
Mixed-Initiative Bayesian Sub-Goal Optimization
in Hierarchical Reinforcement Learning

Haozhe Ma
National University of Singapore

Singapore
haozhe.ma@comp.nus.edu.sg

Thanh Vinh Vo
National University of Singapore

Singapore
votv@comp.nus.edu.sg

Tze-Yun Leong
National University of Singapore

Singapore
leongty@comp.nus.edu.sg

ABSTRACT
In hierarchical reinforcement learning, human expertise is often
involved in defining sub-goals that decompose the final objective
into relevant sub-tasks. However, existing approaches with human-
defined sub-goals often lack crucial information about their corre-
lations, limiting their applicability in environments with multiple
parallel tasks or mutually conflicting solutions. To address this is-
sue, we propose a mixed-initiative Bayesian sub-goal optimization
algorithm that combines human expertise with AI automated rea-
soning to identify reasonable sub-goals. Our algorithm employs a
probabilistic graphical model to capture the correlations among the
candidate sub-goals and refine the encoded knowledge to reduce the
introduced biases. We conduct experiments in high-dimensional en-
vironments with both discrete and continuous controls. In compar-
ison with relevant baselines, our algorithm can achieve better per-
formance in effectively solving problems with multiple selectable
solutions. We have empirically demonstrated that our approach
is robust against varying levels of human knowledge and exper-
tise, consistently converging to optimal hierarchical policies even
amidst misleading or conflicting human guidance.

KEYWORDS
Hierarchical Reinforcement Learning, Human-AI Collaboration,
Sub-Goal Optimization, Markov Random Field

ACM Reference Format:
Haozhe Ma, Thanh Vinh Vo, and Tze-Yun Leong. 2024. Mixed-Initiative
Bayesian Sub-Goal Optimization in Hierarchical Reinforcement Learning.
In Proc. of the 23rd International Conference on Autonomous Agents and
Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10, 2024,
IFAAMAS, 9 pages.

1 INTRODUCTION
Hierarchical reinforcement learning (HRL) solves problems at dif-
ferent levels of abstraction, leading to promising breakthroughs in
many complex domains. The hierarchical approach is especially
effective in long-duration tasks with delayed and sparse rewards,
where naive exploration strategies such as 𝜖-greedy, action-space
noise injection [8], Boltzmann exploration [4], etc., do not work
well. HRL can also alleviate the heavy computational burden in
high-dimensional problems. Moreover, some general policies can

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

(a) Robot to stack cubes. (b) Maze navigation.

Figure 1: Examples to show the correlations among sub-goals.

be easily transferred to similar tasks, enabling the reuse of learn-
ing results. Goal-conditioned frameworks, which are based on the
common divide-and-conquer strategy that humans usually use to
complete real-life tasks, are one major research branch in HRL. By
setting associate sub-goals and pursuing them sequentially, the
overall task can be accomplished with high-level indicated targets.

Many state-of-the-art efforts have focused on algorithms em-
ploying a two-level hierarchical model [19, 22, 34, 35, 46, 48]: the
higher level optimizes the policy to select a sub-goal representing
a short-term task; the lower level learns the sub-policies to achieve
the targeted sub-goals. The sub-goal space plays a vital role in
controlling the sparsity of task decomposition and learning per-
formance. However, defining an appropriate set of sub-goals often
requires extensive expert knowledge, which makes it hard to scale
to complex domains, particularly where human expertise tends to
be limited. Moreover, the sub-goal space introduces biases, and in
severe cases, may lead to sub-optimal policies. In such scenarios,
intelligent agents should assist in mitigating biases and excluding
knowledge that may divert the agent into "risky" or "dangerous"
regions of the solution space. Furthermore, many existing methods
define fixed sub-goal space with unalterable and independent sub-
goals, lacking crucial information about the correlations among
these sub-goals [27, 28]. However, in many tasks, these correlations
are highly significant. For example, consider a scenario where a
robot aims to stack a yellow cube on top of a red cube (see Fig-
ure 1a) [11]. The successful movement of the red cube to the desired
location is highly dependent on the robot’s ability to grasp the cor-
responding cube accurately. Additionally, the successful stacking of
the yellow cube is highly dependent on the prior placement of the
red cube. In another example, an agent navigates a maze, collecting
the key matching the door color to progress (see Figure 1b) [6].

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1328

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

In this scenario, "collecting the yellow key" (𝑔1) and "opening the
yellow door" (𝑔2) are positively correlated (similarly for 𝑔3 and 𝑔4).
However, the agent only needs to collect one of the two keys to
open one of the two doors, so there exist mutual exclusive relations
between "collecting the yellow key" (𝑔1) and "collecting the blue
key" (𝑔3) (similarly for 𝑔2 and 𝑔4), indicating the potential negative
correlations between the sub-goals. Therefore, encoding both posi-
tive and negative correlations among sub-goals will substantially
improve decision making efficiency in these contexts.

