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ABSTRACT
Learning behavior models of other agents from observations is

challenging because agents typically do not act based on observ-

able states alone, but usually take their internal, for external agents

unobservable, states such as desires, motivations, preferences, and

others into account. Consequently, methods that only use observa-

tional states for modeling other agents’ behaviors are insufficient

for capturing and predicting agent behavior, especially for agents

with rich internal processes. We propose a novel approach to on-

line agent model learning that works incrementally with limited

data, provides fine-grained and interpretable descriptions of the

agent’s behavior, and, most importantly, is able to hypothesize

agent-internal states to better explain observed behavioral trajec-

tories. We show in various proof-of-concept experiments that our

method avoids the pitfalls of common agent-modeling strategies

when agent-internal states govern behavior and is able to build

accurate and interpretable behavior models. We also discuss how

the method can work in conjunction with existing approaches (e.g.,

for goal recognition) to facilitate better modeling of open-world

agents.
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1 INTRODUCTION
Dynamic multi-agent environments with unknown agents are noto-

riously difficult to negotiate because one’s own performance might

depend on the actions taken by other agents [9, 17, 22]. One way

to reduce uncertainty and make one’s own plans more likely to

succeed in such contexts is to quickly learn behavior models of

those agents online from observations and use them to predict their

actions [4]. However, there is a core challenge with such online

observational learning: Agents typically do not solely act based

on observable states, but take their internal, for external agents
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unobservable, states such as desires, motivations, preferences into

account when deciding on their actions.

Consider the example of a person walking into a bakery and

buying either a cheese strudel or baklava every morning. Despite

having full knowledge of the environment in the bakery, we cannot

attribute the choice of pastry to any environment feature as, for

instance, both pastries are available and fresh. We, therefore, have

two choices when modeling this behavior: Either treat the choice as

random, or hypothesize that there is an unobserved internal state of

the person that determines which pastry they choose at any given

visit. Hypothesizing internal states then allows us to separately

consider situations distinguished by those states (e.g., if they buy

a strudel, they also later sit down for coffee, whereas if they buy

baklava they leave the store). Furthermore, as internal states are not

dependent on environment features, they can enable us to better

anticipate what the person may do in previously unseen situations

(e.g., ordering a strudel when visiting a different restaurant). Note

that the choice in the pastry shop could be completely independent

of other goals the person has (e.g., to finish a contract at work, to

meet the family out for movies, etc.): They may be going to work,

returning home or going for a walk, none of which have any bearing

on what that person may do in the pastry shop. In other words,

this is not a question of more coarse-grained goal recognition, but
rather one of more fine-grained behavioral dispositions that drive
human actions in particular circumstances, based on their internal

predispositions.

Past approaches to learning agent models from observed behav-

ior are not well-suited in this setting for a few reasons: 1) they

make no distinction between unobservable aspects of the environ-

ment and unobservable agent-internal states [7]; 2) they assume

competent and near-optimal goal seeking behavior (rather than

allowing for agents to not follow larger goals, or to not behave near-

optimally) [15]; 3) they require a large number of observations [25];

4) they are often too fine-grained to generalize to unseen situa-

tions, or 5) they are too abstract to allow for accurate step-by-step

predictions.

We will address these challenges with an online learning method

that incrementally forms environmental state abstractions and hy-

pothesizes novel agent-internal states in order to capture agent dis-

positions, i.e., states that are equivalent with respect to the agent’s

chosen behavior and how the agent transitions between them. The

model makes no assumptions about the nature of the observed

dispositions and does not attempt to infer the agent’s larger goals.

Rather, it refines its state abstractions with every new observation

and hypothesizes novel agent-internal states when other explana-

tions of observed behavior lead to worse predictions. And critically,

it is immediately usable for making behavioral predictions even

with minimal observations and able to explain, based on its learned
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state transition model, why it expects the other agent to select a

particular action in a given state, factually and counterfactually.

The rest of the paper is organized as follows. We first review

other approaches to agent model learning and then introduce our

proposed method in detail, followed by demonstrations showing

that common agent-modeling paradigms cannot adequately model

agents that act according to agent-internal states even in very

simple crafting tasks in a 2D Gridworld environment. We show

how our model succeeds in modeling such agents and furthermore

explain the learned model to demonstrate how agent-internal state

modeling allows us to simulate agent behavior in previously unseen

situations with no additional observations.

2 RELATEDWORKS
Current agent modeling strategies aim to model behavior of compe-

tent, goal-seeking agents at varying levels of detail and abstraction:

Behavioral cloning (BC) [5, 21] learns policies via supervised learn-

ing from observations of near optimal trajectories to try to replicate

exactly the modeled agent’s strategy. Inverse Reinforcement Learn-

ing (IRL) [3, 11, 25] instead takes a more flexible approach and

approximates a reward function for the expert’s task, then learns

policies according to that reward function through environment

interactions. Some adversarial training strategies also aim to im-

prove the robustness of learned policies [2, 12]. These methods yield

low-level representations of agent behavior in terms of policies:

They can be used to simulate their behavior in similar environment

states but typically generalize poorly to new situations and require

extensive training data to adapt. In addition, they typically do not

provide high-level, explainable representations of agent behavior,

nor do they attempt to model agent-internal states.

