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ABSTRACT
With the rapid advancement of UAV technology, the problem of
UAV coalition formation has become a hotspot. Therefore, design-
ing task-driven multi-UAV coalition formation mechanism has be-
come a challenging problem. However, existing coalition forma-
tion mechanisms suffer from low relevance between UAVs and
task requirements, resulting in overall low coalition utility and
unstable coalition structures. To address these problems, this pa-
per proposed a novel multi-UAV coalition network collaborative
task completion model, considering both coalition work capacity
and task-requirement relationships. This model stimulated the for-
mation of coalitions that match task requirements by using a rev-
enue function based on the coalition’s revenue threshold. Subse-
quently, an algorithm for coalition formation based on marginal
utility was proposed. Specifically, the algorithm utilized Shapley
value to achieve fair utility distribution within the coalition, eval-
uated coalition values based on marginal utility preference order,
and achieved stable coalition partition through a limited number
of iterations. Additionally, we theoretically proved that this algo-
rithm has Nash equilibrium solution. Finally, experimental results
demonstrated that the proposed algorithm, compared to currently
classical algorithms, not only forms more stable coalitions but also
further enhances the overall utility of coalitions effectively.
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1 INTRODUCTION
With the rapid advancements in technologies such as artificial in-
telligence and intelligent control, UnmannedAerial Vehicles (UAVs)
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have witnessed extensive utilization in both military and civilian
domains due to their high maneuverability, flexible control, and
collective intelligence advantages [9, 19]. Existing UAVs typically
operate individually or in coordinated formations. Compared to
single UAV,which is limited by finite resource and capability, multi-
UAV can be divided into multiple coalitions to jointly execute spe-
cific tasks. This approach can enhance task efficiency while also
gives rise to the multi-UAV coalition formation problem [24]. This
problem entails the process where UAVs, after assessing tasks and
their own attributes, form coalitions according to certain rules. Typ-
ically, a Coalition Formation Game (CFG) framework [6] is used
to address this problem, with a focus on designing mechanisms
for forming coalitions and sharing utilities.Within this framework,
transferable utility and coalition preferences need to be considered.
Transferable utility enables the distribution of utility within the
coalition, encouraging cooperation among UAVs to enhance over-
all utility. Coalition preferences refer to howUAVs select coalitions
based on predefined rules, such as individual utility, social ranking
[13], coalition formation history [4], etc.

Common coalition formation problems are typically addressed
using greedy algorithms [22], dynamic programming [17], genetic
algorithms [29], etc. Currently, the research mainly focus on the
formation of homogeneous multi-UAV coalitions, optimizing co-
operation strategies among coalition members to maximize over-
all utility. However, it overlooks the strong correlation between
UAVs and task requirements, making it difficult to form coalitions
that are highly compatible with tasks. Nonetheless, CFG frame-
work still faces several challenges. On one hand, UAVs within the
coalition have preference orders, such as Selfish order [2], Pareto
order [25, 30]. Different preference orders within the coalition lead
to conflicts and insufficient cooperation among UAVs, limiting the
improvement of task efficiency and collaboration ability, leaving
room for enhancing the overall utility of the eventual coalition. On
the other hand, existing mechanisms for utility distribution, such
as equal distribution [7, 8] and proportional distribution [11], often
fail to satisfy individual rationality, disregarding the heterogeneity
of UAVs and differences in task attributes.They do not consider the
varying contributions and capabilities of UAVs in tasks, reducing
the incentive for active participation in coalitions and usually fail-
ing to achieve stable coalitions. To address these challenges, we re-
search the problem of task-driven multi-UAV coalition formation
and design a coalition formation algorithm based on marginal util-
ity to achieve stable partition.Themain contributions of this paper
are summarized as follows:
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• To address the problem of mismatch between coalition for-
mation and task requirements, we design a revenue function
based on the coalition revenue threshold and propose the
Motivation Incentive Theorem based on this function. This
reflects the characteristics of the coalition’s working capac-
ity being related to task requirements and provides numer-
ical basis for UAVs to join or leave a coalition.
• To resolve the problem of low utility, we define a novel pref-
erence orders based on Marginal Utility, focusing on the im-
pact of UAVs on other UAVs upon joining a new coalition,
and use the Shapley value to ensure fair utility distribution.
• To form a stable coalition structure, we propose a coalition
formation algorithm based on marginal utility. We theoret-
ically prove the convergence of this algorithm in solving
Nash equilibria and show that it can achieve a stable coali-
tion structure through a finite number of iterations. In ad-
dition, we demonstrate the effectiveness of our approach
through extensive experiments on overall coalition utility.

The rest of the paper is structured as follows. Section 2 presents
the related work. Section 3 provides a formal expression of the
model and proves its properties. Section 4 describes the algorithm
in detail. Section 5 demonstrates the effectiveness of the method
through experiments. Finally, Section 6 concludes the paper.

2 RELATEDWORK
The formation of coalitions amongmulti-agent is one of the hotspots
in the field of AI. In recent years, numerous scholars have con-
ducted extensive research on this subject. In this section, we review
the related work on coalition networks in multi-UAV and CFG.

2.1 Coalition Networks in Multi-UAV
In the context of coalition networks inmulti-UAV, researchers have
focused on how to achieve collaborative work among them[10, 23].
For example, Walid Saad [18] investigated the problem of coalition
formation in UAV-assisted wireless networks. However, coalitions
formed solely based on selfish preferences of individual UAVs re-
sulted in low overall utility. Xiong Fei [28] explored the problem
of data transmission in multi-UAV communication and proposed
two strategies: Single Coalition Strategy (SCS) and Coalition For-
mation Strategy (CFS), which are based on coalition game theory.
These strategies aim to optimize resource utilization and improve
communication efficiency. Qi [16] addressed resource allocation
in UAV networks using overlapped CFG, leading to an improve-
ment in average task utility. Nevertheless, they overlooked the
strong correlation between UAVs and tasks within the approach.
Jer Shyuan Ng [15] introduced a joint auction and coalition forma-
tion algorithm to tackle the allocation problem within UAV coali-
tions. However, due to utility-maximizing behavior exhibited by
UAVs, not all coalitions formed by all participating UAVs are nec-
essarily stable – this remains an ongoing challenge.