Mixed-initiative interaction refers to a flexible strategy where
humans and AI collaborate and contribute what it is best suited at
the most appropriate time [1]. Building on a mixed-initiative ap-
proach, we propose aHUman knowledge based Bayesian Sub-Goal
Optimization (HUBS-GO) algorithm that can be embedded into
HRL frameworks. In contrast to the approaches that rely entirely on
a fixed sub-goal space [13, 19, 22, 34, 48], our HUBS-GO maintains
a dynamic sub-goal set along the agent training to timely provide
filtered sub-goals which leads faster to optimal policies. Unlike the
algorithms that pursue fully automatic search [16, 25, 26, 31, 42], our
algorithm takes advantage of general and domain-specific knowl-
edge, which is encoded in an initial model. Given a set of candidate
sub-goals and their potential correlations based on general human
knowledge, HUBS-GO learns a critic function to evaluate their utili-
ties of being selected. Our algorithm is flexible to be embedded into
the goal-conditioned HRL frameworks without modifying the orig-
inal architecture. The critic function can be updated synchronously
while training the agent. The timely learned function examines
each candidate sub-goal to discriminate its relevance and signifi-
cance in the exploration process and progressively guide the agent
through the dynamically filtered sub-goal space. With HUBS-GO
embedded, the agent can determine a more reasonable sub-goal
space and converge to the optimal hierarchical policies based on
the selected sub-goals.

We conduct experiments in challenging high-dimensional en-
vironments with both discrete and continuous controls to assess
our approach from three perspectives. First, we show that HUBS-
GO can successfully identify the reasonable (or human-intuitively-
understandable) sub-goals with detailed distributions. Second, we
integrate HUBS-GO into HRL frameworks and compare its per-
formance against popular hierarchical RL methods with both pre-
defined sub-goal space [22, 34] and automatically detected sub-goal
space [25], as well as flat RL algorithms [10, 38, 45]. We empirically
show that our algorithm works well by effectively leveraging and
refining human knowledge and outperforms the baselines. Lastly,
we demonstrate that HUBS-GO is robust with respect to different
levels of human knowledge in the sub-goal specification, even in
the face of potentially misleading or confusing guidance.

2 BACKGROUND AND RELATEDWORK
A reinforcement learning (RL) agent plans and acts in an unknown
environment modeled as a Markov decision process (MDP). An
MDP is defined as a tuple ⟨𝑆,𝐴,𝑇 , 𝑅,𝛾⟩ where 𝑆 is the state space,𝐴
is the action space, 𝑇 is the transition function, and 𝑅 is the reward
function. A discounted factor 𝛾 is introduced for problems with
infinite horizons to weigh the importance of future rewards. An RL
agent aims to derive an optimal policy 𝜋 : 𝑆 → 𝐴 that maximizes

the expected discounted rewards over the decision horizon [43].
Model-free RL algorithms can be roughly divided into two cate-
gories: value-based and policy-based. Value-based methods learn
the Q-functions 𝑄 (𝑠, 𝑎) for each state-action pair. The optimal pol-
icy is derived by selecting the action to receive maximal Q-values.
Policy-based methods represent the policy explicitly as 𝜋𝜃 (𝑎 |𝑠)
and optimize the parameters 𝜃 by gradient ascent over a perfor-
mance objective. There is also a range of hybrid algorithms that
combine the two approaches, called actor-critic methods. For high-
dimensional domains, deep reinforcement learning (DRL) methods
adopt deep neural networks as function approximators for the large
state or action spaces [10, 14, 15, 24, 32, 33, 38, 45].

The mathematical model underlying all the hierarchical rein-
forcement learning methods is the semi-Markov decision process
(SMDP). An SMDP extends an MDP, such that each macro-action
may take multiple time steps to complete, i.e., the transition func-
tion 𝑃 (𝑠′, 𝜏 |𝑠, 𝑎) is the probability of transiting to a new state 𝑠′
in 𝜏 steps, after executing action 𝑎 in state 𝑠 [44]. An HRL model
contains multiple levels of temporal abstraction or granularity on
problem descriptions [35]. In the single-agent, single-task domain,
the policies at various levels can be learned synchronously in an
end-to-end manner [2, 22, 23, 34] or asynchronously in a level-
by-level manner [7, 9, 29]. Unlike the options framework, which
defines multiple levels of macro-actions [18, 20, 30, 37], our work
is rooted in the goal-conditioned approach, which adopts a divide-
and-conquer strategy. In this strategy, the higher level specifies
sub-goals to decompose the long-horizon trajectory into sub-tasks,
while the lower level learns the corresponding sub-policies to ac-
complish these sub-goals. Recent research has placed significant
emphasis on the definition, discovery, learning, and optimization
of sub-goals, as they directly control the task decomposition and
significantly influence the learning performance.

Many existing studies operate under the assumption that sub-
goals are handcrafted manually based on human prior knowledge.
For instance, the h-DQN algorithm employs a Q-learning-based
approach to learn high-level sub-goals [22]. The FuNs algorithm ex-
tends the feudal RL to hierarchical scenarios [46]. Additionally, the
HRAC optimizes this framework by constraining the next sub-goal
within an adjacency range [48], while HAC constructs hierarchies
with more than two levels by independently training each level
to overcome the instability issues [23]. However, these algorithms
typically require extensive domain expertise and involve labor-
intensive processes for defining the sub-goal space. To address
these challenges, alternative approaches have focused on automati-
cally discovering sub-goals. There are two major classes: to learn
hierarchical policy in UNIfication with sub-goals discovery (UNI) or
Independent of Sub-goals Discovery (ISD) [35].

