
GraphSAID: Graph Sampling via Attention based Integer
Programming Method

Ziqi Liu
New York University Center for Data Science

New York, United States
ziqiliu@nyu.edu

Laurence Liu
FCC Analytics

Hong Kong, China
laurence0636@outlook.com

ABSTRACT
Graphs are extensively employed in data mining and machine learn-
ing owing to their remarkable ability to model real-world objects
and their relationships. However, as graphs scale up, they present
several challenges. To tackle these issues, graph sampling meth-
ods have gained popularity by selecting a representative subgraph
within a given budget. However, most graph sampling approaches
rely on graph-structure information and cannot simultaneously
consider node feature interaction and selection bias to perform
graph sampling. Given the recent success of the attention mech-
anism in model training, it is worth investigating its potential to
enhance graph sampling methods and overcome their challenges.
The primary objective of this work is to establish a novel connec-
tion between the learned attention and the graph sampling problem
using the Integer Programming method. To accomplish this, we
propose a novel solution, GraphSAID, which utilizes an attention
learning stage to generate initial node-level attention, followed by
an aggregation stage to compute connected component scores that
are independent of the budget. Finally, the Integer Programming
method is employed to optimize an objective function that considers
both the budget value and the user-defined selection bias. Empirical
results on 1 synthesized and 3 real-world graph datasets demon-
strate its superior performance. Additionally, we showcase the ease
with which selection bias (user control) can be incorporated into
GraphSAID to further improve performance.

KEYWORDS
Graph Sampling; Attention; Graph Learning; Deep Learning; Sub-
graph Generation

ACM Reference Format:
Ziqi Liu and Laurence Liu. 2024. GraphSAID: Graph Sampling via Attention
based Integer ProgrammingMethod. In Proc. of the 23rd International Confer-
ence on Autonomous Agents andMultiagent Systems (AAMAS 2024), Auckland,
New Zealand, May 6 – 10, 2024, IFAAMAS, 9 pages.

1 INTRODUCTION
In recent years, the increasing availability of large-scale graph data
in various applications has raised the importance of graph data
study, particularly in the areas of data mining and machine learning.
However, many real-world networks are large and complex, making

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

it difficult to analyze or manipulate the entire network for humans
or agents. One may consider using graph sampling methods, which
select representative subgraphs (subsets of nodes or edges) from
the network that can further facilitate network analysis, visualiza-
tion, modeling, and deployment [4, 5, 15, 29, 37, 45, 47, 48, 62]. For
example, a sufficiently small yet effective subgraph can further com-
press the model architecture to facilitate inference [47], mitigate
the deleterious effects of data noise for downstream analyses [37],
and expedite the hyperparameter tuning process [4].

The common approach to performing graph sampling in large-
scale graph datasets [35, 44, 53] relies on node-level traversal mech-
anisms such as [41, 48], which perform random-walk based on node
degrees. However, traversal node by node results in low data effi-
ciency and a lack of global structure information such as community
[45], which can be deleterious when performing clustering analysis
on the sampled subgraph [15]. Therefore, existing methods in graph
sampling focus more on a higher level (e.g., neighbor exploration).
They combine both breadth-first search (BFS) and depth-first search
(DFS) [14, 18, 31], or community expansion to seek new nodes such
that the sampled set can reach the largest number of unknown
nodes [34]. Recent works [38, 56] focus on higher-level geometry
metrics such as Ollivier-Ricci Curvature [43] to better capture the
community clustering information by uniformizing the edge Ricci
curvatures. However, sampling a subgraph solely depending on
node- or community-level geometry features results in a lack of
graph semantics, which is more severe if the sampled subgraph is
used in downstream learning tasks such as pre-trained or teacher
networks [47, 58].

Graph neural networks (GNN) have been extensively employed
for tasks involving node- or edge-level classification tasks [8, 20],
graph representation learning [7, 21] and generative learning [32].
The literature on GNN [57, 60, 65] reveals the ability of deep models
to learn graph semantics using message passing mechanism [65]
or graph convolutional kernels [54]. In particular, [20] has proven
that a GNN with two consecutive graph convolutional layers can
predict both a node label and its clustering coefficient [52]. In order
to integrate graph semantics into the graph sampling process, it
is encouraging to employ a learned GNN as a semantic extractor
carrying semantic information inherent in the graph.

To this end, in this work, we proposeGraph Sampling via Attention
Based Integer ProgrammingMethod (GraphSAID), a novel three-stage
approach to perform graph sampling. Specifically, in the first stage,
we use an Attended Edge Rank Calculation method, which employs
attention, the learned graph neural network by-product to assign
ranks to each edge in the graph, indicating their relative impor-
tance within the graph. Secondly, we use an Attended Connected
Component Generation method to aggregate the edge rank scores

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1256

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

into connected component scores, which are subsequently merged
to form the final selected subgraph. Finally, we employ an Integer
Programming Based Node Selection method to efficiently select a
subgraph for a given budget. This is achieved by modeling the sub-
graph selection problem as an Integer Programming optimization
problem, using the connected component scores obtained from the
previous stages.

We test our solution on four datasets - one synthesized dataset
and three real-world datasets [35, 44, 53] with diverse graph prop-
erties. Our findings demonstrate that our approach outperforms
graph-structure-based sampling methods in both subgraph effec-
tiveness and downstream training convergence. Furthermore, our
solution’s flexibility is highlighted through case studies, which re-
veals its ability to seamlessly integrate selection bias (user control)
to aid the subgraph selection.

Our contributions can be summarized in fourfold:
• To our best knowledge, this is the first work using learned
attention as a by-product to perform a graph sampling pro-
cess, which incorporates graph semantics leading to a more
effective subgraph.
• Since the raw learned attention is local, we propose two
stages, Attended Edge Rank Calculation and Attended Con-
nected Component Generation, to shift the local attention
to cluster level, which significantly facilitates the overall
sampling efficiency.
• Our novel Integer Programming Based Node Selection treats a
graph sampling process as a connected components selection
problem, which balances both local and global, geometry
and semantic information for the output subgraph.
• We demonstrate the ease of incorporating user control in
the graph sampling, and empirically show that the gener-
ated subgraph by GraphSAID can facilitate both downstream
training efficiency and the subgraph effectiveness.

2 RELATEDWORK
Our algorithm is conceptually rooted in graph sampling techniques,
as well as in recent advancements in graph neural networks and
the implementation of sophisticated attention mechanisms.

2.1 Graph Sampling
There exist two primary strategies for graph samplingmethods. One
is random sampling (e.g., [42, 48]), by which each node is sampled
according to a probability assigned. [42] demonstrates that the
larger the spectral gap of the Random Walk transition matrix, the
less likely that a randomwalker will get stuck. This finding provides
additional support for promising research directions, including [10,
17, 41]. Random Walk with Fly-back probability (RWF) introduces
a fly-back probability 𝑝 during each iteration of the random walk,
where the walk will go back to the initial node with probability 𝑝 .
[30] and [24] refered to RWF as "random jump". The second strategy
is exploration-based (e.g., [18, 31]), in which it begins by selecting
a node at random and subsequently exploring its neighbors in later
iterations. Snow Ball (SB) [18] is commonly used in investigations
of hidden populations. In each round, an entity is required to refer
to a fixed number of related entities. Forest Fire (FF) was proposed
as a graph generation model to simulate social network properties

[31]. [30] adapted FF for graph sampling, which is an extension of
SB, except that in each iteration, the number of neighbors sampled
is probabilistic. Unlike these previous approaches, we leverage
the learned attention information in order to capture the prior
knowledge before sampling the graph. A more recent method [56],
built upon the motivation that between-community Ollivier Ricci
curvature (ORC) is larger than within-community ORC, proposed
a greedy framework to sample nodes from all communities to the
subgraph. However, how much graph semantics can ORC embed is
unclear.