2.2 Coalition Formation Games
Teamwork, clustering, and coalition formation have always been
crucial and extensively topics in computer science. For example,

Alia Asheralieva [2] addressed the computation offloading prob-
lem in Multi-Access Edge Computing networks for multiple Ser-
vice Providers using a game theory and reinforcement learning
based framework. Their approach enables the formation of robust
and stable MEC coalitions while providing mixed strategies for
base stations underNash equilibrium.DolevMutzari [14] employed
coalition games to research the coalition formation problem among
defenders in security games and proposed a solution to compute
the core of the game. Barrot [3] explored non-enviousness and
stability concepts in combination, demonstrating the existence of
Pareto-optimal non-envious coalition partitions in CFG, thereby
establishing a stronger theoretical foundation for this area of re-
search. Wu [26] tackled the Coalition Structure Generation prob-
lem by proposing aMonte Carlo Tree Search-based algorithm capa-
ble of converging to an optimal solution with sufficient iterations.

Brief conclusion. Different from all the above scenarios about
multi-UAV coalition formation problem, our work focuses on the
problem related to the coalitionwork ability and task requirements
of multi-UAV driven by tasks. By satisfying themonotonic and con-
sistent relationship between coalition utility and task revenue, the
coalition is stimulated to form a structure matching task require-
ments. In this paper, a coalition formation algorithm based on mar-
ginal utility is designed to improve the overall utility of the coali-
tion while ensuring the existence of a stable coalition partition.

3 PROBLEM DEFINITION
3.1 System Model
In this section, we research the scenario of multi-UAV coalition
for collaborative task completion. As shown in Figure 1, letM =
{1, 2, . . . , 𝑀} represented the set of 𝑀 tasks and N = {1, 2, . . . , 𝑁 }
represent the set of 𝑁 UAVs, with the constraint that 𝑁 ≥ 𝑀1. In
this problem, each UAV 𝑗 ∈ N selects to execute one of the tasks
𝑖 ∈ M. We define the vector 𝒔 = (𝑠1, 𝑠2, . . . , 𝑠𝑁 ) to denote the task
selections for all UAVs, where 𝑠 𝑗 represents the selected task by
UAV 𝑗 , and the vector 𝒔−𝑗 represents the task selections for all other
UAVs except UAV 𝑗 . The collection of UAVs choosing to execute
task 𝑖 denoted as 𝐶𝑖 ⊆ N ≠ ∅, and we use 𝐶𝑖 = { 𝑗 ∈ N |𝑠 𝑗 = 𝑖} to
represent this coalition. It is required that the union of all coalitions
equals the set of all UAVs i.e.,

∪
𝑖∈M 𝐶𝑖 = N and each UAV can only

execute one specific task, i.e., ∀𝑘, 𝑙 ∈ M(𝑘 ≠ 𝑙), 𝐶𝑘 ∩𝐶𝑙 = ∅.

Figure 1: The schematic diagram for system model.

Let the value of task 𝑖 be denoted as 𝑉𝑖 , with a workload of 𝑄𝑖 .
The efficiency of UAV 𝑗 in completing task 𝑖 is denoted as 𝑒𝑖𝑗 > 0,

1When𝑁 ≥ 𝑀 , UAVs form coalitions to complete tasks instead of assigning multiple
tasks to a single UAV.
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representing the amount of workload it can complete in one unit
of time. Considering tasks such as reconnaissance and scanning
that require the collaboration of multi-UAV to achieve comprehen-
sive coverage. Within the coalition, the task is decomposed into
non-overlapping subtasks, with each subtask assigned to a specific
UAV based on its efficiency for completion.Therefore, the working
capacity 𝑒𝑖 of the coalition 𝐶𝑖 can be expressed as the sum of the
efficiencies of all UAVs, i.e., 𝑒𝑖 =

∑
𝑗 ∈𝐶𝑖

𝑒𝑖𝑗 . In terms of task com-
pletion time, we assume that all UAVs within the coalition start
working simultaneously. Hence, the time 𝑡𝑖 (𝐶𝑖 ) required for coali-
tion 𝐶𝑖 to complete task 𝑖 is given by 𝑡𝑖 (𝐶𝑖 ) = 𝑄𝑖

𝑒𝑖
.

Furthermore, we introduce the loss 𝐿𝑖 (𝐶𝑖 ) for coalition 𝐶𝑖 to
measure the consumption of completing task 𝑖 . The calculation of
loss takes into account the number of UAVs within the coalition
and the task completion time. Thus, the loss 𝐿𝑖 (𝐶𝑖 ) incurred by
coalition 𝐶𝑖 in completing task 𝑖 is given by 𝐿𝑖 (𝐶𝑖 ) = 𝛼 |𝐶𝑖 |𝑡𝑖 (𝐶𝑖 ).
Here, |𝐶𝑖 | represents the number of UAVs in coalition 𝐶𝑖 , and the
parameter 𝛼 represents the fixed flight cost per unit of time for
UAVs, reflecting the energy consumption during UAV flight.

We denote the revenue obtained by coalition 𝐶𝑖 after complet-
ing task 𝑖 as 𝑅𝑖 (𝑒𝑖 ). The coalition revenue threshold 𝛽𝑖 is deter-
mined based on the requirement of task 𝑖 , specifically, represent-
ing the required working capacity of a coalition to complete task
𝑖 . For example, tasks with a shorter expected completion time ne-
cessitate coalitions with greater working capacity. In our revenue
function, the fixed task value 𝑉𝑖 represents the highest revenue
that can be obtained when the coalition’s capacity is equal to the
task requirement. Our motivation for designing the correlation be-
tween coalition revenue and working capacity is that when there
is a significant deviation between the coalition’s capacity and task
requirement, it can lead to excessively long completion times or
resource wastage within the coalition, ultimately affecting overall
task completion outcome. Specifically, inspired by the literature
[27], we design two different cases for the revenue function. As
shown in Figure 2, these cases are described as follows:
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Figure 2: The schematic diagram for the revenue function
based on the coalition revenue threshold.

• When a coalition’s working capacity is less than or equal to
the coalition revenue threshold (0 < 𝑒𝑖 ≤ 𝛽𝑖 ), we define the
task revenue as the ratio of the coalition’s working capac-
ity 𝑒𝑖 to the coalition revenue threshold 𝛽𝑖 , i.e.,𝑉𝑖𝑒𝑖/𝛽𝑖 . This
represents that although a task can be completed, the po-
tential performance of a given coalition remains unrealized
due to limited working capacity resulting in low revenues.

• When a coalition’s working capacity exceeds the coalition
revenue threshold (𝛽𝑖 < 𝑒𝑖 < 𝑝𝑖 ), the revenue derived from
this excess capacity decreases linearly with the surplus, i.e.,
𝑉𝑖

𝛽𝑖−𝑝𝑖 (𝑒
𝑖 − 𝛽𝑖 ). Here, 𝑝𝑖 represents the maximum working

capacity required for task 𝑖 , which is determined by its at-
tributes. Since the coalition alreadymeets the necessarywork-
ing capacity for task completion, additional work capacity
leads to diminishing revenue. This reflects the weakening
contribution of the excess work capacity to the task.