Some UNI approaches learn the sub-goals derived from different
kinds of option-critics [2, 18, 20, 37]. However, learning is very sen-
sitive to the defined critics which may lead to unstable performance.
Some algorithms discover the low-dimensional sub-goal space, like
the HADS learns the sub-goals based on some visible feature ex-
traction [25], or the algorithm learns an abstract mapping function
to reduce the high-dimensional observations to low-dimensional
information. The ISD approaches learn task-agnostic sub-goals
independently from hierarchical learning. Sub-goal discovery is

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1329

usually performed in a pre-training process and the detected sub-
goals are transferable to HRL agents across various similar tasks.
Some straightforward methods aim to find the bottlenecks by fre-
quency [29, 39] or graphs of transition histories [40]. Many novel
approaches attempt to scale up in high-dimensional domains. Both
the SDRL [26] and Oracle-SAGE [5] discover sub-goals with sym-
bolic representation, and the latter additionally incorporates graph
neural networks to represent the observations. The HIRO algo-
rithm introduces the goal-conditioned framework to continuous
controls [34]. The HASSLE algorithm searches for the centroids
of the state space clusters [3]. The HSP algorithm introduces the
asymmetric self-play to learn the sub-goals using a continuous la-
tent embedding [41]. The QRM algorithm specifies high-level tasks
from learning a reward machine to decompose the trajectory [16].

We aim to examine the power and advantages of both humans’
prior knowledge and machines’ automatic learning ability to de-
velop a sub-goal optimization method. Our proposed algorithm is
a novel idea in the UNI branch, but also shares the characteristics
of ISD methods, e.g., the sub-goals can be pre-learned before we
optimize the agent policy and can be easily transferred to similar
tasks. The HAI-GO algorithm proposed a human-AI collaborative
framework to automatically optimize the pre-defined sub-goals [27],
however it only considered the sub-goals as independent of each
other. Our approach introduces crucial information regarding the
correlations among sub-goals and relaxes the assumption that hu-
man knowledge must be precisely defined. Our HUBS-GO enables
the refinement of prior knowledge, making it more "forgiving" by
allowing human knowledge to be more arbitrary and general during
the model encoding process, without compromising performance.

3 METHODOLOGY
The main idea of our HUBS-GO is to combine the advantages of
human expertise and the automatic learning ability of AI to opti-
mize sub-goals. Human experts specify some candidate sub-goals
and their correlations based on general knowledge, AI agent then
extracts an optimal sub-goal space. In HUBS-GO, a critic function is
employed to define a probabilistic graphical model over the candi-
date sub-goals, capturing their potential weights. The critic function
will gradually provide the agent with a dynamically filtered sub-
goal set to support more concise and accurate knowledge updates,
until convergence to the optimal policy. HUBS-GO can optimize the
prior knowledge, eliminate the introduced bias, and finally obtain a
reasonable sub-goal set based on the learned distribution so that the
winning sub-goals can be used for future learning or transferring
to similar tasks.

3.1 Problem Formulation
We consider a fully observable environment E. Let 𝑆 be the state
space and 𝐴 be the action space. Suppose 𝐺 = {𝑔1, 𝑔2, . . . , 𝑔𝑁 }
contains human-defined sub-goals and 𝐸 = {(𝑔𝑢 , 𝑔𝑣)𝑖 } contains the
connected edges between two sub-goals to denote their correlations.
We define a Markov random field (MRF) to model the relations
among the candidate sub-goals. We define the random variable
w = [𝑤1,𝑤2, . . . ,𝑤𝑁]𝑇 as indicators to represent whether to select
the corresponding sub-goals or not. The critic function, denoted as
𝑞(w; 𝜆), represents the distribution of w.

Environment

Agent

Time

Figure 2: The two-level goal-conditioned hierarchical rein-
forcement learning framework prototype.

We initialize a two-level HRL agent: the high level H optimizes
an approximator 𝑄 (𝑠, 𝑔;𝜃) to estimate the Q-values for each state-
sub-goal pair {𝑠, 𝑔}, where 𝜃 are the parameters; the low level L op-
timizes a policy to select elementary actions given the state and the
targeted sub-goal 𝑎 = 𝜋 (𝑠 |𝑔). Our algorithm synchronously learns
both the hierarchical policies and the critic function. HUBS-GO fi-
nally derives an optimal sub-goal space𝐺∗ and optimal hierarchical
policies after training.