2.2 Graph Neural Networks.
Research has explored information diffusion through edges as a
means of leveraging graph typologies for learning. Extended from
RNN, GNN [46] recursively updates node features till equilibrium
to allow learning on more generalized graphs, e.g. acyclic, cyclic,
directed, or undirected. GCN [26] summarized and simplified previ-
ous works (e.g., [5, 12, 22]) by proposing a layer-wise linear model
that restricts information propagation to first-order neighbors only.
While such simplification largely reduces computational costs,
spectral-based GCNs are still computationally expensive as they by
nature require the eigen decomposition of the Laplacian matrix. On
the other hand, GraphSAGE [20] or its variants [8, 9, 61] are pow-
erful graph neural network models that learn node representations
by aggregating information from the node’s local graph neighbor-
hood using a flexible and scalable sampling strategy, which greatly
reduces the in-memory computation cost. These neural network
designs enable efficient computation of prior knowledge from large
graphs, which can further be leveraged to perform downstream
tasks such as graph sampling.

2.3 GNNs meet Attention.
The attention mechanism [59] has emerged as a powerful tool in
deep neural networks for enabling the model to selectively focus
on important features of the input data. By assigning weights to
different parts of the input, the attention mechanism allows the
network to attend to the most relevant information, improving both
the model’s accuracy and its interpretability. There is outstanding
research work combining GNN with the attention mechanism. For
instance, GAT [50] and its variants [23, 27, 51, 63] learn to assign at-
tention weights to each of the neighbors of a given node in a graph,
based on their relevance to the node’s representation. The atten-
tion mechanism allows the model to selectively focus on the most
important neighbors, rather than treating all neighbors equally.
The results from these works are promising. Although attention is
utilized during the training process, it is not a straightforward task
to employ it directly for the purpose of enabling a GAT network to
perform graph sampling.

3 PRELIMINARIES
Formally, let Φ be a graph-based model architecture (e.g., a GCN)
that can process graph-structure data, and 𝐵 be the number of nodes
we try to sample. Now given a large graph G = (V, E) whereV
and E are node and edge sets, respectively, and 𝑁 = |V| > 𝐵,
then our goal aims to select a subgraph represented as G⟨V𝑏⟩ =
(V𝑏 , {𝑢𝑣 |𝑢𝑣 ∈ E and 𝑢, 𝑣 ∈ V𝑏 }):

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1257

Figure 1: Illustration of the graph sampling process in GraphSAID. It is important to note that stages 1 (Attended Edge Rank
Calculation) and 2 (Attended Connected Component Generation) only need to be executed once for the entire graph, after which
stage 3 (Integer Programming Based Node Selection) can perform graph sampling concurrently for different budget values of 𝐵.

V𝑏 = argmin
V𝑏

dΦ (G⟨V𝑏⟩,G), 𝑠 .𝑡 .V𝑏 ⊆ V 𝑎𝑛𝑑 |V𝑏 | = 𝐵 (1)

where dΦ (., .) ∈ R quantifies the difference of its two inputs for a
given Φ. In particular, dΦ (G⟨V𝑏⟩,G) can be considered as a mea-
surement of the subgraph effectiveness by calculating the semantic
difference betweenG⟨V𝑏⟩ and its correspondingwhole graphG. In
addition, to obtain the semantic difference, we need a helper model
architecture Φ. It is worth noting that there are several approaches
to constructing d [25] and we focus on the inference performance
dissimilarity between a subgraph G⟨V𝑏⟩ and its corresponding full
graph G, using the same helper model architecture Φ. Also, note
that dΦ is evaluated on the unchanged testing set.

4 OPTIMIZATION VIA EDGE RANKING
When it comes to semantically graph sampling, one might consider
using node ranking based methods to rank nodes and then select
the high-rank node-set, however, we opt for edge ranking for the
following reasons:

(1) Whenwe globally rank edges and subsequently remove some
of them, the whole node set can be preserved while the
complexity of the graph can be reduced. This is especially
important for the cases in which non-trivial inherent edge
noise emerges in the whole graph [16].

(2) As the number of removed edges increases, more connected
components are developed. This will offer cluster-level com-
putations that exhibit enhanced sampling efficiency.

(3) Edges can serve as a versatile medium for conveying node
interaction information, such as attention [49].

To this end, we propose GraphSAID, a three-stage method (as
shown in Figure 1) to perform the graph sampling process: (1) the
Attended Edge Rank Calculation process (in Section 4.1), where
we define a total attention amount, which quantifies the overall
significance in facilitating the prediction of other nodes for each
edge. (2) the Attended Connected Component Generation process
(in Section 4.2), where we sort edges by the total attention amount
and then progressively merge the sorted edges into the attended
connected components. (3) the Integer Programming Based Node

Selection method (in Section 4.3), which employs an Integer Pro-
gramming approach with adaptable constraints to efficiently and
effectively select the generated connected components.

4.1 Attended Edge Rank Calculation
In the first stage, we aim to create ranking scores for each edge.
While traditional methods consider centrality [11, 19] and its mod-
ifications to perform edge ranking [13], we leverage the learned
attention, which has successfully shown its ability to significantly
improve the performance in various tasks [51, 55, 64]. In particular,
our approach embraces the widely acclaimed GCN model Graph-
SAGE [20] that has paved the way for a suite of influential subse-
quent works, including FastGCN [8] and GraphSAINT [61]. More
specifically, GraphSAGE utilizes:

ℎ𝑡𝑣 ← 𝜎 (𝑊 · MEAN({ℎ𝑡−1𝑣 } ∪ {ℎ𝑡−1𝑢 ,∀𝑢 ∈ N (𝑣)}) (2)

to perform feature transformation during the learning phase, where
ℎ𝑡 is used to represent a node’s representation at the "t" aggregator
step, ℎ𝑡=0 indicates the original node feature and N(𝑣) is the node
neighbor set of 𝑣 . We extend Eq. 2 to leverage attention as:

ℎ𝑡𝑣 ← 𝜎 (norm(𝑊 𝑡−1
𝐷 · ({ℎ𝑡−1𝑄 } ∪ 𝐴(ℎ𝑡−1𝑄 , ℎ𝑡−1𝐾 , ℎ𝑡−1𝑉)))

ℎ𝑡−1𝑄 ←𝑊 𝑡−1
𝑄 · ℎ𝑡−1𝑣

ℎ𝑡−1𝐾 ← (𝑊 𝑡−1
𝐾 · ℎ𝑡−1𝑣1 ,𝑊 𝑡−1

𝐾 · ℎ𝑡−1𝑣2 , ...,𝑊 𝑡−1
𝐾 · ℎ𝑡−1𝑣𝑠

)
ℎ𝑡−1𝑉 ← (𝑊 𝑡−1

𝑉 · ℎ𝑡−1𝑣1 ,𝑊 𝑡−1
𝑉 · ℎ𝑡−1𝑣2 , ...,𝑊 𝑡−1

𝑉 · ℎ𝑡−1𝑣𝑠
)