Goal and plan recognition [6, 15, 20, 23] methods infer agents’

goals by comparing observed trajectories with domain theories.

The inferred goals can be both general and explainable, which

can make these methods useful for integrating with multi-agent

task planners and producing explanations of behavior. While the

planning domains or value functions used in domain theories may

be learned through observations or environment interactions [1, 8,

14], these methods typically require that agents are competent and

goal-seeking, and they assume that a predetermined set of goals

that agents may have is known beforehand. These requirements are

in conflict with what we may encounter in the open world, where

agents may be incompetent or their goals, if any, may be irrelevant

to the situation we are interested in modeling.

Recent work in learning agent’s skills [24] bears some similarities

to our work as it attempts to learn interpretable descriptions of an

agent’s capabilities. This approach represents capabilities similarly

to PDDL operators, expressed in a user-specified language. They

initially collect agent trajectories and extract partial descriptions

of the agent’s capabilities, then they query the agent with specific

tasks to revise and finalize capability descriptions. This approach

is effective at learning abstract descriptions of a planning agent’s

capabilities, but assumes deterministic goal-seeking behavior, does

not learn incrementally, and requires the learner’s ability to ac-

tively query the observed agent with tasks. In contrast, our method

learns an agent’s dispositions incrementally by passively observing

possibly stochastic behavior.

More broadly, our work follows an existing line of research on

open-world learning [10, 13, 16, 19]. Our method aims to fill the

gap left by other agent-modeling strategies in this setting: It is able

to learn online from limited data, hypothesize agent-internal states

if necessary and enable fine-grained modeling and simulation of

agent behavior while not relying on competency or optimality of

modeled agents.

3 ONLINE LEARNING OF AGENT
DISPOSITIONS

We now formally present our proposed framework for modeling

an agent’s dispositions which depend on observable environmen-

tal and unobservable agent-internal states. The approach relies

on forming clusters of labeled MDP states in which the agent is

disposed to act similarly. The model continuously evolves as new

observations are made: It expands to better explain observed be-

havior and it consolidates behaviorally similar clusters to remain

compact and to be able to generalize them. When the agent behaves

in distinct ways in the same cluster, the model hypothesizes inter-

nal states to explain the difference. We describe the “base version”

of the model that does not hypothesize agent-internal states and

indicate the necessary additions required to model internal states

in the “full model”.

3.1 Background
A labeled Markov Decision Process (l-MDP) is a tuple𝑀 = {𝑆,𝐴, 𝑃, 𝑅,
𝛾, 𝐴𝑃, 𝐿} where 𝑆 is the l-MDP state space, 𝐴 is a discrete action

space, 𝑃 : 𝑆 ×𝐴→ [0, 1], is the transition probability function, 𝑅 :

𝑆×𝐴×𝑆 → R is the environment reward function, 𝛾 is the discount

factor, 𝐴𝑃 is the set of atomic propositions and 𝐿 : 𝑆 → 2
𝐴𝑃

is a

labeling function that for a given state 𝑠 indicates truth values for

each element of 𝐴𝑃 .

A trajectory 𝑋 = {𝜏𝑡 = (𝑠𝑡 , 𝐿(𝑠𝑡 ), 𝑎𝑡 ), 𝑡 : 1 . . .𝑇 } in the labeled

MDP is a sequence of T trajectory steps, which consists of state

observations, state labels and actions taken by an agent in those

states. We consider the problem of observing agent trajectories in

𝑀 online and maintaining a model of its behavior. We now present

the architecture of our agent model.

A state description 𝑑 is a conjunction of 𝑝𝑖 ∈ 𝐴𝑃 or their nega-

tions. In this work we sometimes refer to state descriptions as sets

of propositions for notational convenience. A state description de-

scribes a set of states 𝑆𝑑 = {𝑠 | 𝑑 ⊆ 𝐿(𝑠)} in which 𝑑 “subsumes”

their description. The labeling of an MDP state 𝐿(𝑠) is a full state
description as it includes all (observable) propositions or their nega-

tions. A partial state description contains a subset of 𝐴𝑃 or their

negations. The ⊆ operator is used to indicate subsumption.

Least general generalization. Two state descriptions 𝑑 and 𝑑′ can
be generalized into a single state description𝑑∗ such that 𝑆𝑑∗ = 𝑆𝑑∩
𝑆𝑑 ′ . Then, 𝑑

∗
is the least general generalization (LGG) [18] of 𝑑 and

𝑑′. For propositional state descriptions, 𝐿𝐺𝐺 (𝑑,𝑑′) = 𝑑 ∩ 𝑑′ when
descriptions are treated as sets. The LGG of two state descriptions

is the least general description that subsumes both 𝑑 and 𝑑′.

Planning. A planning domain 𝛴 = (S,O) is a tuple, where S are

state descriptions expressed using atoms in 𝐴𝑃 and O are planning

operators associated with low-level executors 𝛯 . Each executor
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Figure 1: Illustration of a model update on the bakery example. In the upper left panel, an existing agent model receives two
examples of an agent exhibiting previously unseen behavior. On the upper right panel, the two examples are used to update
the model, creating new clusters to explain the transitions. Two clusters (circled in blue) have identical action distributions. As
a result, they are merged in the lower left panel into a single more general cluster. However, the new cluster overlaps with an
existing one (indicated by the red dotted line), while describing very different behavior: getting a strudel and getting a baklava.
To explain the distinction, the model hypothesizes an agent-internal state described by 𝑝 and ¬𝑝. The lower right panel shows
the final state of the model after the update.