Therefore, we can denote the revenue generated by coalition𝐶𝑖
in completing task 𝑖 as

𝑅𝑖 (𝑒𝑖 ) =
{ 𝑉𝑖

𝛽𝑖
· 𝑒𝑖 , 0 < 𝑒𝑖 ≤ 𝛽𝑖

𝑉𝑖
𝛽𝑖−𝑝𝑖 · (𝑒

𝑖 − 𝑝𝑖 ), 𝛽𝑖 < 𝑒𝑖 < 𝑝𝑖
(1)

In the scenario, our goal is to enhance the utility of each coali-
tion while forming a stable coalition structure. The utility 𝑉𝑖 (𝐶𝑖 )
for coalition 𝐶𝑖 is denoted as 𝑉𝑖 (𝐶𝑖 ) = 𝑅𝑖 (

∑
𝑗 ∈𝐶𝑖

𝑒𝑖𝑗 )) − 𝐿𝑖 (𝐶𝑖 ).
To ensure that an increase (decrease) in task revenue corresponds

to an increase (decrease) in coalitional utility, we establish a mono-
tonically consistent relationship between them.This promotes coali-
tion formation in incentive mechanisms and encourages participa-
tion in tasks that align with their capabilities.

3.2 Proof of Theorem
Establishing favorable model properties contributes to the design
of high-performance coalition formation mechanisms. In this sec-
tion, we explore and prove the desirable properties in the model
proposed in Section 3.1.

TheoRem 3.1. If the coalition’s utility function 𝑉𝑖 (𝐶𝑖 ) and the
task revenue function 𝑅𝑖 (𝑒𝑖 ) exhibit the same monotonicity, then

2𝑝𝑖/(1 +
√
1 + 4𝑉𝑖𝑝𝑖

𝛼𝑄𝑖
) ≤ 𝛽𝑖 < 𝑝𝑖 .

PRoof. From the model, we know that the coalition’s utility
function 𝑉𝑖 (𝐶𝑖 ) for completing task 𝑖 is given by:

𝑉𝑖 (𝐶𝑖 ) =


𝑉𝑖
𝛽𝑖
· 𝑒𝑖 − 𝛼𝑄𝑖 |𝐶𝑖 |

𝑒𝑖
, 0 < 𝑒𝑖 ≤ 𝛽𝑖

𝑉𝑖
𝛽𝑖−𝑝𝑖 · (𝑒

𝑖 − 𝛽𝑖 ) − 𝛼𝑄𝑖 |𝐶𝑖 |
𝑒𝑖

, 𝛽𝑖 < 𝑒𝑖 ≤ 𝑝𝑖
(2)

If the coalition’s utility function 𝑉𝑖 (𝐶𝑖 ) and the task revenue
function 𝑅𝑖 (𝑒𝑖 ) exhibit the same monotonicity, then the coalition
work capacity 𝑒𝑖 satisfies𝑉𝑖 (𝐶𝑖 ) increasing in the range 0 < 𝑒𝑖 ≤ 𝛽𝑖
and decreasing in the range 𝛽𝑖 < 𝑒𝑖 ≤ 𝑝𝑖 .

Case 1: When 0 < 𝑒𝑖 ≤ 𝛽𝑖 , since 𝑉𝑖/𝛽𝑖 > 0 and 𝛼𝑄𝑖 |𝐶𝑖 | > 0, it
follows that 𝑉𝑖 (𝐶𝑖 ) is monotonically increasing.

Case 2: When 𝛽𝑖 < 𝑒𝑖 ≤ 𝑝𝑖 , since𝑉𝑖/(𝛽𝑖−𝑝𝑖 ) < 0 and 𝛼𝑄𝑖 |𝐶𝑖 | >
0, it follows that 𝑉𝑖 (𝐶𝑖 ) is monotonically increasing within the
range 𝛽𝑖 < 𝑒𝑖 ≤

√
𝛼𝑄𝑖 |𝐶𝑖 | (𝑝𝑖 − 𝛽𝑖 )/𝑉𝑖 and decreasing within the

range
√
𝛼𝑄𝑖 |𝐶𝑖 | (𝑝𝑖 − 𝛽𝑖 )/𝑉𝑖 ≤ 𝑒𝑖 < 𝑝𝑖 .

If𝑉𝑖 (𝐶𝑖 ) is decreasing when 𝑒𝑖 > 𝛽𝑖 , then the coalition revenue
threshold 𝛽𝑖 should meet 𝛽𝑖 ≥

√
𝛼𝑄𝑖 |𝐶𝑖 | (𝑝𝑖 − 𝛽𝑖 )/𝑉𝑖 . Or, equiva-

lently 𝛽𝑖 ≥ 2𝑝𝑖/(1 +
√
1 + 4𝑉𝑖𝑝𝑖

𝛼𝑄𝑖 |𝐶𝑖 | ).
Given that the coalition revenue threshold 𝛽𝑖 does not exceed

the maximum working capacity 𝑝𝑖 and |𝐶𝑖 | ≥ 1, we can conclude
2𝑝𝑖/(1 +

√
1 + 4𝑉𝑖𝑝𝑖

𝛼𝑄𝑖
) ≤ 𝛽𝑖 < 𝑝𝑖 . □
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Theorem 3.1 implies that, before coalition formation, each task
𝑖 evaluates its coalition revenue threshold 𝛽𝑖 based on its value 𝑉𝑖 ,
workload𝑄𝑖 , andmaximum capacity 𝑝𝑖 .This ensures that the coali-
tion structure will meet the task requirements as much as possible.

TheoRem 3.2. (Motivation Incentive Theorem). When the ef-
ficiency 𝑒𝑖𝑗 of UAV 𝑗 falls within a certain controllable range, its mo-
tivation to join or leave coalition 𝐶𝑖 is stimulated.

PRoof. Case 1: When UAV 𝑗 joins coalition 𝐶𝑖 , and the coali-
tion’s working capacity still does not exceed the coalition revenue
threshold, i.e., 𝑒𝑖 +𝑒𝑖𝑗 ≤ 𝛽𝑖 , the coalition utility difference is𝑉𝑖 (𝐶𝑖 ∪

{ 𝑗}) −𝑉𝑖 (𝐶𝑖 ) =
𝑉𝑖𝑒

𝑖
𝑗

𝛽𝑖
+

𝛼𝑄𝑖 ( |𝐶𝑖 |𝑒𝑖𝑗−𝑒𝑖 )
𝑒𝑖 (𝑒𝑖+𝑒𝑖𝑗 )

> 0. By solving the above for-

mula, we obtain 𝑒𝑖𝑗 ≥
2√

𝜆21+𝜇1+𝜆1
, 𝜆1 = |𝐶𝑖 |

𝑒𝑖
+ 𝑉𝑖𝑒

𝑖

𝛼𝛽𝑖𝑄𝑖
, 𝜇1 = 4𝑉𝑖

𝛼𝛽𝑖𝑄𝑖
.