3.2 Preliminaries: Goal-Conditioned HRL
Framework

HUBS-GO can be embedded into the general goal-conditioned HRL
frameworks. Figure 2 demonstrates a prototype with a common
two-level structure. At the time step 𝑡 , given the state 𝑠𝑡 of the
environment, the high level H selects a sub-goal 𝑔𝑖 from sub-goal
space 𝐺 based on its policy 𝜋H . The sub-goal represents a short-
term task that the agent is expected to complete in the next few
steps. Given the sub-goal 𝑔𝑖 as well as the state 𝑠𝑡 , the low level
L selects an elementary action to interact with the environment
based on its policy 𝜋L . The environment will transit to a new state
𝑠𝑡+1 while returning a reward signal 𝑟𝑡+1. Usually, the two levels
operate at different scales of temporal abstraction. In this case, after
each step of the high level, the low level will act for 𝑁 steps, where
𝑁 > 1, represents the expected number of steps that the low level
can complete a specific sub-goal. The high-level policy revises a
new sub-goal 𝑔 𝑗 after 𝑁 steps or when the low level successfully
achieves the current target.

The high-level interaction can be modeled by an MDP denoted
as ⟨𝑆,𝐺,𝑇H, 𝑅H, 𝛾H⟩. The main goal is to learn an optimal high-
level policy 𝜋ℎ

∗
: 𝑆 → 𝐺 to maximize the discounted high-level

cumulative rewards𝐺H
𝑡 =

∑∞
𝜏=𝑡 𝛾

ℎ𝜏−𝑡 𝑟H𝑡 . The low-level interaction
can be modeled by an MDP denoted as ⟨𝑆,𝐴,𝑇 L , 𝑅L , 𝛾L⟩. The low-
level policy is conditioned on the targeted sub-goal that is instructed
by the high level. Given the state 𝑠𝑡 as well as the sub-goal 𝑔𝑖 , the
low-level policy aims to learn a policy to select the elementary
action 𝑎𝑡 = 𝜋L (𝑠𝑡 |𝑔𝑖). The policies can be derived by any applicable
flat RL algorithms, allowing for flexibility in implementation across
discrete and continuous control domains.

The hierarchical framework with the high level learning sub-
goal policy and the low level learning action policy provides the
foundation for many HRL algorithms. We will show how HUBS-GO
can be embedded into this general framework in Section 3.3.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1330

3.3 Bayesian Sub-Goal Optimization
A well-trained sub-goal policy can decompose the final objective
into some sub-tasks and lead the low level to achieve the target
more efficiently. However, it is hard to introduce the correlation
information by only defining sub-goals. More importantly, human
knowledge will inevitably introduce bias, since the pre-defined sub-
goals are not necessarily optimal. To address these challenges, our
proposed algorithm allows human experts to define a set of candi-
dates and model their correlations with very general knowledge
and leaves the AI to automatically optimize the sub-goal space and
learn an optimal policy. The HUBS-GO learns an additional critic
function to model the distribution over the candidates to evaluate
their utilities, based on which, the high level will gradually select
one sub-goal from a dynamic filtered sub-goal set.

Given the human-specified sub-goal space 𝐺 = {𝑔1, 𝑔2, . . . , 𝑔𝑁 },
based on their potential correlations from a human perspective,
experts indicate a set of correlation connections as 𝐸 = {(𝑔𝑢 , 𝑔𝑣)𝑖 }.
The critic function can be defined as 𝑞(w; 𝜆) over the indicator
variable w = [𝑤1,𝑤2, . . . ,𝑤𝑁]𝑇 , to represent the MRF model. Each
entry 𝑤𝑖 ∈ {0, 1} corresponds to each candidate sub-goal 𝑔𝑖 and
indicates whether to select it by𝑤𝑖 = 1 or not to select it by𝑤𝑖 = 0.
The connecting edge (𝑔𝑢 , 𝑔𝑣)𝑖 indicates either a potential positive or
negative correlation between the sub-goal 𝑔𝑢 and 𝑔𝑣 . For example,
"cleaning the kitchen" may positively correlate with "making din-
ner", while "making dinner" may negatively correlate with "moving
to the bathroom". In cases where there is no relevant prior knowl-
edge available, it is often advantageous to consider a fully connected
graphical model that takes into account all possible connections.
The critic function can be modeled by defining a pairwise MRF
distribution [21]:

𝑞(w; 𝜆) = 1
𝑍 (𝜆)

∏
(𝑔𝑢 ,𝑔𝑣) ∈𝐸

𝑒𝜙𝑖 (𝑤𝑢 ,𝑤𝑣 ;𝜆𝑖)
∏
𝑔𝑗 ∈𝐺

𝑒𝜓 𝑗 (𝑤𝑗 ;𝜆 𝑗) , (1)

where 𝜆 is the parameters to learn, 𝑍 (𝜆) is the normalization factor,
𝜙𝑖 and 𝜓 𝑗 are the potential functions of the connected sub-goals
pair and the independent indicator respectively.

To integrate the critic function back into the agent learning, we
draw a sample w𝑡 from the learned distribution for each high-level
iteration and generate a subset 𝐺𝑡 that only contains the sub-goals
whose corresponding entry𝑤𝑡 𝑖 = 1. The high level will only select
one sub-goal from the filtered𝐺𝑡 . To implement a Q-learning-based
approach, the high-level module learns an approximator𝑄H (𝑠, 𝑔;𝜃)
to estimate the Q-values for each state-sub-goal pair {𝑠, 𝑔}. Given
the dynamic sub-goal set 𝐺𝑡 , we define the temporal difference
target (TD-target) that is conditioned on 𝐺𝑡 as:

𝑦
�̂�𝑡

= 𝑟H𝑡 + 𝛾H max
𝑔′∈�̂�𝑡

𝑄H (𝑠𝑡+𝑁 , 𝑔′;𝜃).