𝐴(𝑄,𝐾,𝑉) = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (𝑄𝐾𝑇 /
√︁
𝑑𝑘) 𝑉

(3)

where 𝑣1, 𝑣2, ..., 𝑣𝑠 ∈ N (𝑣), "norm" refers to layer normalization
with the default settings specified in [2],𝑊 𝑡−1

𝐷
,𝑊 𝑡−1

𝑄
,𝑊 𝑡−1

𝐾
,𝑊 𝑡−1

𝑉

are learning parameters. Note that we follow the suggested setting
𝑡 = 2 presented in the original work [20]. Extending Eq. 2 to Eq. 3,
we can easily obtain learned attention about local neighbors for each
node after we trained the GraphSAGE model. Fig. 2 illustrates such
learned attention distribution attached to each node. Specifically,
each node will have a tree structure attention distribution where
the tree depth is equal to 𝑡 = 2 (in Eq. 3). In addition, from Eq. 3 it

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1258

Figure 2: Example of the learned attention distribution for
each node (best view in color). Top left: a complete graph
with 3 nodes. Top right: attention distribution for each node
(presented as a root node in each tree). Each branch is asso-
ciated with a value showing the attention amount from a
parent to its child. Bottom right: edge ranking score calcula-
tion. Bottom left: final edge ranking.

can be easily derived that for each parent node of the tree, the sum
of the attention values of its first-order children is 1.

Given the learned attention where each node maintains a local
tree structure distribution, we need to aggregate and subsequently
transform them to associate with each edge so that we can perform
edge scoring/ranking for further selection processes. To do that,
our strategy is that for each edge we accumulate all the attention
that will flow through it across all the attention distribution trees.
In particular, if an edge of the graph appears in a branch of a tree,
we need to accumulate the attention value associated with that
branch. As illustrated in Fig. 2, there are two types of attention
according to the depth of the parent node, i.e., from depth 2 to 1
and 1 to 0, respectively. Since the aggregation follows a bottom-
up approach [20], when the attention flows from depth 1 to 0, we
simply accumulate the associated attention value for the edge. In
contrast, when the attention flows from depth 2 to 1, we discount it
since this attention value only affects an intermediate node rather
than the root node.

To formulate the efficient aggregation illustrated in Fig. 2, we
firstly design two sparse matrices𝐴1 ∈ R𝑁×𝑁 and𝐴2 ∈ R𝑁×𝑁×𝑁
to represent the attention flowed from depth 1 to 0 and 2 to 1,
respectively, where 𝑁 is the total number of nodes of the given
graph. The entry 𝑎𝑖 𝑗 of 𝐴1 represents the attention associated with
the edge from node 𝑖 (root) to node 𝑗 (child at depth 1), while the
entry 𝑐𝑙 𝑗𝑘 of𝐴2 indicates the attention from node 𝑗 (parent at depth
1) to node 𝑘 (child at depth 2) in the 𝑙th tree. For example, 𝐴1 and
𝐴2 of the Fig. 2 are:

𝐴1 =
©­«

0 0.4 0.6
0.1 0 0.9
0.75 0.25 0

ª®¬ (4)

𝐴2 =
©­«©­«

0 0 0
0.7 0 0.3
0.2 0.8 0

ª®¬ , ©­«
0 0.5 0.5
0 0 0

0.42 0.58 0

ª®¬ , ©­«
0 0.45 0.55

0.12 0 0.88
0 0 0

ª®¬ª®¬
(5)

In this way, we can use𝐴1 and𝐴2 to represent our aggregated edge
ranking score matrix:

𝑅𝑎𝑛𝑘𝑆𝑐𝑜𝑟𝑒 = 𝐴1 +
𝑁∑︁
𝑖=1
(𝐴′1𝐴2) [𝑖, :, :] (6)

𝐴′1 =

(
𝐼 ⊙ 𝐴1 [1, :]𝑇 1𝑇 , 𝐼 ⊙ 𝐴1 [2, :]𝑇 1𝑇 , ..., 𝐼 ⊙ 𝐴1 [𝑁, :]𝑇 1𝑇

)
(7)

where 𝐼 is the identy matrix, ⊙ is the element-wise product and
𝐴1 [𝑖, :] is the 𝑖th row of 𝐴1. Finally, we can obtain the edge rank
scores for the edge (𝑢, 𝑣) as:

𝑒𝑢𝑣 = 𝑅𝑎𝑛𝑘𝑆𝑐𝑜𝑟𝑒 (𝑢, 𝑣) + 𝑅𝑎𝑛𝑘𝑆𝑐𝑜𝑟𝑒 (𝑣,𝑢) (8)

Using the example of Fig. 2, we can derive that𝐴′1 and𝑅𝑎𝑛𝑘𝑆𝑐𝑜𝑟𝑒 :

𝐴′1 =
©­«©­«
0 0 0
0 0.4 0
0 0 0.6

ª®¬ , ©­«
0.1 0 0
0 0 0
0 0 0.9

ª®¬ , ©­«
0.75 0 0
0 0.25 0
0 0 0

ª®¬ª®¬ (9)

𝑅𝑎𝑛𝑘𝑆𝑐𝑜𝑟𝑒 =
©­«

0 0.7875 1.0625
0.41 0 1.24
1.248 1.252 0

ª®¬ (10)

In this way, we can facilitate the sampling process by using matrix
parallel computation.

4.2 Attended Connected Component
Generation

After we obtain edge ranking score 𝑒𝑢𝑣 for each edge, in the second
stage, we broaden our focus from the edge level to the group level,
i.e., analysis of connected components. This action offers two ad-
vantages. Firstly, it maintains the semantic coherence [40] of local
neighbors within a connected component (CC). Secondly, sampling
on CCs is more efficient compared to node-by-node sampling.

Given 𝑒𝑢𝑣 for each edge inG, we arrange them as a descending or-
dered set 𝐸 = (𝑒1, 𝑒2, ..., 𝑒𝑚). Subsequently, leveraging the ordered
set 𝐸, we employ a greedy approach to select and merge edges
in the descending rank order. As edges merge to form connected
components, we incorporate a threshold value 𝜏 that regulates the
upper limit of each connected component’s size.