Therefore, when the efficiency 𝑒𝑖𝑗 falls within the interval Δ1:

0 <
2√

𝜆21 + 𝜇1 + 𝜆1
≤ 𝑒𝑖𝑗 ≤ 𝛽𝑖 − 𝑒𝑖𝑗 (3)

UAV 𝑗 joining coalition 𝐶𝑖 leads to an increase in utility, that is,
UAV 𝑗 has a positive contribution to coalition𝐶𝑖 as𝑉𝑖 (𝐶𝑖 ∪ { 𝑗}) −
𝑉𝑖 (𝐶𝑖 ) > 0. Thus, UAV 𝑗 has the motivation to join the coalition.

Case 2: When UAV 𝑗 leaves coalition 𝐶𝑖 , and the coalition’s
working capacity does not fall below the coalition revenue thresh-
old, i.e., 𝑒𝑖 − 𝑒𝑖𝑗 ≥ 𝛽𝑖 , the coalition utility difference is𝑉𝑖 (𝐶𝑖\{ 𝑗}) −

𝑉𝑖 (𝐶𝑖 ) =
𝑉𝑖𝑒

𝑖
𝑗

𝑝𝑖−𝛽𝑖 +
𝛼𝑄𝑖 (𝑒𝑖−|𝐶𝑖 |𝑒𝑖𝑗 )

𝑒𝑖 (𝑒𝑖−𝑒𝑖𝑗 )
> 0. By solving the above formula,

we obtain 𝑒𝑖𝑗 ≤
2

𝜆2−
√
𝜆22+𝜇2

, 𝜆2 = |𝐶𝑖 |
𝑒𝑖
− 𝑉 𝑖𝑒𝑖

𝛼 (𝑝𝑖−𝛽𝑖 )𝑄𝑖
, 𝜇2 = 4𝑉𝑖

𝛼 (𝑝𝑖−𝛽𝑖 )𝑄𝑖
.

Therefore, when the efficiency 𝑒𝑖𝑗 falls within the interval Δ2:

0 < 𝑒𝑖𝑗 ≤ min{𝑒𝑖 − 𝛽𝑖 ,
2

𝜆2 −
√
𝜆22 + 𝜇2

} (4)

UAV 𝑗 leaving coalition𝐶𝑖 leads to an increase in utility, i.e., UAV 𝑗
has a negative contribution to coalition𝐶𝑖 as𝑉𝑖 (𝐶𝑖\{ 𝑗})−𝑉𝑖 (𝐶𝑖 ) >
0. Thus, UAV 𝑗 has the motivation to leave the coalition. □

Theorem 3.2 implied that when the efficiency 𝑒𝑖𝑗 of UAV 𝑗 falls
within specific ranges, its motivation to join or leave coalition 𝐶𝑖
can be effectively stimulated. This helps to better understand the
decision-making process of UAV coalition formation.

4 METHODOLOGY
4.1 Basic Concepts
Under the framework of CFG, a common practice for participants
to increase their individual or overall utilities is to form coalitions
through cooperation. We have transformed the model into a CFG
with transferrable utility, where the utility can be distributed among
coalition members. First, we introduce some basic concepts.

Definition 1. (CFG)[1] A CFG can be denoted as a pair (N , (⪰𝑗
) 𝑗 ∈N), where ⪰𝑗 is a complete weak preference relation over all pos-
sible coalition.

In CFG, each UAV decides whether to join or leave a coalition
based on their preference order. For example, for any given two

coalitions, 𝐶𝑘 and 𝐶𝑙 , and UAV 𝑗 , 𝐶𝑘 ⪰𝑗 𝐶𝑙 indicates that UAV 𝑗
prefers to join 𝐶𝑘 rather than 𝐶𝑙 , or UAV 𝑗 holds the same pref-
erence between the two coalitions. Furthermore, if 𝐶𝑘 ≻𝑗 𝐶𝑙 , it
means that UAV 𝑗 strictly prefers 𝐶𝑘 to 𝐶𝑙 . These preference or-
ders determine the final structure of the coalition. We define the
novel preference order based on Marginal Utility as follows:

Definition 2. (Marginal Utility Order) For any UAV 𝑗 ∈ N
and any two coalitions containing 𝑗 , 𝐶𝑘 ,𝐶𝑙 ⊆ N (𝑘 ≠ 𝑙), we have:

𝐶𝑘 ⪰𝑗 𝐶𝑙 ⇔𝑢 𝑗 (𝐶𝑘 ) +
∑

𝑔∈𝐶𝑘\{ 𝑗 }
[𝑢𝑔 (𝐶𝑘 ) − 𝑢𝑔 (𝐶𝑘\{ 𝑗})] >

𝑢 𝑗 (𝐶𝑙 ) +
∑

𝑔∈𝐶𝑙 \{ 𝑗 }
[𝑢𝑔 (𝐶𝑙 ) − 𝑢𝑔 (𝐶𝑙\{ 𝑗})]

(5)

Here, 𝑢 𝑗 (𝐶𝑘 ) and 𝑢 𝑗 (𝐶𝑙 ) represent the utility of UAV 𝑗 in coali-
tions 𝐶𝑘 and 𝐶𝑙 , respectively, while 𝑢𝑔 (𝐶𝑘\{ 𝑗}) and 𝑢𝑔 (𝐶𝑙\{ 𝑗})
represent the utility of any UAV 𝑔 in coalitions 𝐶𝑘 and 𝐶𝑙 after
removing UAV 𝑗 . In the proposed order, participants consider the
marginal utility on other participants when deciding to join a new
coalition.

To ensure coalition stability, fairness is taken into consideration
when distributing utility based on individual differences. The com-
mon absolute egalitarianism distribution method cannot meet the
individual rationality.Therefore, we consider a coalition utility dis-
tribution based on Shapley value, which is defined as follows:

Definition 3. (Shapley Value)[20] For any UAV 𝑗 ∈ 𝐶𝑖 within
the coalition 𝐶𝑖 , the Shapley value 𝑢 𝑗 (𝐶𝑖 ) is defined as:

𝑢 𝑗 (𝐶𝑖 ) =
∑

𝐶′𝑖 ⊆𝐶𝑖\{ 𝑗 }

|𝐶 ′𝑖 |!(|𝐶𝑖 | − |𝐶
′
𝑖 | − 1)!

|𝐶𝑖 |!
[𝑉 (𝐶 ′𝑖 ∪ { 𝑗}) −𝑉 (𝐶

′
𝑖 )] (6)

Here, 𝐶 ′𝑖 represents a sub-coalition of coalition 𝐶𝑖 , 𝑉 (𝐶 ′𝑖 ) repre-
sents the utility of sub-coalition𝐶 ′𝑖 , and𝑉 (𝐶

′
𝑖 ∪{ 𝑗}) represents the

utility when UAV 𝑗 joins the sub-coalition 𝐶 ′𝑖 . The Shapley value
calculates the average contribution of a UAV in various possible
coalitions, thus fairly distributing the utility.