The parameters 𝜃 will be updated by minimizing the temporal
difference error (TD-error), i.e., the distance between 𝑦

�̂�𝑡
and the

predicted Q-value 𝑄H (𝑠𝑡 , 𝑔𝑡 ;𝜃), so the loss function conditioned
on the sub-goal space 𝐺𝑡 can be written as:

𝐿
�̂�𝑡

=
1
2
(
𝑦
�̂�𝑡

−𝑄H (𝑠, 𝑔;𝜃)
)2
. (2)

To make the critic function optimally evaluate the utilities of each
candidate, the main objective is to update the 𝑞(w; 𝜆) to be the best

approximation to the real posterior 𝑝 (w|𝑦
�̂�𝑡

). The posterior gives
the distribution of indicator w conditioned on the corresponding
TD-target 𝑦

�̂�𝑡
. To proceed, a black-box variational inference (BBVI)

approach [36, 47] is adopted to optimize the parameters 𝜆, that is,
to minimize the KL-divergence of 𝑞(w; 𝜆) and 𝑝 (w|𝑦

�̂�𝑡
):

𝐷𝐾𝐿
(
𝑞(w; 𝜆) | |𝑝 (w|𝑦

�̂�𝑡
)
)
= 𝐷𝐾𝐿

(
𝑞(w; 𝜆) | |𝑝 (w)

)
− Ew∼𝑞 (w;𝜆)

[
log 𝑝 (𝑦

�̂�𝑡
|w)

]
+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡, (3)

where 𝑝 (w) is a prior distribution that can be initialized as a cate-
gorical distribution with uniform probabilities for all entries. Fur-
thermore, based on the least squares method, we can regard 𝑦

�̂�𝑡

as observed value and 𝑄 (𝑠, 𝑔;𝜃) as predicted value. The squared
error in Equation 2 implies a Gaussian error around the target value,
which can be rephrased as the negative-log-likelihood of the model:

𝑦
�̂�𝑡

= 𝑄H (𝑠, 𝑔;𝜃) + 𝜖
�̂�𝑡
, 𝜖

�̂�𝑡
∼ N(0, 𝜎2),

which will result in the log-likelihood as:

log 𝑝 (𝑦
�̂�𝑡

|w) = −1
2
(
𝑦
�̂�𝑡

−𝑄H (𝑠, 𝑔;𝜃)
)2 + 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡

= −𝐿
�̂�𝑡

+ 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 . (4)

Thus, substituting Equation 4 into Equation 3 yields the final loss
function (detailed derivation is shown in Appendix):

𝐿(𝜆) = Ew∼𝑞 (w;𝜆) [𝐿�̂�𝑡
] + 𝐷𝐾𝐿

(
𝑞(w; 𝜆) | |𝑝 (w)

)
.

The loss function requires the computation of expectation and KL-
divergence over the MRF distribution, which is computationally
challenging. To overcome this challenge, we resort to estimating
the two terms by drawing a batch of independent samples from the
distribution and computing their empirical values. For sampling
from the pairwise MRF distribution, a Metropolis-Hasting-based
Markov Chain Monte Carlo (MCMC) algorithm is adopted [12]. In
each iteration, following a burn-in period of 32 steps, we draw 64
samples using the current learned parameters 𝜆𝑡 . The samples will
be used to estimate the gradient of the loss function in Equation 5.
The parameters will be updated to 𝜆𝑡+1 by a gradient descent ap-
proach with a fine-tuned learning rate. We adopt gradient descent
to minimize the loss function. For each update, we draw 𝑆 samples
from 𝑞(w; 𝜆) (the detailed method is shown in Appendix) based on
the current parameters and estimate the gradient as:

∇𝜆𝐿(𝜆)≈
1
𝑆

𝑆∑︁
𝑠=1

∇𝜆 log𝑞(w𝑠 ; 𝜆𝑡)
(
𝐿
�̂�𝑡

+log𝑞(w𝑠 ; 𝜆𝑡)−log𝑝 (w𝑠)
)
. (5)

Lastly, we present one special case of our MRF model, that is,
all sub-goals are independent of each other, in other words, the
correlated connections set 𝐸 = ∅. The critic function can be sim-
plified as a set of Bernoulli distributions: q = {𝑞𝑖 (𝑤𝑖 ; 𝜆𝑖)}, where
𝑖 ∈ {1, 2, . . . , 𝑁 }. In this scenario, the loss function for each 𝜆𝑖 can
be separately computed and summed up as:

𝐿(𝜆) =
𝑁∑︁
𝑖=1

E𝑤𝑖∼𝑞𝑖 (𝑤𝑖 ;𝜆𝑖) [𝐿�̂�𝑡
] + 𝐷𝐾𝐿

(
𝑞𝑖 (𝑤𝑖 ; 𝜆𝑖) | |𝑝𝑖 (𝑤𝑖)

)
.