𝜉 ∈ 𝛯 is a program that uses low-level actions in 𝐴 to advance the

state of the MDP𝑀 .

A planning task𝑇 = (𝛴, 𝑠0, 𝑑𝑔) is a tuple consisting of a planning
domain 𝛴 , an initial state description 𝑠0 and a goal state description

𝑑𝑔 . The task can be supplied to a planner, which provides a plan 𝑃 :

a series of operators that transition the planning state from 𝑠0 to

some state 𝑠𝑔 s.t. 𝑑𝑔 ⊆ 𝑠𝑔 .

3.2 Dispositional Agent Model
An agent model (to be learned) is a tupleA = (C, 𝐸, 𝐴𝑃𝐼 ,I, 𝜃𝑚, 𝜃𝑝 )
consisting of a set of clusters C = {𝑐𝑖 , 𝑖 : 1 . . .𝐶}, a map 𝐸 : C×C →
R, a set of atoms 𝐴𝑃𝐼 , a propositional knowledge base I and two

hyperparameters 𝜃𝑝 , 𝜃𝑚 ∈ R. Each cluster 𝑐𝑖 = (𝑑𝑖 , 𝑝𝑖 (𝑎), 𝛽𝑖 , 𝛾𝑖 )
is a tuple consisting of a partial state description 𝑑𝑖 , a probability

distribution 𝑝𝑖 (𝑎), 𝑎 ∈ 𝐴 over the action set of the MDP, 𝛽𝑖 is a

conjunction of (negated) propositions in 𝐴𝑃𝐼 and 𝛾𝑖 is a disjunction

of (negated) propositions in 𝐴𝑃𝐼 . We parameterize 𝑝 (𝑎) by a vector

of observed counts for each action and obtain the probability of

each action in a cluster by normalizing by the sum of action counts

observed in that cluster. To update the distribution online, we simply

increment the observed action counter.

The model expands 𝐴𝑃𝐼 to hypothesize agent-internal states.

The knowledge base I holds the model’s belief of truth values

of atoms in 𝐴𝑃𝐼 and is updated as observations are received. The

formulas 𝛽𝑖 , 𝛾𝑖 determine the interaction of each cluster with I. 𝛽𝑖
indicates (negated) propositions asserted to I when the agent is

in a state belonging to 𝑐𝑖 . 𝛾𝑖 holds states of I in which the agent

has been observed to occupy states belonging to 𝑐𝑖 . The values 𝜃𝑚
and 𝜃𝑝 are hyper-parameters controlling the level of abstraction of

the agent model by determining when behavior is very similar and

very different than previously observed.

Before we describe the algorithms involved in updating the

model, we briefly return to the bakery example from the intro-

duction to demonstrate the main ideas involved in learning the

agent model. Figure 1 illustrates the update process for an agent

model of the bakery example. On the upper left panel, we consider

(part of) an existing agent model for an agent entering a bakery

and getting a strudel. However, now we receive observations of

the agent in the bakery getting baklava instead of a strudel. Since

these observations are not explained by the current model, in the

upper right panel the model is updated with the new observations.

Circled in blue are two clusters created to explain the observations.

However, since the agent’s behavior is identical in both clusters,
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Algorithm 1 Update Model

1: Input:
2: Agent Model A = (C, 𝐸 )
3: Observations (𝜏𝑡 , 𝜏𝑡+1 )
4: Anomaly threshold 𝜃𝑝

5: procedure Update(A, 𝜏𝑡 , 𝜏𝑡+1)
6: 𝑐𝑎 ← AssignCluster(C, 𝜏𝑡 )
7: 𝑝𝑎 (𝑎) ← 𝑂𝑛𝑙𝑖𝑛𝑒𝑈𝑝𝑑𝑎𝑡𝑒 (𝑝𝑎 (𝑎), 𝑎𝑡 )
8: 𝑐𝑏 ← AssignCluster(C, 𝜏𝑡+1)
9: 𝑝𝑏 (𝑎) ← 𝑂𝑛𝑙𝑖𝑛𝑒𝑈𝑝𝑑𝑎𝑡𝑒 (𝑝𝑏 (𝑎), 𝑎𝑡+1 )
10: 𝐸 (𝑐𝑎, 𝑐𝑏 ) ← 𝐸 (𝑐𝑎, 𝑐𝑏 ) + 1
11: MergeClusters(C,𝐸,𝜃𝑚 )

12: end procedure
13: procedure CreateCluster(C, 𝑑)
14: if ∃𝑐𝑘 ∈ C s.t. 𝑑𝑘 = 𝑑 & not 𝑐𝑘 .𝑖𝑠𝑆𝑡𝑎𝑏𝑙𝑒 ( ) then
15: return 𝑐𝑘
16: end if
17: if ∃𝑐𝑘 ∈ C s.t. 𝑑𝑘 = 𝑑 & 𝑐𝑘 .𝑖𝑠𝑆𝑡𝑎𝑏𝑙𝑒 ( ) then
18: 𝑝,¬𝑝 ← 𝐼𝑛𝑣𝑒𝑛𝑡𝐴𝑡𝑜𝑚 ( ) ⊲ Hypothesize internal state