Definition 4. (Stable Coalition Partition)[5] A coalition par-
tition C is considered stable when no participant can change the coali-
tion structure (task selection) to increase their utility, that is

𝑢 𝑗 (𝑠∗𝑗 , 𝒔−𝑗 ) ≥ 𝑢 𝑗 (𝑠 𝑗 , 𝒔−𝑗 ),∀𝑗 ∈ N , 𝑠 𝑗 ≠ 𝑠∗𝑗 (7)

To demonstrate the existence of a stable coalition structure in
the proposed model, the utility function 𝑈 𝑗 (𝑠 𝑗 , 𝒔−𝑗 ) for UAV 𝑗 in
the model, according to the marginal utility order, is denoted as:

𝑈 𝑗 (𝑠 𝑗 , 𝒔−𝑗 ) = 𝑢 𝑗 (𝑠 𝑗 , 𝒔−𝑗 ) +
∑

𝑓 ∈𝐶 ˆ𝑠𝑗 \{ 𝑗 }
𝑢𝑓 (𝑠 𝑗 , 𝒔−𝑗 ) +

∑
𝑔∈𝐶𝑠𝑗 \{ 𝑗 }

𝑢𝑔 (𝑠 𝑗 , 𝒔−𝑗 ) (8)

Here, 𝐶𝑠 𝑗 represents the current coalition of UAV 𝑗 , 𝑠 𝑗 repre-
sents the task previously chosen by UAV 𝑗 , and 𝐶𝑠 𝑗 represents the
previous coalition of UAV 𝑗 .

TheoRem 4.1. Under the Marginal Utility preference order, the
CFG has a Nash equilibrium solution.

PRoof. Based on the property that there exists at least one Nash
equilibrium solution in exact potential games [21], we define the

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1295



potential function as:

Φ(𝑠 𝑗 , 𝒔−𝑗 ) =
∑
𝑗 ∈N

𝑢 𝑗 (𝑠 𝑗 , 𝒔−𝑗 ) (9)

Let’s assume that UAV 𝑗 changes its task selection from 𝑠 𝑗 to
𝑠 𝑗 and joins a new coalition 𝐶𝑠 𝑗 . The change in utility function
𝑈 𝑗 (𝑠 𝑗 , 𝒔−𝑗 ) is given by:

𝑈 𝑗 (𝑠 𝑗 , 𝒔−𝑗 ) −𝑈 𝑗 (𝑠 𝑗 , 𝒔−𝑗 )
= 𝑢 𝑗 (𝑠 𝑗 , 𝒔−𝑗 ) − 𝑢 𝑗 (𝑠 𝑗 , 𝒔−𝑗 )

+
∑

𝑓 ∈𝐶 ˆ𝑠𝑗

[𝑢𝑓 (𝑠𝑓 , 𝒔−𝑓 ) − 𝑢𝑓 (𝑠𝑓 , 𝒔−𝑓 )]

+
∑

𝑔∈𝐶𝑠𝑗

[𝑢𝑔 (𝑠𝑔, 𝒔−𝑔) − 𝑢𝑔 (𝑠𝑔, 𝒔−𝑔)]

+
∑

ℎ∈𝐶 ˇ𝑠𝑗

[𝑢ℎ (𝑠ℎ, 𝒔−ℎ) − 𝑢ℎ (𝑠ℎ, 𝒔−ℎ)]

(10)

Let Γ1 = 𝐶\𝐶𝑠 𝑗 \𝐶𝑠 𝑗 , and when UAV 𝑗 selects the task 𝑠 𝑗 , the
potential function Φ(𝑠 𝑗 , 𝒔−𝑗 ) is given by

Φ(𝑠 𝑗 , 𝒔−𝑗 ) = 𝑢 𝑗 (𝑠 𝑗 , 𝒔−𝑗 ) +
∑

𝑓 ∈𝐶 ˆ𝑠𝑗

𝑢𝑓 (𝑠𝑓 , 𝒔−𝑓 )

+
∑

𝑔∈𝐶𝑠𝑗

𝑢𝑔 (𝑠𝑔, 𝒔−𝑔) +
∑
ℎ∈Γ1

𝑢ℎ (𝑠ℎ, 𝒔−ℎ)
(11)

Let Γ2 = 𝐶\𝐶𝑠 𝑗 \𝐶𝑠 𝑗 , and when UAV 𝑗 selects the task 𝑠 𝑗 , the
potential function Φ(𝑠 𝑗 , 𝒔−𝑗 ) is given by

Φ(𝑠 𝑗 , 𝒔−𝑗 ) = 𝑢 𝑗 (𝑠 𝑗 , 𝒔−𝑗 ) +
∑

𝑓 ∈𝐶 ˆ𝑠𝑗

𝑢𝑓 (𝑠𝑓 , 𝒔−𝑓 )

+
∑

𝑔∈𝐶 ˇ𝑠𝑗

𝑢𝑔 (𝑠𝑔, 𝒔−𝑔) +
∑
ℎ∈Γ2

𝑢ℎ (𝑠ℎ, 𝒔−ℎ)
(12)

Therefore, the difference in potential function Φ(𝑠 𝑗 , 𝒔−𝑗 ) is

Φ(𝑠 𝑗 , 𝑠−𝑗 ) − Φ(𝑠 𝑗 , 𝑠−𝑗 )
= 𝑢 𝑗 (𝑠 𝑗 , 𝒔−𝑗 ) − 𝑢 𝑗 (𝑠 𝑗 , 𝑠−𝑗 )

+
∑

𝑓 ∈𝐶 ˆ𝑠𝑗

[𝑢𝑓 (𝑠𝑓 , 𝒔−𝑓 ) − 𝑢𝑓 (𝑠𝑓 , 𝒔−𝑓 )]

+
∑

𝑔∈𝐶 ˇ𝑠𝑗

𝑢𝑔 (𝑠𝑔, 𝒔−𝑔) −
∑

𝑔′∈𝐶𝑠𝑗

𝑢𝑔′ (𝑠𝑔′, 𝒔−𝑔′)

+
∑
ℎ∈Γ1

𝑢ℎ (𝑠ℎ, 𝒔−ℎ) −
∑
ℎ′∈Γ2

𝑢ℎ′ (𝑠ℎ′, 𝒔−ℎ′)