To draw samples from the Bernoulli distributions, the Gumbel-
Softmax is implemented to reparameterize, which effectively re-
duces the computation [17]. A detailed derivation is shown in the
Appendix.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1331

Figure 3: An overview of the HRL framework with the inte-
gration of our proposed HUBS-GO algorithm.

Algorithm 1 HRL frameworks with HUBS-GO
Require: Environment E
Require: Agent with high-level H and low-level L
Require: Human defined candidate sub-goal space𝐺 = {𝑔𝑖 }
Require: Human defined correlation connections 𝐸 = { (𝑔𝑢 , 𝑔𝑣)𝑖 }
Require: MRF distribution critic function 𝑞 (w;𝜆)
1: for each high-level iteration do
2: 𝑔𝑡 = H(𝑠𝑡) with 𝜖-greedy policy filtered �̂�𝑡

3: for each low-level iteration do
4: 𝑎𝜏 = L(𝑠𝜏 |𝑔𝑡) based on some exploration strategy
5: Act 𝑎𝜏 in E, receive 𝑠𝜏+1, 𝑟𝜏+1
6: Update L with some RL algorithm
7: Break if agent achieves 𝑔𝑡
8: end for
9: Draw a batch of samples from 𝑞 (w;𝜆)
10: Compute the gradient of the loss as Equation 5
11: Update parameters 𝜆 by gradient descent
12: end for

3.4 Dynamically Filtered Sub-Goals
Our HUBS-GO algorithm not only learns the critic function along
with the agent learning but also provides a dynamic sub-goal space
to help the agent gradually converge to optimal policies. In this
section, we present howHUBS-GO is embedded into the HRL frame-
work by an 𝜖-greedy strategy to trade-off between exploration and
exploitation. An overview of the interaction of the two modules is
shown in Figure 3.

On the one hand, we update the critic function based on the
high-level module by drawing samples from 𝑞(w; 𝜆), computing
the conditional loss functions 𝐿

�̂�𝑡
in Equation 2 and estimating the

gradient in Equation 5, as stated in Section 3.3. On the other hand,
HUBS-GO synchronously provides the filtered sub-goal set 𝐺𝑡 to
the high-level module. To generate 𝐺𝑡 , we re-utilize the samples
that are already drawn for critic function optimization previously,
to estimate the probabilities for each configuration of the indica-
tor variable w𝑡 . Consequently, the 𝐺𝑡 contains only the sub-goals
indicated by the greedily selected w𝑡 with the highest empirical
probability. With an increasing probability of 𝜖 , the high level will
only select sub-goals from𝐺𝑡 ; while with a probability of 1 − 𝜖 , the
high level returns the sub-goal normally from the initial candidate
space 𝐺0. Whether from 𝐺𝑡 or 𝐺0 for the next decision step, the

high-level module makes its selection based on their respective
Q-values: 𝑔𝑡 = argmax

𝑔′∈�̂�𝑡 |𝐺0
𝑄H (𝑠𝑡 , 𝑔′;𝜃𝑡). The gradually in-

creasing 𝜖 controls the frequency for HUBS-GO to interact with the
HRL framework. The main process of the goal-conditioned HRL
algorithm embedded with the HUBS-GO is shown in Algorithm 1.

Upon completing the learning process, we can analyze the final
MRF distribution and derive an optimal sub-goal space 𝐺∗ based
on the critic function. In our implementation, we draw 10,000 in-
dependent and identically distributed (i.i.d.) samples and calculate
the empirical probabilities for each configuration of the indicator
variable. The configuration yielding the highest probability will
determine the final𝐺∗. For instance, when considering three candi-
dates, if the probability of the configuration w = {1, 0, 1} surpasses
all other configurations, it suggests selecting the first and third
candidates as the final sub-goals. It is worth noting that there may
exist multiple configurations that share a similar level of high prob-
abilities, indicating different sub-goal spaces that can all lead to
optimal hierarchical policies. Additionally, the learned distribution
provides valuable insights into the black-box environment, enhanc-
ing our understanding of its underlying dynamics. The complete
model enables the achievement of an optimal hierarchical policy
by fully exploiting the derived sub-goal space 𝐺∗. Moreover, both
the derived sub-goals and the policies can be easily transferred to
similar tasks, facilitating the adaptation and utilization of learned
knowledge in new scenarios.

4 EXPERIMENTS
We conduct experiments in two different types of environments:
grid-maze environments [6] with discrete control and arm robot
environments [11] with continuous control. The environments
provide sparse rewards, where a reward value of 1 is only given
upon successful completion of the overall target, and a reward value
of 0 is assigned to all other states. In the mini-grid environments,
we define two tasks: (a) the FourRoom task, the agent navigates to
the target location in a maze with interconnected rooms; (b) the
KeyDoor task, the agent collects one key from two keys to unlock
the door in the same color to reach the target location. In the arm
robot environments, we define three tasks: (c) the StackCubes task,
the robot stacks cubes at a designated location; (d) the PushAnyOne
task, the robot selects one cube and pushes it to the target location;
(e) the CollectThreeBalls task, the robot collects three out of six balls
on the table, with a wall separating the balls into two groups. One
main challenge is that there are multiple mutually parallel solution
routes for the agent to complete the final task, which requires the
agent to select and focus on one possible solution.