19: 𝛽𝑘 ← 𝛽𝑘 ∪ {¬𝑝 }
20: 𝛽 ← 𝛽 ∪ {𝑝 }
21: end if
22: 𝐼𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒 (𝑝 (𝑎) )
23: 𝑐′ = (𝑑, 𝑝 (𝑎) )
24: C ← C ∪ {𝑐′ }
25: return 𝑐′

26: end procedure
27: procedure AssignCluster(C, 𝜏𝑡 )
28: 𝐴 = {𝑐𝑖 ∈ C | 𝑑𝑖 ⊆ 𝐿 (𝑠𝑡 ) }
29: if 𝐴 = ∅ then
30: 𝑐∗ ← CreateCluster(C,𝐿 (𝑠𝑡 ))
31: else
32: 𝑐𝑚 ← argmax𝑐𝑘 ∈𝐴 |𝑑𝑘 |
33: 𝐵 = {𝑐𝑖 ∈ C | 𝑑𝑖 = 𝑑𝑚, }
34: 𝑐𝑚 ← argmax𝑐𝑘 ∈𝐵 𝑝𝑘 (𝑎𝑡 ) ⊲ Most likely cluster

35: if 𝑝𝑚 (𝑎𝑡 ) < 𝜃𝑝 then ⊲ Anomaly

36: 𝑐∗ ← CreateCluster(C,𝐿 (𝑠𝑡 ))
37: else
38: 𝑐∗ ← 𝑐𝑚

39: end if
40: end if
41: UpdateKB(I, 𝑐∗ )
42: return 𝑐∗

43: end procedure

they are merged in the lower left panel into a single cluster that

describes a more general situation than either its constituents, since

wearing a hat does not differentiate the agent’s behavior. After the

merge, two clusters are in conflict (red dotted line): They describe

the same environmental situation—being at the bakery—but cap-

ture very different behavior. As a result, the model hypothesizes an

agent-internal state, modeled by a proposition 𝑝 , that explains the

distinction in behavior. The lower right panel shows the final model

after the update. Importantly, propositions modeling hypothesized

internal states do not have interpretations according to observable

external environment states. They can be interpreted functionally

however: 𝑝 means that the agent acts a certain way (gets a strudel).

Finally, future observations of behavior after obtaining a baklava

may reveal that the two states on the bottom right panel, which

Algorithm 2 Merge Clusters

1: Input
2: Clusters C
3: Transitions 𝐸

4: Merge Threshold 𝜃𝑚
5: procedure Generalize(𝑑 ,𝑑 ′ ,𝛽, 𝛽 ′, 𝛾,𝛾 ′)
6: 𝑑∗ ← ∅
7: 𝑑∗ ← 𝐿𝐺𝐺 (𝑑,𝑑 ′ )
8: 𝛽∗ ← 𝛽 ∪ 𝛽 ′

9: 𝛾∗ ← 𝛾 ∪ 𝛾 ′
10: for 𝑝 ∈ 𝛽∗ do
11: if ¬𝑝 ∈ 𝛽∗ then
12: 𝛽∗ ← 𝛽∗\{𝑝,¬𝑝 }
13: end if
14: end for
15: return 𝑑∗ , 𝛽∗, 𝛾∗

16: end procedure
17: procedureMergeClusters(C, 𝐸, 𝑡𝑚 )

18: if |𝐶 | = 1 then
19: return
20: end if
21: 𝐷 ← ComputeCLusterDistances(C)
22: Let (𝑎,𝑏 ) = argmin𝐷

23: if 𝐷 [𝑎,𝑏 ] < 𝜃𝑚 then
24: 𝑑 ′, 𝛽 ′, 𝛾 ′ ← Generalize(𝑑𝑎, 𝑑𝑏 , 𝛽𝑎, 𝛽𝑏 , 𝛾𝑎, 𝛾𝑏 )
25: 𝑝′ ← 𝑝𝑎 ⊕ 𝑝𝑏
26: if ∃𝑐𝑚 ∈ C s.t. 𝑑𝑚 = 𝑑 ′ then
27: if ModelInternalStates then
28: 𝑞,¬𝑞 ← 𝐼𝑛𝑣𝑒𝑛𝑡𝐴𝑡𝑜𝑚 ( )
29: 𝛽𝑚 ← 𝛽𝑚 ∪ {¬𝑞}
30: 𝛽 ′ ← 𝛽 ′ ∪ {𝑞}
31: else
32: 𝑝′ ← 𝑝𝑎 ⊕ 𝑝𝑏 ⊕ 𝑝𝑚
33: end if
34: end if
35: 𝑐 = (𝑑 ′, 𝑝′, 𝛽 ′, 𝛾 ′ )
36: C ← (C\{𝑐𝑎, 𝑐𝑏 }) ∪ {𝑐 } ⊲ Update C
37: 𝐸 ←MergeTransitions(𝐸, 𝑐𝑎, 𝑐𝑏 , 𝑐)

38: returnMergeClusters(C, 𝐸, 𝑡𝑚 )

39: end if
40: end procedure

are differentiated only by wearing a hat, need to also be merged if

the agent behaves identically in those states.