(13)

Let Γ = Γ1 ∩ Γ2, when UAV 𝑗 changes its task selection, it only
affects the utility of UAVs within the coalitions 𝐶𝑠 𝑗 ,𝐶𝑠 𝑗 , and 𝐶𝑠 𝑗 ,
and does not affect the utility of UAVs in other coalitions (i.e., the
set Γ). Therefore, we can obtain∑

ℎ∈Γ
𝑢ℎ (𝑠ℎ, 𝒔−ℎ) =

∑
ℎ∈Γ

𝑢ℎ (𝑠ℎ, 𝒔−ℎ) (14)

With this, we can simplify Equation 13 as follows:
Φ(𝑠 𝑗 , 𝒔−𝑗 ) − Φ(𝑠 𝑗 , 𝒔−𝑗 )
= 𝑢 𝑗 (𝑠 𝑗 , 𝒔−𝑗 ) − 𝑢 𝑗 (𝑠 𝑗 , 𝒔−𝑗 )

+
∑

𝑓 ∈𝐶 ˆ𝑠𝑗

[𝑢𝑓 (𝑠𝑓 , 𝒔−𝑓 ) − 𝑢𝑓 (𝑠𝑓 , 𝒔−𝑓 )]

+
∑

𝑔∈𝐶𝑠𝑗

[𝑢𝑔 (𝑠𝑔, 𝒔−𝑔) − 𝑢𝑔 (𝑠𝑔, 𝒔−𝑔)]

+
∑

ℎ∈𝐶 ˇ𝑠𝑗

[𝑢ℎ (𝑠ℎ, 𝒔−ℎ) − 𝑢ℎ (𝑠ℎ, 𝒔−ℎ)]

= 𝑈 𝑗 (𝑠 𝑗 , 𝒔−𝑗 ) −𝑈 𝑗 (𝑠 𝑗 , 𝒔−𝑗 )

(15)

Therefore, Equation 15 satisfies the definition of an exact poten-
tial game, and Φ(𝑠 𝑗 , 𝑠−𝑗 ) serves as the potential function for this
game. As a result, the CFG has a Nash equilibrium solution. □

In potential games, each UAV’s change in utility due to strategy
variation under the Marginal Utility preference order is reflected
equally in the potential function. Under this motivation, the indi-
vidual objectives of the UAVs align with the global objective.

4.2 Multi-UAV Coalition Formation Algorithm
Based on Marginal Utility

To achieve a stable coalition partition, we propose a MUCFC-CFG
algorithm, as shown in Algorithm 1. The main idea of this algo-
rithm is based on the property of finite improvement to reach a
Nash equilibrium in potential games[12]. In the initialization phase,
takes the attributes of each UAV and task as input, and each task
is set with its coalition revenue threshold (Lines 1-4). Meanwhile,
each UAV randomly selects tasks and is assigned to 𝑀 coalitions
(Lines 5-8). In the computation phase (Lines 9-13), each coalition
calculates its utility, and Algorithm 2 is used to compute the utility
values assigned to each UAV within the coalition.

During the iteration process (Lines 14-29), a UAV is randomly
selected to change its strategy. If a UAV is selected, it attempts to
choose to join another coalition, excluding the current one. Algo-
rithm 3 is used to calculate the utility function values for the two
coalitions, and by comparing these values, the preference is deter-
mined. Consequently, the corresponding strategy is updated, and
the task selection is modified. Other UAVs maintain their strate-
gies from the previous iteration. This process continues for a finite
number of steps, and the algorithm converges to a stable solution
through iterative optimization.

4.3 A Coalition Utility Allocation Algorithm
Based on Shapley Values

To achieve fair utility allocation within a coalition, we propose a
Coalition Utility Allocation Algorithm based on Shapley Values
(CUAA-SV), as shown in Algorithm 2. In this algorithm, the util-
ity values for each UAV in coalition 𝐶𝑖 are initialized to zero (Line
1). In each iteration, one UAV is selected, and its contribution to the
coalition’s utility is calculated (Lines 2-12). All possible subsets𝐶 ′𝑖
of coalition 𝐶𝑖 are traversed, and if the currently selected UAV is
not in the subset, the algorithm continues to the next subset. Oth-
erwise, the weight𝜔 of the Shapley value is calculated, taking into

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1296



Algorithm 1: MUCFC-CFG Algorithm
Input: Task setM, UAV set N
Output: Coalitions of UAVs 𝐶𝑖 for executing each task

1 foreach Task 𝑖 ∈ M do
2 Task 𝑖’s coalition revenue threshold:

𝛽𝑖 ≥ 2𝑝𝑖/(1 +
√
1 + 4𝑉𝑖𝑝𝑖/𝛼𝑄𝑖 )

3 Initialize coalition: 𝐶𝑖 ← ∅
4 end
5 foreach UAV 𝑗 ∈ N do
6 𝑖 ← random(1, 𝑀)
7 𝐶𝑖 ← 𝐶𝑖 ∪ { 𝑗}, 𝑠 𝑗 ← 𝑖

8 end
9 foreach Task 𝑖 ∈ M do
10 Calculate 𝑉𝑖 (𝐶𝑖 ) of 𝐶𝑖 using Equation 1
11 Calculate 𝑢𝑖 (𝐶𝑖 ) of each UAV in 𝐶𝑖 using Algorithm 2
12 end
13 Current coalition partition 𝐶𝑐𝑢𝑟 ← 𝐶𝑖𝑛𝑖
14 repeat
15 Randomly select a UAV 𝑗, 𝑗 ∈ N
16 UAV 𝑗 calculates 𝑈 𝑗 (𝑠 𝑗 ) using Algorithm 3
17 UAV 𝑗 randomly selects a coalition 𝐶𝑠′𝑗 , 𝑠

′
𝑗 ∈ M\{𝑠 𝑗 }

18 if 𝑒
𝑠′𝑗
𝑗 ∈ Δ1 and 𝑒

𝑠 𝑗
𝑗 ∈ Δ2 then

19 Calculate the current𝑈 𝑗 (𝑠 ′𝑗 )
20 if 𝑈 𝑗 (𝑠 ′𝑗 ) > 𝑈 𝑗 (𝑠 𝑗 ) (i.e., 𝐶𝑠′𝑗 ≻𝑗 𝐶𝑠 𝑗 ) then
21 𝐶𝑐𝑢𝑟 ← 𝐶𝑐𝑢𝑟 \𝐶𝑠 𝑗 \𝐶𝑠′𝑗
22 𝐶𝑠 𝑗 ← 𝐶𝑠 𝑗 \{ 𝑗}, 𝐶𝑠′𝑗 ← 𝐶𝑠′𝑗 ∪ { 𝑗}
23 𝐶𝑐𝑢𝑟 ← 𝐶𝑐𝑢𝑟 ∪𝐶𝑠 𝑗 ∪𝐶𝑠′𝑗 , 𝑠 𝑗 ← 𝑠 ′𝑗
24 end
25 else
26 UAV 𝑗 reselects a coalition 𝐶𝑠′𝑗 , 𝑠

′
𝑗 ∈ M\{𝑠 𝑗 }

27 end
28 until Coalition partition C converges to a stable partition;
29 return 𝐶𝑖 , 𝑖 ∈ M

account the number of UAVs in the subset and the number of UAVs
not in the subset (Line 8). The utility value of the selected UAV is
updated according to Equation 1, which describes the change in
utility when a specific UAV joins or leaves the coalition (Line 9).