The evaluation focuses on three main aspects: in Section 4.1, we
examine the ability of HUBS-GO to identify reasonable sub-goal
spaces after optimization. In Section 4.2, we compare HUBS-GO em-
bedded HRL algorithm with state-of-the-art baselines and analyze
the convergence speed and learning performance. In Section 4.3,
we investigate the robustness of HUBS-GO in refining different de-
grees of encoded human knowledge, including different correlation
connections and deliberately introduced misleading sub-goals.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1332

Figure 4: The initial settings of the sub-goals and their connected edges.

Figure 5: The identified optimal sub-goal sets by HUBS-GO.

4.1 Sub-Goal Optimization
In this section, we assess the optimized sub-goal distributions by
HUBS-GO. Prior to the learning process, we define a set of ini-
tial sub-goals from a human perspective. Additionally, we give the
potential correlations among these sub-goals based on our basic
understanding of the environments. The initial settings are illus-
trated in Figure 4, where the potential positive correlations are
represented by blue arcs, and the potential negative correlations
are represented by orange arcs.

The suggested sub-goal spaces by HUBS-GO after learning the
critic function are illustrated in Figure 5. Notably, the results present
an important capability, that is, it may finally indicate multiple sub-
goal sets with the similar highest probabilities, each one represent-
ing a selectable breakdown of the trajectory (shown with blue and
green circles, respectively). In these experimental tasks, a primary
challenge is that there exist multiple possible routes for the agent
to achieve the final goal. Thus, selecting all keys, doors, or cubes
indiscriminately is not an optimal solution, as it may result in the
agent repeatedly switching between these options or unnecessarily
increasing the workload. For instance, in the KeyDoor task, sepa-
rately indicating the yellow and blue pairs of key-doors enables the
agent to focus on a single solution, which aligns more closely with
human intuition and reasoning.

4.2 HUBS-GO Embedded Hierarchical
Reinforcement Learning

HUBS-GOdynamically filters the initial sub-goal space and provides
a more accurate set of sub-goals for the agent to select from, which
is a key factor in improving the performance of the HRL algorithm.
In this section, we compare our HUBS-GOwith four state-of-the-art
HRL baselines: h-DQN [22], HIRO [34], HADS [25] and HIGL [19],
as well as popular flat RL baselines: DDQN [45], PPO [38] and

TD3 [10]. The h-DQN and DDQN are only implemented in the grid-
maze environments with discrete action spaces, while the TD3 is
only implemented in the arm robot environments with continuous
action spaces. For each experiment, we run multiple times with
different random seeds to show the average performance with
standard error.

In terms of sub-goal initializations, the h-DQN algorithm shares
the same initial goal space as HUBS-GO. The HADS, HIRO and
HIGL algorithms autonomously discover sub-goals. In the prac-
tical implementations, we utilize the interfaces provided by the
respective environments to define the sub-goals. In the "MiniGrid"
environment, sub-goals are identified as targeted coordinates. In
the arm robot environment, sub-goals are defined as some abstract
descriptions, such as "grasping the cube", the interface interprets
the verbal expressions to a set of targeted regions for the robot’s
arms end to reach.

Figure 6 illustrates the episodic returns throughout training, and
Table 1 presents average returns and standard errors. As the results
suggest, HUBS-GO shows a slight initial delay at the beginning,
followed by rapid convergence to higher and more stable return
values. The short lag can be attributed to the process of learning
the critic function, while additional exploration is required in the
early stages to establish a more accurate distribution of sub-goals.
One of the main advantages of HUBS-GO is its ability to capture
the correlations among the sub-goals. The critic function learns the
distribution of candidate sub-goals, the configurations with high
probabilities will separately indicate different possible solutions to
complete the task, which further reduces the space of sub-goals
to select from. This allows the agent to focus on a single route
and avoid hesitation. In the FourRoom task, HUBS-GO efficiently
discriminates between two separate routes to the target location by
learning the corresponding configuration probabilities, while the
baselines struggle by treating all doors equally, leading to repeated

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1333

0 5 10 15 20

Steps (in ten thousands)
0.0

0.2

0.4

0.6

0.8

1.0

Ep
is

od
e

re
tu

rn
s

FourRoom

0 5 10 15 20 25 30

Steps (in ten thousands)
0.0

0.2

0.4

0.6

0.8

1.0

KeyDoor

0.0 0.2 0.4 0.6 0.8 1.0

Steps (in millions)
0.0

0.2

0.4

0.6

0.8

1.0

StackCubes

0.0 0.2 0.4 0.6 0.8 1.0

Steps (in millions)
0.0

0.2

0.4

0.6

0.8

1.0

PushAnyOne

0.0 0.2 0.4 0.6 0.8 1.0

Steps (in millions)
0.0

0.2

0.4

0.6

0.8

1.0

CollectThreeBalls

DDQN PPO TD3 h-DQN HADS HRIO HIGL HUBS-GO

Figure 6: Performance comparison of HUBS-GO with baselines.

