend 2D-Ptr to dy-
namic scenes, and generate fast and scalable solutions by relying
on centralized programming under partial observability.

A APPENDIX
A.1 Settings for 2D-Ptr
The hyper-parameter configuration for training the policy network
is shared for all problem sizes. Specifically, the entire training pro-
cess lasts for 50 epochs, where each epoch contains 2500 batches,
and each batch contains 512 randomly generated problem instances.
We adopt the Adam optimizer to train the model, with an initial
learning rate of 0.0001 and a decay factor of 0.995 per epoch. In
addition, the gradient clipping is applied to stabilize the training
process, where the maximum L2 norm is set to 3.0. As for the
hyper-parameters of the model structure, the number of heads in
all multi-head attention is set to 8, while the embedding dimension
𝑑 and the number 𝐿 of layers in node encoder are set to 128 and 3,
respectively.

As the problem size increases, the training time of the model
will become longer. For example, for the smallest problem size V3-
U40, the average training time of each epoch is 31min, and for the
largest problem size V7-U100, each epoch lasts 70min (2 GPUs).
Note that when testing, the 1280 instances of each test set are
resolved serially on a single GPU for 2D-Ptr, and the same for other
DRL-based baselines, to ensure a fair comparison of performance.

A.2 Settings for DRL-based baselines
All DRL-based baselines are implemented based on the source code
and hyper-parameters provided in the original papers, and are all

trained for 50 epochs, which is consistent with 2D-Ptr. For DRL𝐿𝑖 ,
since the features of the fleet are hard-coded and fixed in source
code, we adjust it to accept different fleets as input to support our
dataset. For ET, since it is originally used to solve MTSP and MPDP,
we first adjust the mask in decoder to produce feasible solutions
for HCVRP, and then inject vehicle features to the input layer and
context encoder of ET. As for AM, we follow the adjustment for
AM in DRL𝐿𝑖 (using AM as the baseline), first select vehicle in
turn, and then select the next node for it. Furthermore, vehicle
features are considered in context vector generation to identify
vehicle differences.

A.3 Settings for heuristic baselines
For the heuristic baselines, all methods tune the input and objective
function to the min-max HCVRP. For SISR, we adopt an open source
implementation2 based on Java and the same hyper-parameters in
the original paper. SA and GA are implemented in scikit-opt3, which
is an open source heuristic algorithm library based on Python, and
their hyper-parameters are carefully tuned. We gradually increase
the iteration steps with customer size to improve the quality of the
solution. Finally, the hyper-parameters of all heuristic baselines are
listed in the Tab.5.

Since these heuristic methods are very time-consuming, we dis-
tribute the instances to multiple identical servers, and report the
average results. For example, it takes over 1000 seconds for SISR to
solve a single instance of V3-U100, thus solving a test set containing
1280 instances sequentially would require approximately 15 days.
However, by distributing these instances to 64 identical servers, we
have managed to reduce this time to 6 hours.

Table 5: Hyper-parameters for heuristic baselines

Method Settings

SISR 𝑐 = 10, 𝐿𝑚𝑎𝑥 = 10, 𝛼 = 0.001, 𝛽 = 0.01,
𝑇0 = 100, 𝑇𝑓 = 1, iter = 3 × 105 × 𝑁

GA 𝑛 = 200, iter = 40 × 𝑁 ,
𝑃𝑚 = 0.8, 𝑃𝑐 = 1

SA 𝑇0 = 100, 𝑇𝑓 = 1 × 10−7,
𝐿 = 20 × 𝑁 , 𝛼 = 0.98
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