Through this iterative process, the algorithm calculates the util-
ity that each UAV in the coalition 𝐶𝑖 should receive, ensuring that
each member receives a fair utility based on their contribution to
the overall task. This provides coalition members with a fair, ac-
ceptable and motivating way of distributing utility.

4.4 A Coalition Value Evaluation Algorithm
Based on Marginal Utility Order

To facilitate coalition switching, we propose a Coalition Value Eval-
uation Algorithm based on Marginal Utility Order (CVEA-MUO),
as shown in Algorithm 3. This algorithm is designed for a given
UAV 𝑗 and two different coalitions,𝐶𝑠 𝑗 and𝐶𝑠 𝑗 . Initially, variables
𝑢1,𝑢2, and𝑢3 are set to zero (Line 1). Here,𝑢1 represents the utility

Algorithm 2: CUAA-SV Algorithm
Input: Coalition 𝐶𝑖 and parameters for task 𝑖: 𝑉𝑖 , 𝑄𝑖 , 𝑝𝑖 , 𝛽𝑖
Output: Utility 𝑢 𝑗 (𝐶𝑖 ) for each UAV 𝑗 ∈ 𝐶𝑖 in the 𝐶𝑖

1 Initialization: 𝑢 𝑗 (𝐶 𝑗 ) ← 0 for all 𝑗 ∈ 𝐶𝑖
2 foreach 𝑗 ∈ 𝐶𝑖 do
3 for 𝑠 = 1 to |𝐶𝑖 | do
4 foreach 𝐶 ′𝑖 ∈ combinations(𝐶𝑖 , 𝑠) do
5 if 𝑗 ∉ 𝐶 ′𝑖 then
6 Continue
7 end
8 𝜔 ← (|𝐶 ′𝑖 | − 1)!( |𝐶𝑖 | − |𝐶

′
𝑖 |)!/|𝐶𝑖 |!

9 𝑢 𝑗 (𝐶𝑖 ) ← 𝑢 𝑗 (𝐶𝑖 ) + 𝜔 · (𝑉𝑖 (𝐶𝑖 ) −𝑉𝑖 (𝐶𝑖 \ { 𝑗}))
10 end
11 end
12 end
13 return 𝑢 𝑗 (𝐶𝑖 )

of UAV 𝑗 in the current coalition. By iterating through the mem-
bers of coalitions 𝐶𝑠 𝑗 and 𝐶𝑠 𝑗 separately, their utility values are
accumulated into 𝑢2 and 𝑢3 (Lines 2-10). Finally, 𝑢1, 𝑢2, and 𝑢3 are
summed to obtain the overall utility function value𝑈 𝑗 (𝑠 𝑗 , 𝒔−𝑗 ) for
UAV 𝑗 considering different coalition (Line 11). This value is used
to assist UAV 𝑗 in making decisions when switching coalitions.

This algorithmprovides an assessment basis for decision-making
under different coalition, taking into account both the utility of the
individual UAV and its cooperative effects with other members.

Algorithm 3: CVEA-MUO Algorithm
Input: Coalition 𝐶𝑠 𝑗 and 𝐶𝑠 𝑗 for UAV 𝑗
Output: Utility function value 𝑈 𝑗 (𝑠 𝑗 , 𝑠−𝑗 ) for UAV 𝑗

1 Initialization: 𝑢1, 𝑢2, 𝑢3 ← 0, 𝑢1 ← 𝑢 𝑗 (𝑠 𝑗 , 𝑠−𝑗 )
2 foreach 𝑓 ∈ 𝐶𝑠 𝑗 do
3 𝑢2 ← 𝑢2 + 𝑢𝑓 (𝐶𝑠 𝑗 )
4 end
5 foreach 𝑔 ∈ 𝐶𝑠 𝑗 do
6 if 𝑔 = 𝑓 then
7 Continue
8 end
9 𝑢3 ← 𝑢3 + 𝑢𝑔 (𝐶𝑠 𝑗 )

10 end
11 𝑈 𝑗 (𝑠 𝑗 , 𝑠−𝑗 ) ← 𝑢1 + 𝑢2 + 𝑢3
12 return𝑈 𝑗 (𝑠 𝑗 , 𝑠−𝑗 )

4.5 Convergence Proof
In this section, we provide a convergence proof for the algorithm.

TheoRem 4.2. The MUCFC-CFG algorithm converges.

PRoof. According to Definition 4.2, each UAV selects a better
coalition that improves the utility function value. Therefore, any
UAV updates its task selection only when the sum of the utilities
within both the original and new coalitions increase. Sincewe have
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Figure 3: The variation of coalition overall utility with parameter 𝑟 under three scenarios.

proven in Theorem 4.5 that the difference in the utility function
of UAV is equal to the difference in the potential function under
the marginal utility order. Consequently, the potential function
increases accordingly. Note that since the number of UAVs and
tasks is finite, according to the finite-increase property of potential
games [12], any unilateral improvement sequence will converge to
a Nash equilibrium in a finite number of iterations. □

5 EXPERIMENTAL RESULTS
5.1 Experimental Setup
In this section, we validate the effectiveness of the proposed algo-
rithm through experiments.The experimental code is implemented
in Python2. The computer’s processor and memory parameters are
as follows: AMD Ryzen 7 5800H with Radeon Graphics (16 CPUs)
and 16GB RAM. Unless otherwise specified, the parameters for the
experimental simulations are set as shown in Table 1.

To better simulate real-world scenarios, we introduce the fol-
lowing design elements in the experimental setup:

(1) Correlation between fixed flight cost 𝛼 and task value𝑉𝑖 : We
set the 𝛼 to be between 0.4% and 1% of the𝑉𝑖 (denoted as 𝑟 = 𝛼/𝑉𝑖 ).
This considers the balance between cost and task value.