More specifically, we first create an empty collection L which
will contain node sets. Then we take edges from 𝐸 one by one.
Given a taken edge (𝑢, 𝑣), there will be four cases for L to handle:
• If neither 𝑢 nor 𝑣 can be found in any node set in L, then
we append {u,v} to L
• Given 𝑛 ∈ {𝑢, 𝑣} can be found in a node set 𝑠 ∈ L, if |𝑠 | < 𝜏 ,
we merge {𝑢, 𝑣} to 𝑠 , otherwise, we create {𝑢, 𝑣}\𝑛 to append
to L
• If both 𝑢, 𝑣 can be found in two node sets 𝑠1 and 𝑠2 of L
respectively with |𝑠1| < 𝜏 and |𝑠2| < 𝜏 , then we merge 𝑠1
and 𝑠2 inside L.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1259

Algorithm 1 Attended Connected Component Generation
Require: G, 𝜏 , 𝐸
Ensure: L (the collection of connected components as node sets)

List L ← [{}]
2: Queue Q ← 𝐸

while Q ≠ 𝑛𝑢𝑙𝑙 do
4: Edge (𝑢, 𝑣) ← Q .𝑝𝑜𝑝 ()

if ∀ 𝑠 ∈ L : 𝑢 ∉ 𝑠 ∧ 𝑣 ∉ 𝑠 then
6: L .𝑎𝑝𝑝𝑒𝑛𝑑 ({𝑢, 𝑣})

else if ∃𝑠 ∈ L 𝑠 .𝑡 . 𝑢 ∈ 𝑠 ∨ 𝑣 ∈ 𝑠 then

8:

{
add 𝑢 and 𝑣 𝑡𝑜 𝑠, if |𝑠 | < 𝜏
add {𝑢, 𝑣} \ 𝑠 to L, otherwise

else if ∃𝑠1, 𝑠2 ∈ L 𝑠 .𝑡 . 𝑢 ∈ 𝑠1 𝑎𝑛𝑑 𝑣 ∈ 𝑠2 then
10: merge 𝑠1 and 𝑠2 𝑖𝑛 L

end if
12: end while

This process will go through all edges of 𝐸 and we show more
implementation details in algorithm 1 (for a more comprehensive
algorithm, kindly refer to our appendix [33]). At the end of this
stage, we will obtain a vector 𝑐 = (𝑐1, 𝑐2, ..., 𝑐𝑙)𝑇 where 𝑙 = |L|, con-
taining the total attention amount summed within each connected
component (i.e., each node set in L). Specifically, we have:

𝑐𝑖 =
∑︁

(𝑢,𝑣) ∈G⟨𝑠𝑖 ⟩
𝑒𝑢𝑣 (11)

where 𝑠𝑖 ∈ L is the 𝑖𝑡ℎ connected component stored in L.

4.3 Integer Programming Based Node Selection

In the third (final) stage, we perform connected component se-
lection to achieve graph sampling. Given that attention is crucial
for understanding semantic nuances [51, 55], our goal is to select
optimal subsets of CCs so that the total attention amount is maxi-
mized and the summed size of the selected subsets does not exceed
𝐵. In other words, we seek:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑐𝑇 𝑥

𝑠.𝑡 . 𝑣𝑇 𝑥 ≤ 𝐵
(12)

where 𝑥 ∈ {0, 1} |𝑐 | , 𝑣 ∈ R |𝑐 | . Here 𝑥 represents a final selec-
tion vector on L, 𝑣 is the vector containing CC size in L, i.e.,
𝑣 = (|𝑠1 |, |𝑠2 |, ..., |𝑠 |𝑐 | |), where 𝑠1, 𝑠2, ..., 𝑠 |𝑐 | ∈ L. Note that Eq. 12
naturally fits the Integer Programming formulation [6], therefore
we can apply the standard branch and bound method [28] to solve
Eq. 12 to obtainV𝑏 .

4.3.1 Extend Flexible Constraints. Note that we can design or in-
terpret any kind of user requirements as linear constraints in Eq. 12
due to the properties of the mixed integer programming [1]. We
have devised two general constraints (denoted as c1 and c2) that
are widely applicable in practice, aiming to enhance the flexibility

Figure 3: Illustration showcasing the operation of 𝑢 for dif-
ferent types of 𝑝 in E.q 14. Left: skewed 𝑝. Right: flat 𝑝.

of our node selection process:

𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒 𝑐𝑇 𝑥

𝑠.𝑡 . 𝑣𝑇 𝑥 ≤ 𝐵

𝑄𝑥 ≥ 𝜖 (c1)
𝑄𝑥 ≤ 𝑢 (c2)

(13)

where 𝑄 ∈ N𝑚×|𝑐 | , 𝜖 ∈ N𝑚 , 𝑢 ∈ N𝑚 ,𝑚 is the number of different
labels and |𝑐 | is the number of CCs.𝑄 is the matrix storing the label
counts in each node set of L. For example, if L = {{𝑎, 𝑏, 𝑐}, {𝑑, 𝑒}}
and the label of 𝑎, 𝑏, 𝑐, 𝑑, 𝑒 are 1, 1, 1, 0, 1 respectively, then 𝑄 =(
3 0
1 1

)
. In addition, 𝜖 is the "minimum number" constraint vec-

tor to ensure the existence of minor-class data (e.g., in the Cora
dataset [35]). Likewise, 𝑢 represents the maximum limit for each
sampled class number. More specifically, we set

𝜖 = 1 · min{𝛾𝐵, 𝜂}

𝑢 = 𝐵 · (𝛼 (𝑝 − 1
2
) + 𝑝 + 𝛿)

(14)

where𝛾 represents the minimum required proportion of 𝐵 that must
be present in each class. 𝜂 is the quantity required for each class.
Therefore, the control of 𝜖 can be determined by the user through ei-
ther a proportion value or an absolute value. For the maximum limit
𝑢, 𝑝 is a vector of presence ratio for each class (e.g., 𝑝 = (0.2, 0.8)
represents a two-class situation where the probability of class 1
and 2 are 0.2 and 0.8 respectively). When we consider whether to
take a high-attention CC containing the minority class, we relax
the restriction by raising the maximum limit. This is because a
high-attention CC containing the minority class is crucial and more
valuable for the minority semantic aspect of the graph, particularly
when the class distribution is imbalanced [36, 39]. Therefore, we
adjust 𝑝 by 𝛼 (𝑝 − 1

2) where 0 < 𝛼 < 1 to appropriately make the
minority class associated with a higher maximum limit. 𝛿 is a small
globally increasing value when 𝑝 is relatively flatten. Fig. 3 illus-
trates the functionality of 𝑢. By incorporating these constraints,
the sampling process becomes more flexible and aligns with the
specific needs of downstream learning tasks [47, 58].

5 EXPERIMENTS
In this section, we conduct extensive experiments on four datasets
to verify the effectiveness of GraphSAID. Specifically, we assess the
learning performance of various sampling outcomes to gain insights
into which results better preserve semantic integrity. Additionally,
we demonstrate through case studies thatGraphSAID has the ability
to easily leverage selection bias to enhance subgraph selection
performance.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1260