Algorithm 1 and Algorithm 2 formally describe how the model

is updated online. The model may start out as empty or hold in-

formation from prior observations. Lines in blue are necessary for

modeling agent-internal states and are omitted in the base agent

model. Lines 5-12 of Algorithm 1 indicate the update procedure.

Given two adjacent trajectory steps, the model first assigns them

to a cluster, updates the cluster distributions with the observed

actions and records the cluster transition. Finally, the model merges

similar clusters.

The cluster assignment procedure is shown in lines 27-43. The

agent checks if the observation fits in any known cluster, and cre-

ates a new one if it does not (line 30). Otherwise, it selects the least

general cluster (line 32) that captures the current step. When mod-

eling internal states, multiple clusters may describe the same set of

states, but differ in action distribution. In that case, the appropriate

cluster is assigned by maximum likelihood over those clusters’ ac-

tion distributions (lines 33-34). Finally, in lines 35-39, a new cluster

is instead created and assigned to the step if the observed action

is too unlikely (< 𝜃𝑝 ) under the previously selected cluster. As a

result, the observed state-action pair is assigned to a cluster that

adequately explains it, creating a new very specific cluster for it if

necessary. Finally, the model calls the UpdateKB procedure (see
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appendix), which updates I with the assertions of the selected

cluster and records the state of I in which the cluster was visited.

When creating a new cluster (lines 13-26) the algorithm first

checks if one with the same description already exists and returns

it if it does. When internal states are not modeled, there is no way

to make a distinction in behavior in the same state cluster, and so

the model will simply update the action distribution of that cluster

in its update. When hypothesizing internal states, and the action

distribution of the cluster in question is considered stable because

sufficient samples from it have been observed, the model invents a

new propositional atom to model the hypothesized internal state

governing the difference in behavior (lines 17-20). Since those clus-

ters distinguish two different agent-internal states, the assertion of

the corresponding (negated) atom is added to each cluster.

Cluster merging happens after every update to maintain a com-

pact model. Algorithm 2 shows the recursive merging procedure.

The base cases of the recursion occur in line 17 and 22, when there

are no more merges possible because there is only a single cluster or

all clusters capture sufficiently different behavior. Line 20 uses the

ComputeClusterDistances procedure (see appendix) to compute

the distance between the action distributions of all pairs of clusters

in which actions have been observed. The distance between two

clusters 𝐷 [𝑐𝑎, 𝑐𝑏 ] = 𝐽𝑆𝐷 (𝑝𝑎 (𝑎), 𝑝𝑏 (𝑎)) is the Jensen-Shannon dis-

tance of their action distributions. If two clusters are sufficiently

similar (𝐷 [𝑐𝑎, 𝑐𝑏 ] < 𝜃𝑚), they are merged by generalizing their de-

scriptions, assertions and consistencies and combining their action

distributions (line 24-25). The generalization procedure is shown

in lines 5-15. Cluster descriptions 𝑑𝑎, 𝑑𝑏 are generalized by taking

the LGG of the two clusters. Formulas 𝛽𝑎, 𝛽𝑏 are combined by tak-

ing their union and removing contradictions. Formulas 𝛾𝑎, 𝛾𝑏 are

combined by taking their union.

If generalization yields a cluster description that already exists

in the model, the model hypothesizes an internal state that distin-

guishes the two clusters (lines 27-30). Note that if the distinction is

unnecessary because the action distributions are very similar, they

will be merged in the next recursive call. If internal states are not

model, the distributions of the two clusters are combined (line 32).

The set of transitions is also updated by consolidating incoming

and outgoing transitions from the the old clusters to the new one

and then removing the old transitions. The merge is completed by

a recursive call that merges another pair of clusters if necessary.

Algorithm complexity. Assigning an observation to a cluster with
the AssignCluster procedure in algorithm 1 requires𝑂 ( |C|) time,

as every cluster needs to be examined. This includes the constant

time required to create a cluster if necessary. Merging clusters using

the MergeCluster procedure in algorithm 2 is the most expensive

operation. In the worst case, in a single update step, merging 2

clusters may induce a sequence of merges that combine all existing

clusters. Cluster distance computation takes 𝑂 ( |C|2) time for the

first merge of the sequence and𝑂 ( |C|) for every subsequent merge,

as only distances for the newly merged cluster need to be com-

puted. The Generalize procedure takes at most 𝑂 ( |𝐴𝑃 | + |𝐴𝑃𝐼 |)
time if the merged cluster descriptions involve all observable and

invented propositions. Overall a single update of the model requires

at most𝑂 ( |C|2 ( |𝐴𝑃 | + |𝐴𝑃𝐼 |)) time. In computationally constrained

Figure 2: Illustration of 2D Gridworld environment. The ini-
tial environment (left) from which trajectories are observed
has a number of trees the agent can collect wood from to
craft other items. In the novel environment (right) all the
trees are cut but planks can be obtained by interacting with
a trader.

contexts, the MergeClusters procedure can be modified to upper-

bound |C| by forcing amerge of themost similar clusters, sacrificing

model fidelity for more efficient computation.