(2) Correlation between workload 𝑄𝑖 and value 𝑉𝑖 : We set the
𝑄𝑖 to be between 1 and 1.5 of the𝑉𝑖 (denoted as 𝜉 = 𝑄𝑖/𝑉𝑖 ). Specif-
ically, as the task value 𝑉𝑖 increases, the workload 𝑄𝑖 also tends
to increase. This because high-value tasks typically require more
workload to complete.

(3) Number of UAVs and tasks: We consider scenarios of differ-
ent scales, ranging from 4 to 20 UAVs, while ensuring that the num-
ber of tasks 𝑀 remains less than the number of UAVs to maintain
the feasibility of the model.

(4) Distribution of UAV efficiency: We consider the distribution
of UAV efficiency is centered around the average coalition work
efficiency. This because UAV performance typically exhibits varia-
tion within a specific range.

5.2 Experimental Results
To demonstrate the advantages of the proposed algorithm, we com-
pare it with Selfish and Pareto Order algorithm. Our experimental

2Our code is publicly available at https://github.com/Agentyzu/MUCFC-CFG, and
considering pages limit, additional experiments about algorithmic robustness in large-
scale scenarios are also illustrated on the Github.

Table 1: Simulation Parameters

Parameters Value

Number of tasks 𝑀 ∈ [4, 20]
Number of UAVs 𝑁 ∈ [4, 20]
Value of task 𝑖 𝑉𝑖 ∈ [5, 10]

Workload of task 𝑖 𝑄𝑖 = 𝜉𝑉𝑖
Maximum capacity of task 𝑖 𝑝𝑖 ∈ [5, 6]

Fixed flight loss for UAVs 𝛼 = 𝑟𝑉𝑖

results are based on 500 rounds of randomly generated scenarios,
and we take the average of the results.

5.2.1 Algorithm Performance. As shown in Figure 3, we compare
the overall utility under three scenarios with varying numbers of
UAVs and tasks (𝑁 = 20, 15, 10 and 𝑀 = 15, 10, 5) and the different
values of the parameter 𝑟 . Under different values of 𝑟 , our algo-
rithm outperforms the other two in terms of the overall utility of
the coalition. This is because our algorithm considers the marginal
utility of each UAV through Marginal Utility Order, emphasizing
the participation value of each UAV and ensuring that the inclu-
sion of each UAV in the coalition leads to the maximum increase
in overall utility of coalitions.

Additionally, our algorithm exhibits superior adaptability to vari-
ations in the parameter 𝑟 , enabling it to maintain a relatively stable
utility across different values of 𝑟 . The other two algorithms may
be more sensitive to 𝑟 , leading to significant fluctuations in utility
under different 𝑟 . We choose to set 𝑟 to 0.6 and 1 in the following
experiments for comparative analysis.

As shown in Figure 4, we compare the overall utility when the
number of UAVs is 𝑁 = 20. The experimental results indicate that,
when the number of UAVs is fixed, the overall utility of the coali-
tion increases with the number of tasks increases. Meanwhile, the
overall utility of the proposed algorithm and the SelfishOrder grow
faster as the number of tasks increases, while the utility of the
Pareto Order grow lower. This is because the Selfish Order may de-
crease the utility of other UAVs to pursue higher individual utilities,
while the Pareto Order restricts UAVs from leaving the coalition to
obtain higher utility due to its strong constraints.

Additionally, we compare the overall utility when the number
of tasks is 𝑀 = 4. The experimental results indicate that, when
the number of tasks is fixed, the differences in utility among the
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Figure 4: The variation of coalition overall utility with task
and UAV numbers for 𝑁 = 20 and𝑀 = 5.

three algorithms are not significant. When 𝑟 = 0.6 and 𝑁 < 14,
the coalition’s utility increases with the increase in the number of
UAVs, reflecting the advantage of cooperation, reaching its maxi-
mum value at 𝑁 = 14. However, when more UAVs are added, the
overall utility begins to decrease, indicating that the cost of cooper-
ation outweighs the revenue. This is because, after a certain point,
adding more UAVs leads to resource dispersion, and UAVs compete
for tasks, thereby reducing overall utility. Therefore, when choos-
ing the number of UAVs, a balance between cost and revenues is
needed to find themost suitable number of UAVs for a specific num-
ber of tasks. It’s worth noting that a larger 𝑟 reflects that UAVs will
consume more energy. Hence, as the parameter 𝑟 increases, the en-
ergy consumption of UAVs also rise, resulting in a higher number
of UAVs corresponding to the peak.
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Figure 5: The variation of average utility of each task and
UAV with the task and UAV numbers for 𝑁 = 20 and𝑀 = 5.

In Figure 5, we compare the average utility of each task when
the number of UAVs is 𝑁 = 20. The experimental results show that,
when the number of UAVs is fixed, the average utility of each task
increases as the number of tasks increases and reaches its maxi-
mum at 𝑁 = 6, after which it decreases. This is because when the
number of tasks slightly increases, UAVs cooperate to increase the
utility of tasks. However, when the number of tasks increases sig-
nificantly, UAVs may complete tasks individually, which reduces
the average utility of each task.

Additionally, we compare the average utility of each UAV when
the number of tasks is 𝑀 = 4. The experimental results indicate

that, when the number of tasks is fixed, the average utility of each
UAV decreases as the number of UAVs increases.When the number
of UAVs is lower, our algorithm outperforms the other two in terms
of the average utility of each UAV. Conversely, with higher UAV
numbers, the three algorithms show no significant differences.

5.2.2 Algorithm Convergence. To verify the convergence of the
algorithm, we studied the relationship between coalition overall
utility and the number of iterations, as shown in Figure 6. The
experimental results indicate that our algorithm exhibits conver-
gence during iterations, indicating that the coalition can reach a
stable state. Although our algorithm does not have an advantage in
terms of convergence speed compared to the other two algorithms,
it eventually achieves higher overall utility. This optimization re-
quires more iterations to find the best solution, but it ultimately
results in higher overall utility.
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Figure 6: The schematic diagram of the convergence of the
three algorithms with𝑀 = 5, 𝑁 = 10 and 𝑟 = 0.6.

6 CONLUSION
In this paper, in order to solve the tasks-driven multi-UAV coali-
tion formation problem, we proposed a novel multi-UAV coalition
for collaborative task completion model. Specifically, a revenue
function based on coalition revenue threshold is firstly designed,
then we used the Shapley value to distribute the utility of UAVs
within the coalition based on the proposed model. Meanwhile, we
designed a new Marginal Utility preference order based on this
model, and proved that the CFG under this order has a Nash equi-
librium solution. Finally, we proposed theMUCNC-CFG algorithm,
which was able to achieve stable coalition structure within a lim-
ited number of iterations. Simulation results showed that the pro-
posed algorithm can improve the overall utility of the coalition.
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