Elliptic Cora Citeseer GPRG
B Method 𝑅𝑎𝑡𝑡𝑛 Acc F1 Loss 𝑅𝑎𝑡𝑡𝑛 Acc Loss 𝑅𝑎𝑡𝑡𝑛 Acc Loss 𝑅𝑎𝑡𝑡𝑛 Acc Loss
20% FF 0.053 0.687 0.192 0.598 0.072 0.477 2.465 0.197 0.259 2.931 0.097 0.766 0.666
20% SB 0.053 0.869 0.350 0.434 0.071 0.623 1.264 0.197 0.423 1.862 0.066 0.841 0.463
20% SRW 0.046 0.892 0.411 0.421 0.072 0.671 1.096 0.196 0.364 2.355 0.055 0.847 0.468
20% RWF 0.045 0.841 0.338 0.465 0.072 0.612 1.258 0.192 0.430 1.774 0.067 0.812 0.536
20% ORC-sub oom oom oom oom 0.080 0.494 2.301 0.204 0.380 1.946 0.115 0.778 0.610
20% Ours 0.225 0.943 0.479 0.369 0.139 0.558 1.742 0.218 0.578 1.231 0.200 0.862 0.432
20% 𝑂𝑢𝑟𝑠† 0.225 0.942 0.473 0.370 0.121 0.716 0.937 0.218 0.576 1.247 0.200 0.862 0.432
20% 𝑂𝑢𝑟𝑠‡ 0.225 0.943 0.478 0.369 0.121 0.716 0.937 0.218 0.604 1.155 0.200 0.862 0.432
40% FF 0.107 0.881 0.398 0.432 0.157 0.690 1.092 0.406 0.474 1.482 0.256 0.819 0.588
40% SB 0.106 0.919 0.428 0.396 0.159 0.759 0.782 0.416 0.523 1.430 0.219 0.828 0.471
40% SRW 0.092 0.910 0.398 0.407 0.160 0.752 0.781 0.418 0.522 1.410 0.195 0.860 0.452
40% RWF 0.045 0.841 0.338 0.465 0.157 0.725 0.940 0.415 0.531 1.362 0.192 0.861 0.451
40% ORC-sub oom oom oom oom 0.171 0.638 1.365 0.420 0.543 1.355 0.295 0.860 0.421
40% Ours 0.379 0.943 0.505 0.369 0.262 0.738 0.914 0.432 0.618 1.175 0.404 0.862 0.427
40% 𝑂𝑢𝑟𝑠† 0.379 0.942 0.501 0.370 0.260 0.770 0.764 0.432 0.623 1.143 0.404 0.862 0.427
40% 𝑂𝑢𝑟𝑠‡ 0.379 0.943 0.506 0.369 0.260 0.770 0.753 0.434 0.618 1.146 0.404 0.862 0.427

Table 1: Learning performance comparison using different sampled subgraphs on four datasets. The best performance is in
bold. "oom" means out-of-memory issue during the computation.

GRPG Cora Citeseer Elliptic
𝐴𝑣𝑔𝐶𝐶 0.0286 0.2407 0.1447 0.01376
Density 0.0137 0.0014 0.0007 1.1288e-5

#𝐶 2 7 6 2
|V | 1998 2708 3312 203,769
|E| 13,692 5429 4715 234,355

#𝐷𝑖𝑚 3 1433 3703 165
#𝑊1 3 × 3 1433 × 64 3703 × 64 3703 × 64
#𝑊2 3 × 2 64 × 7 64 × 6 100 × 2

Table 2: Statistics of the datasets and the settings of Φ. 𝐴𝑣𝑔𝐶𝐶
and 𝐷𝑒𝑛𝑠𝑖𝑡𝑦 are the average clustering coefficient and graph
density. #𝐶 is the total number of classes, while |V| and |E |
are the numbers of nodes and edges, respectively. #𝐷𝑖𝑚 rep-
resents the number of dimension of node feature. #𝑊1 and
#𝑊2 is the number of neurons in the two GCN layers in Φ.

5.1 Datasets and Experimental Settings
We use one synthetic graph GRPG (Gaussian Random Partition
Graph) and three labeled real graphs, including Citeseer [44], Cora
[35], and Elliptic [53] for our experiment. The four datasets are
used for node classification, where GRPG and Elliptic are for binary
classification, and Cora and Citeseer are for multi-class classifica-
tion. We implement Φwith two GCN layers for all datasets, while in
each dataset different numbers of neurons will be applied. Table 2
summarized the dataset and experiment settings. In addition, we
heuristically choose 𝜏 = 50, 𝛼 = 0.25 and 𝛿 = 0.05. All experiments
are conducted on a machine with 96 CPU cores, 377G RAM, and 8
NVIDIA-1080 graphic cards. For convenience and clarity, when 𝐵
is associated with a fraction number, it indicates the proportion of
the total training nodes in a particular dataset (e.g., see Table 1).

5.2 Baselines
We define the baselines using: (1) Simple RandomWalks (SRW) [41]:
This method serves as the foundation for a wide range of graph

sampling methods that rely on exploration strategies. (2) Random
Walk sampling with Fly-back (RWF) [48]: This method has demon-
strated its success in analyzing the bitcoin network. (3) Snow Ball
sampling (SB) [18]: a restricted version of bread first search. (4) For-
est Fire sampling (FF) [31]: a parameterized stochastic version of
SB. (5) Ollivier Ricci curvature Gradient-based subsampling (ORG-
sub) [56]: This technique utilizes a greedy exploration approach
based on Ricci curvature [43]. Additionally, our work is denoted in
three versions: (1) 𝑂𝑢𝑟𝑠: This version removes both (C1) and (C2)
in Eq. 13. (2) 𝑂𝑢𝑟𝑠†: This version removes (C1) in Eq. 13. (3) 𝑂𝑢𝑟𝑠‡:
This version preserves the complete form of Eq. 13.

5.3 Experimental Results and Analysis
5.3.1 Overall Performance. Table 1 shows the performance of the
node classification tasks on four datasets with training data sizes at
20% and 40% of the original (training data are subgraphs contain-
ing 20% and 40% number of nodes in the original graphs). We also
present 60% and 80% in the appendix [33]. For a given 𝐵 and dataset,
while GraphSAID is a deterministic method, for other methods, we
conducted 5 experiments each with different seed initialization
for statistical reliability. Furthermore, when analyzing the Elliptic
dataset, we assess the F1 score specifically for the "minority" class,
which refers to illicit nodes. This evaluation is conducted on subsets
comprising 20%, 40% of licit and illicit nodes, with unknown nodes
excluded [53]. Our results reveal that GraphSAID exhibits superior
performance when compared to others, especially when 𝐵 is small.
For example, when 𝐵 → 20%, there are +6.8% F1 score boost in
Elliptic dataset, and +5.1%, +4.5%, +17.4% and +1.5% acc boost in El-
liptic, Cora, Citeseer and GRPG, respectively. We additionally show
the attention retention rate (the rate of attention contained in the
subgraph) denoted as 𝑅𝑎𝑡𝑡𝑛 for each method. Our empirical results
show the success of collecting high-attention CCs for different 𝐵
across different datasets. Moreover, although most of the time, the
difference among 𝑂𝑢𝑟𝑠 , 𝑂𝑢𝑟𝑠† and 𝑂𝑢𝑟𝑠‡ is trivial, for the case of

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1261

Figure 4: T-SNE visualization on GRPG dataset when 𝐵 = 20%. The number on top of each sub-figure is the KL-divergence
(representing projection error) output from the T-SNE algorithm. The bright and dark area (outlined by a red border) of each
sub-figure is the learned SVM decision boundary. Best viewed in color.

Figure 5: Comparison of sampled subgraph label distribution.
The distribution is associated with the experiment result
where 𝐵 → 20% on the Cora dataset.

Figure 6: Accuracy for variousmethods across different small
𝐵 values in Cora (left) and Citeseer (right) datasets. Note that
𝐵 = 270 (left) and 𝐵 = 331 (right) represent "20%" in Table 1
respectively.