Simulating behavior using the agentmodel. A learned agentmodel

can be used to simulate an agent’s behavior, e.g., to be used with

multi-agent planners or to simply predict or replicate the agent’s

behavior. Since the model captures the agent’s dispositions and

transitions between them, the agent’s behavior can be simulated by

observing the current environment state, assigning it to a cluster

and then sampling the next cluster the agent is likely to transition

to. Agent internal states are automatically inferred from the most

recent observed trajectory, but can also be manually selected for

simulation.

Then, the action sequence required to transition the environment

state can be generated by a planner using appropriate planning

operators and executors or by other means such as learned policies.

In this work we are not concerned with learning these low-level

behaviors and so in our experiments we use a handcrafted planning

domain. The algorithms used to simulate behavior using the agent

model and a planning domain are shown and discussed in detail in

the appendix.

4 PROOF-OF-CONCEPT EXPERIMENTS
We performed an experimental evaluation to confirm that our pro-

posed disposition learning approach can handle behaviors that

depend on hypothesized agent-internal states while other state-

of-the-art agent model learning approaches cannot. Note that for

this confirmation a single small experiment that shows the failure

of other approaches and the success of ours is sufficient, there is

no need for a large scale evaluation (which would show the same

failure of current approaches).

We first describe the test-bed that we used in experiments and

the algorithms we compared. Then we present the experimental

results and inspect the learned model to demonstrate its explain-

ability. Finally, we apply the learned model to a new environment

to demonstrate how internal-state modeling can assist predicting

behavior in the open-world.
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Figure 3: Comparison of algorithms when the expert agent changes preferences. Initially, all methods can replicate the agent’s
behavior perfectly. As preferences switch, BC always adapts but not before overwriting what it already knows. The base model
cannot distinguish between the expert’s preferences and thus cannot replicate the expert successfully. Only the full agent
model is able to model the expert’s preference and replicate its behavior even when preferences switch after every episode.

4.1 Environment Testbed
We evaluated our method in a 2D Gridworld illustrated in Figure 2

consisting of trees, the crafting agent whose behavior we want to

learn from observations and additional trader agents. The (crafting)

agent can collect wood from trees and use it to craft other items.

We define two task settings: one without traders where the agent

needs to gather wood from the environment to craft a target item

and one with traders where all trees are cut and the agent needs to

interact with traders to receive crafting materials. The agent can

navigate in the four cardinal directions, craft five items in total and

interact with traders yielding an action set of size 10.

• Task 1: Resource gathering. The agent is spawned ran-

domly in a 10 × 10 arena with randomly placed trees and no

traders. The agent aims to create a wooden item. Depending

on its internal preference that may be a stick, or a decoration.
• Task 2: Trading. The agent is spawned randomly in a 10×10
arena where all trees are cut but traders can supply planks,
an intermediate ingredient for crafting a stick, or decoration.
The goal of the agent is to craft a wooden item, but as before

the choice of item depends on an internal preference.

In both tasks, an observation episode ends once a target item

has been crafted. The environment reward function is -1 for every

step in which the target item is not crafted. Exact recipes and

environment generation parameters are available in the appendix.

Evaluation. To evaluate our algorithm we model the behavior

of an “expert”: a competent, near-optimal goal-seeking agent that

aims to craft a wooden item. We use the expert’s task performance

as a gold standard, and compare, using task performance as a metric,

how agents guided by behavioral models are able to simulate its

behavior. In the first experiment we observe trajectories from Task 1

where the choice of decoration and stick varies non-randomly. After

each trajectory is observed, we run one simulation in a randomly

initialized environment using the behavioral models and measure

the task performance. In the second experiment we take the models

trained on Task 1 and measure how well they can simulate the

agent’s behavior in Task 2. We repeat the same experiment for both

wooden items by showing each model a single trajectory from Task

1 for each item to indicate the agent’s crafting choice. The models

observe no trajectories from Task 2.

Algorithms. We evaluate the agent model with and without

internal-state modeling and compare it against a behavioral cloning
baseline model adapted for online use. While we also train an , IRL
baseline model and discuss its learned reward function, we do not

include an IRL policy in our main experiments because it would

require extensive additional training to learn a policy, making the

comparison to BC and our agent model unfair. Furthermore, we do

not include goal and plan recognition methods in our experiments,

as given a planning domain and a set of candidate goals for the

agent, it would be trivial to identify the correct item to craft. The

point of our experiments is not to achieve the agent’s goal but to

simulate the moment-by-moment behavior of the agent, achieving

goals in the process if they exist.

In the agent models, we set default values 𝜃𝑝 = 0.01 and 𝜃𝑚 =

0.1. The value of 𝜃𝑚 is set to avoid merging clusters when only a

single action has been observed. We consider action-distributions

stable after observing 10 samples. We adapt behavioral cloning

to the online setting by updating the model regularly after each

observed episode. We also keep a buffer of past experiences to

stabilize learning. After each observed episode, we run two gradient

descent epochs with minibatches drawn from the memory buffer as

well as all the latest data. Additional epochs did not yield different

results. Additional training details for the BC baseline are available

in the appendix.