"20% - Cora", both 𝑂𝑢𝑟𝑠† and 𝑂𝑢𝑟𝑠‡ outperform 𝑂𝑢𝑟𝑠 by 16% acc
enhancement. This is due to the influence of the imbalanced class
distribution in the Cora dataset, which can impact the sampling pro-
cess by causing high-attention connected components (CCs) with
a large majority class to overshadow those with minority classes.
Fig. 5 shows how using lower or upper limits (in Eq. 14) can affect
the sampled subgraph label distribution. We can see that 𝑂𝑢𝑟𝑠† or

𝑂𝑢𝑟𝑠‡ demonstrates a smoother sampled label distribution than
that from 𝑂𝑢𝑟𝑠 , while the total attention retain rates are similar:
0.139 vs 0.121 (in Table 1).

On the other hand, Table 1 also reveals that when 𝐵 → 40%, our
performance boost is not as significant as when 𝐵 → 20%. One
reason could be that the model performance starts to converge
when 𝐵 → 40%. Since the model performance gain is not linear to
the amount of training data. As a result, to investigate more detailed
performance differences between our methods and the others, we
conduct a more comprehensive comparison by analyzing a lower
and denser set of 𝐵 intervals.

5.3.2 Experiments with Extremely Low Value of 𝐵. In this subsec-
tion, we explore the performance of various methods under the
condition of extremely low values of 𝐵. This investigation aims
to determine the level at which a small subgraph can maintain its
semantic content. Fig. 6 shows that GraphSAID successfully utilizes
an extremely small subgraph to capture the entire graph’s seman-
tics. More importantly, our methods consistently outperform the
others, which is important since choosing different methods for
different 𝐵 values is tedious and can be expensive. Additionally,
the investigation uncovers the presence of small subgraphs within
Cora and Citeseer that encode the representative knowledge of the
overall graph. Moreover, GraphSAID demonstrates the fastest rates
of model learning performance convergence, which is particularly
valuable in scenarios where the learning period is restricted, and it
can additionally support the development of other models designed
for rapid convergence [3].

5.3.3 Visualization on the Learned Features. In order to gain a
deeper comprehension of the features learned from small graphs
obtained through various sampling methods, we utilize visualiza-
tion tools, such as t-SNE, to examine the embedding patterns within
the GRPG dataset. Fig 4 depicts the distribution of learned data
points in the GRPG testing set, employing different sampling tech-
niques. To assess the degree of separation between t-SNE data

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1262

points belonging to different classes, we additionally present an
SVM-decision boundary learned from the t-SNE data points for each
subfigure. By observing these visualizations, we can investigate
whether the data point distributions for the two classes are clearly
distinguishable. Our result indicates both 𝑂𝑢𝑟𝑠 and the other base-
line methods exhibit a sparse data point distribution. However, the
learned decision boundary in 𝑂𝑢𝑟𝑠 only forms a single region for
one class. This observation can be interpreted as a positive indica-
tion since the GRPG dataset is relatively simple and an expected
decision boundary should be "straightforward" and avoid separat-
ing the embedding space into multiple segments, given the data
point distribution in the embedding space is sparse.

On the other hand, 𝑂𝑢𝑟𝑠† and 𝑂𝑢𝑟𝑠‡ exhibit distinct, denser,
and more clearly defined distribution patterns in the embedding
space. Furthermore, the embeddings for both classes demonstrate
consistency and homogeneity, indicating successful learning. Addi-
tionally, the t-SNE projection error (KL-divergence) is minimal for
𝑂𝑢𝑟𝑠† and 𝑂𝑢𝑟𝑠‡, enhancing the reliability of the visualization.

5.3.4 Empirical Run Time Analysis . Besides effectiveness, the se-
lection of sampling methods also hinges on their efficiency, making
it a critical factor to consider. Hence, we undertake comprehensive
run-time analysis on various methods in this regard. Table 3 shows
the results of run time to sample a subgraph by different methods
across different 𝐵 values in the Elliptic dataset, which contains
more than 200,000 nodes and edges encoding transaction informa-
tion. Specifically, while other methods exhibit an upward trend in
runtime as 𝐵 ranges from 20% to 80%, our method GraphSAID, con-
versely maintains a relatively consistent runtime. This is attributed
to our utilization of sampling on attended CCs instead of individual
nodes. This effectively reduces the size of the candidate set and
further decreases runtime. This phenomenon presents both advan-
tages and disadvantages. As depicted in Fig 3, 𝑂𝑢𝑟𝑠 exhibits longer
runtime compared to other methods for small 𝐵 values (e.g., 20%).
This is because we consider attended CCs from a global perspective
even when 𝐵 is small, whereas other methods randomly select a
single node as a starting point and explore locally. However, as 𝐵
increases, the runtime of 𝑂𝑢𝑟𝑠 remains relatively stable, while the
runtime of other methods noticeably increases (e.g., SRW and RWF).
The reason for this is that as the number of nodes increases, the
time taken for each node to perform operations, such as randomly
selecting the next neighbor node to explore, will be multiplied.

5.3.5 User Flexibility Control . In section 4.3.1, we discussed the
possibility of incorporating additional constraints to accurately cap-
ture user requirements in various application scenarios. To illustrate
this, let’s consider the GRGP dataset as an example. In this case,
one option could be to sample a smaller (e.g., 𝐵 = 20%) semantic
subgraph while minimizing the inclusion of unknown labels. This
feature is beneficial when a user intends to explore the correlation
among the labeled nodes. Fig. 7 depicts the user control process,
wherein the 𝜖 constraint in Eq. 14 is manipulated to achieve desired
outcomes. Importantly, both graphs demonstrate similar testing
accuracy, with values of 0.830 and 0.844 respectively, indicating
that they convey equivalent semantic information, even though
their visual representations differ due to distinct graph portfolios.

Method 20% 40% 60% 80%
FF 0.383 0.732 1.321 1.637
SB 2.029 2.551 3.136 3.472
SRW 2.974 5.200 9.599 16.887
RWF 3.746 7.227 13.215 22.314

ORG-sub - - - -
Ours 4.348 4.344 4.453 4.393
FF 0.004 0.008 0.038 0.139
SB 0.029 0.034 0.039 0.052
SRW 0.022 0.034 0.069 0.277
RWF 0.052 0.122 0.328 0.898

ORG-sub 0.04 4.04 0.096 0.199
Ours 0.393 0.211 0.212 0.375

Table 3: Run time in sampling subgraphs in Elliptic (top) and
Citeseer (bottom) using different 𝐵 values. The ORG-sub is
currently experiencing an out-of-memory issue on Elliptic,
resulting in the absence of any captured run time.

Figure 7: Example of flexible user control on GRPG dataset
with 𝐵 = 20%. Left: 𝜖 = (2, 2) for classes 1 and 2. Right: 𝜖 = (7, 7).
The testing accuracies by learning the two graphs are 0.830
and 0.844 respectively.

6 CONCLUSION
The objective of this work is to sample a subgraph using a new
optimization approach that incorporates learned attention within a
given budget. To address the previously unexplored challenge of
integrating attention into graph sampling problems, we propose a
novel three-stage method called GraphSAID. GraphSAID creates at-
tended connected components from the raw learned attention and
then formulate the graph sampling problem as an Integer Program-
ming problem. Our experimental results demonstrate the significant
improvements achieved by GraphSAID, which also allows for flexi-
ble user control to enhance subgraph selection. While GraphSAID
exhibits advantageous performance, it does require additional com-
putation costs and relies on training a GraphSAGE model to extract
attention. Therefore, a promising avenue for future research would
be to further reduce computation costs while maintaining effective
sampling performance.

ACKNOWLEDGMENTS
We would like to thank our team leader in FCC Analytics, Mr.
Ming Lau, for his invaluable guidance and support throughout the
entire research process. We are also grateful to the participants
from FCC Analytics, especially Mr. Luke Ng and Mr. Wallace Chow,
who generously dedicated their time and shared their experiences.
Without their cooperation, this study would not have been possible.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1263

REFERENCES
[1] Tobias Achterberg and Roland Wunderling. 2013. Mixed integer programming:

Analyzing 12 years of progress. In Facets of combinatorial optimization: Festschrift
for martin grötschel. Springer, 449–481.

[2] Jimmy Lei Ba, Jamie Ryan Kiros, and Geoffrey E Hinton. 2016. Layer normaliza-
tion. arXiv.

[3] Thomas Bachlechner, Bodhisattwa Prasad Majumder, Henry Mao, Gary Cottrell,
and Julian McAuley. 2021. Rezero is all you need: Fast convergence at large depth.
In Uncertainty in Artificial Intelligence. PMLR, 1352–1361.

[4] Yoshua Bengio. 2012. Practical recommendations for gradient-based training of
deep architectures. Neural Networks 1, 1, 437–478.

[5] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. 2013. Spectral
networks and locally connected networks on graphs. arXiv.

[6] Der-San Chen, Robert G Batson, and Yu Dang. 2011. Applied integer programming:
modeling and solution. John Wiley & Sons.

[7] Fenxiao Chen, Yun-Cheng Wang, Bin Wang, and C-C Jay Kuo. 2020. Graph
representation learning: a survey. APSIPA TSI 9, e15.

[8] Jie Chen, Tengfei Ma, and Cao Xiao. 2018. Fastgcn: fast learning with graph
convolutional networks via importance sampling. ICLR.

[9] Wei-Lin Chiang, Xuanqing Liu, Si Si, Yang Li, Samy Bengio, and Cho-Jui Hsieh.
2019. Cluster-gcn: An efficient algorithm for training deep and large graph
convolutional networks. In SIGKDD.

[10] Siddhartha Chib and Edward Greenberg. 1995. Understanding the metropolis-
hastings algorithm. The american statistician.

[11] Kousik Das, Sovan Samanta, and Madhumangal Pal. 2018. Study on centrality
measures in social networks: a survey. SNAM 8, 1–11.

[12] Michaël Defferrard, Xavier Bresson, and Pierre Vandergheynst. 2016. Convolu-
tional neural networks on graphs with fast localized spectral filtering. NIPS.

[13] Ljiljana Despalatović, Tanja Vojković, and Damir Vukicević. 2014. Community
structure in networks: Girvan-Newman algorithm improvement. In MIPRO.

[14] Christian Doerr and Norbert Blenn. 2013. Metric convergence in social network
sampling. In ACM workshop on HotPlanet. 45–50.

[15] Pantelis Elinas. 2022. Scalable graph representation learning with Graph Neu-
ral Networks | Medium. https://medium.com/@pantelis.elinas/scalable-graph-
representation-learning-with-graph-neural-networks-a2ab67e06f9.

[16] James Fox and Sivasankaran Rajamanickam. 2019. How robust are graph neural
networks to structural noise? arXiv.

[17] Minas Gjoka, Maciej Kurant, Carter T Butts, and Athina Markopoulou. 2010.
Walking in facebook: A case study of unbiased sampling of osns. In IEEE Infocom.

[18] Leo A Goodman. 1961. Snowball sampling. The annals of mathematical statistics.
[19] Felipe Grando, Lisandro Z Granville, and Luis C Lamb. 2018. Machine learning

in network centrality measures: Tutorial and outlook. ACM Computing Surveys
(CSUR) 51, 5, 1–32.

[20] Will Hamilton, Zhitao Ying, and Jure Leskovec. 2017. Inductive representation
learning on large graphs. NIPS 30.

[21] William L Hamilton. 2020. Graph representation learning. Morgan & Claypool
Publishers.

[22] David K Hammond, Pierre Vandergheynst, and Rémi Gribonval. 2011. Wavelets
on graphs via spectral graph theory. ACHA.

[23] Bing Han, Xinyun Zhang, and Shuang Ren. 2022. PU-GACNet: Graph attention
convolution network for point cloud upsampling. Image and Vision Computing.

[24] Long Jin, Yang Chen, Pan Hui, Cong Ding, Tianyi Wang, Athanasios V. Vasilakos,
Beixing Deng, and Xing Li. 2011. Albatross Sampling: Robust and Effective
Hybrid Vertex Sampling for Social Graphs. In ACM MobiArch.

[25] Mohsen Joneidi, Saeed Vahidian, Ashkan Esmaeili, Weijia Wang, Nazanin Rah-
navard, Bill Lin, and Mubarak Shah. 2020. Select to better learn: Fast and accurate
deep learning using data selection from nonlinear manifolds. In CVPR.

[26] Thomas N Kipf and MaxWelling. 2016. Semi-supervised classification with graph
convolutional networks. arXiv.

[27] Xiangyuan Kong, Weiwei Xing, Xiang Wei, Peng Bao, Jian Zhang, and Wei
Lu. 2020. STGAT: Spatial-temporal graph attention networks for traffic flow
forecasting. IEEE Access 8, 134363–134372.

[28] Arthur H Land and Alston G Doig. 1960. An automatic method of solving discrete
programming problems. EJES.

[29] Yun-Jung Lee, Su-Do Kim, Jang-Pyo Hong, Hwan-Gue Cho, and Seong-Min Yoon.
2016. Industrial Network Analysis Using Inter-Firm Transaction Data. IJST.

[30] Jure Leskovec and Christos Faloutsos. 2006. Sampling from large graphs. In
SIGKDD. 631–636.

[31] Jure Leskovec, Jon Kleinberg, and Christos Faloutsos. 2005. Graphs over Time:
Densification Laws, Shrinking Diameters and Possible Explanations. In SIGKDD.

[32] Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter Battaglia. 2018.
Learning deep generative models of graphs. arXiv.

[33] Ziqi Liu and Laurence Liu. 2024. Appendix of GraphSAID: Graph Sampling via
Attention based Integer Programming Method. In https://github.com/finalyXG/
GraphSAID/blob/main/AAMAS2024_supplemental_420.pdf .

[34] Arun S Maiya and Tanya Y Berger-Wolf. 2010. Sampling community structure.
In Proceedings of the 19th international conference on World wide web. 701–710.

[35] Andrew Kachites McCallum, Kamal Nigam, Jason Rennie, and Kristie Seymore.
2000. Automating the construction of internet portals with machine learning.
Information Retrieval.

[36] Maria Carolina Monard and GEAPA Batista. 2002. Learning with skewed class
distributions. Advances in Logic, Artificial Intelligence and Robotics 85, 173–180.