For the agent guided by our model, we use a planning domain

with the same operators and executors as the expert agent. For the

BC baseline, we use the learned policy. Importantly, we do not let

any model learn from its interactions with the environment.
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(not (has wood)), (not (has decoration)),

(not (has stick)), (not (has planks)),

(not (has decoration)),

(not (has stick)),

(has wood), (not (has planks))

(not (has wood)), (not (has decoration)),

(not (has stick)), (has planks),

𝛽: ¬𝑝
𝛾 : ¬𝑝

(not (has wood)), (not (has decoration)),

(not (has stick)), (has planks),

𝛽: 𝑝
𝛾 : 𝑝

(has stick), (not (next_to wood)),

(not (has wood)), (not (has planks)),

(not (has decoration))

𝛾 :¬𝑝

(next_to wood), (has stick),

(not (has wood)), (not (has planks)),

(not (has decoration))

𝛾 :¬𝑝

(has decoration), (not (next_to wood)),

(not (has wood)), (not (has planks)),

(not (has stick))

𝛾 :𝑝

(next_to wood), (has decoration),

(not (has wood)), (not (has planks)),

(not (has stick))

𝛾 :𝑝

𝑝 (→) = 0.24
up down

left right

𝑝 (→) = 0.76
up down

left right

craft_planks

𝑝 (→ |¬p) = 1 𝑝 (→ |p) = 1

craft_planks

craft_stick

𝑝 (→) = 0.7𝑝 (→) = 0.3

craft_decoration

𝑝 (→) = 0.7𝑝 (→) = 0.3

Figure 4: Graph representation of the learned agent model for Task 1. Nodes represent state clusters and edges denote observed
transitions between clusters. Edge labels show the action taken and transition probability ( 𝑝 (→)) conditioned on internal
states when relevant. Each cluster is depicted with its learned state description and internal state information when necessary.
The nodes in the third level are distinguished by invented predicates, modeling the agent’s internal preference for crafting
stick or decoration items. Given the preference, the transition to a state where one or the other is crafted is deterministic. The
bottom layer includes clusters which happen to be terminal states (red). Since no actions are observed in those states, these
clusters are never merged. In clusters where the formulas 𝛽 and 𝛾 are non-empty, they are also displayed.

4.2 Experiment 1: Modeling Internal States
In this experiment we evaluate how modeling strategies respond

to behavior due to agent-internal states.

Experiment Settings. We first run 400 episodes where the expert

agent switches preference every 100 episodes. Then, we run an

additional 200 episodes where the expert changes preference after

each episode. As in the previous experiment, after each episode

we update the models and run one episode with behavior derived

from the agent models. Here we measure the reward over the entire

trajectory and repeat the experiment 20 times. We also train GAIL

[12], an IRL algorithm that learns robust reward functions with

adversarial training, on the entire set of observations from the 600

episodes, allowing it to gather up to 2 × 10
5
observations from

interacting with the environment online as the modeled agent. We

record the estimated reward of taking the two crafting actions in

question when all necessary materials have been gathered. We

repeat the experiment 10 times and report the average and standard

deviation. Additional training details are available in the appendix.

Results. Figure 3 shows the rewards gathered by each agent, aver-
aged over 20 runs. In the first 100 steps, consistent with the previous

experiment, all methods are able to learn a successful model of the

agent for the stick task, with BC requiring more observations than

our agent models.

Once the agent’s preference shifts, all models suffer in perfor-

mance. The BC agent is initially unable to solve the task in all 20

repeats, after which its performance recovers at a similar rate to

learning from scratch. This is expected, as BC has no way to model

agent-internal states, and so simply overwrites its previous knowl-

edge. The base agent model may not drop as far in performance as

BC, but it is also is unable to recover successfully. This is because

it is unable to differentiate between the expert’s prior and current

preferences and thus learns that at all times, the expert crafts one or

the other object with equal probability. The full agent model drops

the least in performance and recovers to close-to-expert perfor-

mance. Interestingly, after sufficient observations, BC outperforms

the full agent model. This is because the agent model, by not over-

writing past experiences, occasionally produces noisier runs that

lead to slightly longer episode lengths.

When the agent’s preference shifts again two more times, a

similar pattern holds: BC learns again as-if from scratch, showing

that it indeed overwrites past experiences. The base agent model

converges to selecting randomly which item to craft leading it to fail

about half the time, and the full agent model recovers and maintains

its performance, showing no drop when the expert shifts to crafting

decoration items for the last time.

In the last 200 steps where the expert alternates preference on

every episode, BC performance initially varies rapidly as it is still

crafting the correct item on every other episode. Then, it slowly

converges to similar performance to the base agentmodel, as neither

can model the agent-internal crafting preference as it shifts rapidly.

In contrast, the full agent model tracks the changes in preference

of the expert agent and is able to maintain high performance.

Finally, we examine the reward estimated by GAIL for crafting

a decoration and stick when all prerequisite items are available.

Crafting decoration gives an estimated reward of 2.14 ± 0.15 and
crafting stick gives 2.02± 0.27, statistically equal rewards. This is to
be expected, as IRL relies on environment features and the agent’s

action to estimate rewards and is unable to model agent-internal

states.
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Agent Decoration Stick
Expert -12.10 ± 1.90 -11.60 ± 2.52

Base Agent Model -17.80 ± 1.39 -16.80 ± 1.75

Full Agent Model -12.80 ± 1.80 -12.80 ± 1.92

Online Behavioral Cloning -20.00 ± 0.00 -20.00 ± 0.00

Table 1: Comparison of agent modeling methods in simu-
lating behavior in previously unseen situation (task 2). Be-
havioral cloning cannot generalize to the new task as it has
never seen examples of interacting with the trader. The full
model performs almost as well as the expert because it can
model the agent-internal state.

Inspecting the agent model. Figure 4 shows the learned agent

model after all 600 trajectories are observed. The model converges

to 8 clusters in total. In the the four clusters of the top three layers,

the proposition (next_to wood) is generalized away as it is irrelevant
to the agent’s behavior. The cluster in the top represents the condi-

tion where the agent has no items gathered, and navigates to collect

wood using navigation actions. The navigation actions either tran-

sition it to the cluster below or back to itself, as it navigates the

world to collect wood. This leads into a cluster of states in which

the agent has wood and crafts planks. After this point, the observed
trajectories diverge according to the agent’s internal preference

for stick or decoration items. In response, the agent model builds

two clusters which differ only by an invented atom. This atom is

invented to explain the difference in behavior between the two pref-

erences. The probability of transitioning between the middle and

left (or right) state is 1, given the agent’s preference. The last layer

contains only terminal clusters (red). Since these clusters happen to

capture final states of the MDP, where no actions are taken, there

is no action distribution to determine which should be merged, and

thus stay fully specified. Since wood is relatively scarce, final states

next to wood are relatively rare.

4.3 Experiment 2: Transfer to Novel Situations
In this experiment we demonstrate how our agent model can gener-

alize to unseen situations and how modeling internal states enables

more accurate simulation of agent’s behavior.

Experiment Settings. We use the learned agent models and BC

policy learned on the first task and apply it to the second task. We

prime each model with a single trajectory from Task 1 that matches

the crafting target we simulate for. No learning takes place during

this experiment. We run 20 episodes in Task 2 for each crafting

target preference, repeat the experiment 10 times and report sample

mean reward and standard deviation for each agent.

Results. Table 1 summarizes the results of this experiment. Not

surprisingly, BC is unable to simulate what the expert will do for

both crafting targets because it is unable to simulate behavior in

previously unseen situations: nowhere in its training trajectories

is there an example of the agent interacting with a trader, even

though the interact action is available. While this result may seem

trivial, we highlight it because it shows why modeling agents using

low-level policies does not generalize well in unseen situations.

The agent guided by the base model performs better than BC,

occasionally crafting the correct target item. This is because it is

able to use the appropriate planning operators to acquire planks

from the trader, even if it never observed the modeled agent doing

so. However, it cannot distinguish between internal states and thus

crafts randomly. The full agent model infers the expert’s internal-

state from task 1 trajectories and can therefore simulate behavior

conditioned on that state. This allows it to simulate the expert’s

behavior very accurately in the previously unobserved second task.

5 DISCUSSION AND CONCLUSION
In this work we introduced a novel method for incremental online

learning of observed agent dispositions that might depend on (un-

observable) agent-internal states. We showed that the model can

learn online from a small number of observations and is able to

model agent-internal states that differentiate behavior in similar

environment states without assuming that the modeled agents are

competent or goal-seeking. Our model also facilitates simulating

agents with sufficient detail, while remaining useful in unseen,

novel situations.

The learning algorithm of the proposed model ensures that all

observed behaviors are explained after each update, as clusters are

either created or merged but never destroyed. In the limit where

𝜃𝑚 is set to 0 and no clusters are merged, every propositional

state is assigned its own cluster and the action distributions are

updated accordingly. In general, the update algorithm ensures that

all clusters in the model maintain at least 𝜃𝑚 distance from each

other, capturing different dispositional states of the agent. Changes

in established behavior are also incorporated without overwriting

past experiences by hypothesizing internal states that explain the

discrepancy. If two clusters converge to similar action distributions,

including ones with internal states, they are merged. As a result,

for a given setting of 𝜃𝑚 , the model maintains only a small set of

internal states needed to explain the observed behaviors.

The proposed agent model does, however, have some limitations.

For one, the merging threshold 𝜃𝑚 depends on both the modeled

agent and the level of abstraction desired, as agents with high-

entropy policies may require smaller values than agents with low

stochasticity. Also, the agent model naively models action distribu-

tions without taking the low-level MDP state into account. This may

lead to falsely considering a particular observation (in)sufficiently

explained by the model, leading to few overly general or many

overly specific dispositions. Furthermore, when modeling compe-

tent goal-seeking agents, it does not natively offer goal recognition,

even though it can be used to hypothesize goals (including agent-

internal states); however, it could be used in conjunction with goal

recognition when goal states are not given or observable. Finally,

the proposed model can also work in conjunction with existing

agent-modeling paradigms, (e.g., BC, IRL) which can be used to

model clusters’ action distributions with goal-conditioned policies.

This enables more accurate modeling in each cluster and relieves

the requirement of handcrafted operators to simulate behavior.
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