[37] Nagarajan Natarajan, Inderjit S Dhillon, Pradeep K Ravikumar, and Ambuj Tewari.
2013. Learning with noisy labels. NIPS 1, 1.

[38] Chien-Chun Ni, Yu-Yao Lin, Feng Luo, and Jie Gao. 2019. Community detection
on networks with ricci flow. Scientific reports 9, 1, 1–12.

[39] Ronaldo C Prati, Gustavo EAPA Batista, and Maria Carolina Monard. 2004. Learn-
ing with class skews and small disjuncts. In AAI. Springer.

[40] Xiaojuan Qi, Renjie Liao, Jiaya Jia, Sanja Fidler, and Raquel Urtasun. 2017. 3d
graph neural networks for rgbd semantic segmentation. In ICCV. 5199–5208.

[41] Bruno Ribeiro and Don Towsley. 2010. Estimating and sampling graphs with
multidimensional random walks. In SIGCOMM.

[42] Bruno Ribeiro and Don Towsley. 2012. On the estimation accuracy of degree
distributions from graph sampling. In CDC.

[43] Gregorio Ricci-Curbastro. [n.d.]. Ricci curvature - Wikipedia. https://en.
wikipedia.org/wiki/Ricci_curvature.

[44] Ryan A. Rossi and Nesreen K. Ahmed. 2015. The Network Data Repository with
Interactive Graph Analytics and Visualization. In AAAI.

[45] Benedek Rozemberczki, Oliver Kiss, and Rik Sarkar. 2020. Little ball of fur: a
python library for graph sampling. In CIKM. 3133–3140.

[46] Franco Scarselli, MarcoGori, AhChung Tsoi, MarkusHagenbuchner, andGabriele
Monfardini. 2008. The graph neural network model. TNN.

[47] Mingxing Tan and Quoc Le. 2019. Efficientnet: Rethinking model scaling for
convolutional neural networks. In ICML. Long Beach, California, 6105–6114.

[48] Bishenghui Tao, Hong-Ning Dai, JiajingWu, IvanWang-Hei Ho, Zibin Zheng, and
Chak Fong Cheang. 2021. Complex network analysis of the bitcoin transaction
network. TCAS-II.

[49] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. 2017. Attention is all
you need. NIPS 30.

[50] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro
Lio, and Yoshua Bengio. 2017. Graph attention networks. arXiv.

[51] Xiao Wang, Houye Ji, Chuan Shi, Bai Wang, Yanfang Ye, Peng Cui, and Philip S
Yu. 2019. Heterogeneous graph attention network. InWWW. 2022–2032.

[52] Watts and Strogatz. [n.d.]. Clustering coefficient - Wikipedia. In https:// en.
wikipedia.org/wiki/Clustering_coefficient.

[53] Mark Weber, Giacomo Domeniconi, Jie Chen, Daniel Karl I Weidele, Claudio
Bellei, Tom Robinson, and Charles E Leiserson. 2019. Anti-money laundering in
bitcoin: Experimenting with graph convolutional networks for financial forensics.
arXiv.

[54] Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian
Weinberger. 2019. Simplifying graph convolutional networks. In ICML. PMLR.

[55] Haiyan Wu, Zhiqiang Zhang, Shaoyun Shi, Qingfeng Wu, and Haiyu Song. 2022.
Phrase dependency relational graph attention network for Aspect-based Senti-
ment Analysis. Knowledge-Based Systems 236, 107736.

[56] Shushan Wu, Huimin Cheng, Jiazhang Cai, Ping Ma, and Wenxuan Zhong. 2022.
Subsampling in Large Graphs Using Ricci Curvature. In The Eleventh International
Conference on Learning Representations.

[57] Zonghan Wu, Shirui Pan, Fengwen Chen, Guodong Long, Chengqi Zhang, and
S Yu Philip. 2020. A comprehensive survey on graph neural networks. IEEE
transactions on neural networks and learning systems 32, 1, 4–24.

[58] Cheng Yang, Jiawei Liu, and Chuan Shi. 2021. Extract the knowledge of graph
neural networks and go beyond it: An effective knowledge distillation framework.
In Proceedings of the web conference 2021. 1227–1237.

[59] Rex Ying, Jiaxuan You, Christopher Morris, Xiang Ren, William Hamilton, and
Jure Leskovec. 2018. Attention-Based Graph Neural Network for Semi-Supervised
Learning. In NIPS.

[60] Hao Yuan, Haiyang Yu, Shurui Gui, and Shuiwang Ji. 2022. Explainability in
graph neural networks: A taxonomic survey. IEEE transactions on pattern analysis
and machine intelligence 45, 5, 5782–5799.

[61] Hanqing Zeng, Hongkuan Zhou, Ajitesh Srivastava, Rajgopal Kannan, and Viktor
Prasanna. 2019. Graphsaint: Graph sampling based inductive learning method.
arXiv.

[62] Jiaxu Zhang, Hongxu Chen, Xi Chen, Jun Liu, Wei Wang, and Zhenhong Wu.
2020. Relation-aware Graph Convolutional Networks with Attention Mechanism
for Traffic Flow Forecasting. In CIKM. Virtual Event, Ireland.

[63] Yiding Zhang, Xiao Wang, Chuan Shi, Xunqiang Jiang, and Yanfang Ye. 2021.
Hyperbolic graph attention network. IEEE Trans. Big Data.

[64] Wenbo Zheng, Lan Yan, Chao Gou, Zhi-Cheng Zhang, Jun Jason Zhang, Ming
Hu, and Fei-Yue Wang. 2021. Pay attention to doctor–patient dialogues: multi-
modal knowledge graph attention image-text embedding for COVID-19 diagnosis.
Information Fusion 75, 168–185.

[65] Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang, Zhiyuan Liu,
Lifeng Wang, Changcheng Li, and Maosong Sun. 2020. Graph neural networks:
A review of methods and applications. AI open 1, 57–81.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1264

https://medium.com/@pantelis.elinas/scalable-graph-representation-learning-with-graph-neural-networks-a2ab67e06f9
https://medium.com/@pantelis.elinas/scalable-graph-representation-learning-with-graph-neural-networks-a2ab67e06f9
https://github.com/finalyXG/GraphSAID/blob/main/AAMAS2024_supplemental_420.pdf
https://github.com/finalyXG/GraphSAID/blob/main/AAMAS2024_supplemental_420.pdf
https://en.wikipedia.org/wiki/Ricci_curvature
https://en.wikipedia.org/wiki/Ricci_curvature
https://en.wikipedia.org/wiki/Clustering_coefficient
https://en.wikipedia.org/wiki/Clustering_coefficient

	Abstract
	1 Introduction
	2 Related Work
	2.1 Graph Sampling
	2.2 Graph Neural Networks.
	2.3 GNNs meet Attention.

	3 Preliminaries
	4 Optimization via Edge Ranking
	4.1 Attended Edge Rank Calculation
	4.2 Attended Connected Component Generation
	4.3 Integer Programming Based Node Selection

	5 Experiments
	5.1 Datasets and Experimental Settings
	5.2 Baselines
	5.3 Experimental Results and Analysis

	6 Conclusion
	Acknowledgments
	References