Table 1: Average episodic returns of the agent training

Algorithm Environments
FourRoom KeyDoor StackCubes PushAnyOne CollectThreeBalls

HUBS-GO (specific correlations) 0.8904 ± 0.0044 0.8763 ± 0.0053 0.8891 ± 0.0152 0.9173 ± 0.0123 0.9627 ± 0.0099
HUBS-GO (fully connected) 0.8416 ± 0.0879 0.8580 ± 0.0999 0.8563 ± 0.1026 0.9095 ± 0.0125 0.9370 ± 0.0190
HUBS-GO (fully independent) 0.7114 ± 0.1196 0.7425 ± 0.0723 0.8209 ± 0.1072 0.8744 ± 0.1154 0.8467 ± 0.1380

DDQN 0.1899 ± 0.0077 0.2107 ± 0.0109 - - -
PPO 0.6664 ± 0.0083 0.7567 ± 0.0084 0.3934 ± 0.0068 0.3337 ± 0.0114 0.3122 ± 0.0116
TD3 - - 0.4890 ± 0.0045 0.6903 ± 0.0144 0.6407 ± 0.0159
hDQN 0.4287 ± 0.0166 0.4584 ± 0.0126 - - -
HADS 0.5610 ± 0.0095 0.7603 ± 0.0093 0.7087 ± 0.0085 0.4306 ± 0.0239 0.2694 ± 0.0156
HIRO 0.8250 ± 0.0054 0.8332 ± 0.0064 0.7820 ± 0.0141 0.8730 ± 0.0094 0.8514 ± 0.0193
HIGL 0.8447 ± 0.0172 0.5439 ± 0.0210 0.8105 ± 0.0121 0.8553 ± 0.0209 0.6274 ± 0.0041

0 5 10 15 20

Steps (in ten thousands)
0.0

0.2

0.4

0.6

0.8

1.0

Ep
is

od
e

re
tu

rn
s

FourRoom

0 5 10 15 20 25 30

Steps (in ten thousands)
0.0

0.2

0.4

0.6

0.8

1.0

KeyDoor

0.0 0.2 0.4 0.6 0.8 1.0

Steps (in millions)
0.0

0.2

0.4

0.6

0.8

1.0

StackCubes

0.0 0.2 0.4 0.6 0.8 1.0

Steps (in millions)
0.0

0.2

0.4

0.6

0.8

1.0

PushAnyOne

0.0 0.2 0.4 0.6 0.8 1.0

Steps (in millions)
0.0

0.2

0.4

0.6

0.8

1.0

CollectThreeBalls

specific fully connected fully independent

Figure 7: Comparison of HUBS-GO with different pre-identified correlations.

switching between routes. Similarly, in the KeyDoor task, HUBS-
GO focuses on picking up one key and opening one door to reach
the target, whereas the baselines attempt to pick up both keys and
open both doors, resulting in redundant steps. In the StackCubes
task, HUBS-GO quickly learns a practical order of sub-goals given
the possible dependency relations, while other algorithms take
longer to explore these implicit relations. In the PushAnyOne task,
HUBS-GO efficiently utilizes provided correlations to match cubes
with correct-colored destinations, whereas other algorithms often
incorrectly push cubes to different-colored destinations. Lastly, in
the CollectThreeBalls task, as the wall divides the balls into two
groups, HUBS-GO saves time by collecting from one group, while
the baselines treat all balls equally, which spend more time striding
over the wall. In summary, the critic function enables HUBS-GO

to efficiently solve problems especially when there exist multiple
parallel selectable solutions or mutually conflicting tasks.

4.3 Human Knowledge Refinement
Our proposed algorithm incorporates human expert knowledge,
but in contrast to most HRL algorithms, a significant advantage of
our model is that it does not rely exclusively on this expertise, but
instead optimizes the introduced knowledge to provide dynamically
filtered sub-goal spaces. In this section, we examine the robustness
of HUBS-GO in the face of varying degrees of human knowledge. In
addition to setting up the specific correlated edges that best match
human understanding, we compare with the fully connectedMRF
model to represent introducing general human knowledge, and a

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1334

fully independent candidate space (without any correlated edges)
to represent the lack of human knowledge.

FourRoom KeyDoor

potential negative relationpotential positive relation

Figure 8: Experimental configurations of introducing incor-
rect sub-goals into the grid-maze environments.

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5 20.0

Steps (in ten thousands)
0.0

0.2

0.4

0.6

0.8

1.0

Ep
is

od
e

re
tu

rn
s

FourRoom

0 5 10 15 20 25 30

Steps (in ten thousands)
0.0

0.2

0.4

0.6

0.8

1.0

KeyDoor

HUBS-GO (specific)
HUBS-GO (incorrect)

h-DQN (specific)
h-DQN (incorrect)

HIGL
HIRO

HADS

Figure 9: Performance comparison of HUBS-GO with base-
lines with incorrect sub-goals introduced.

Table 2: Average episodic returns of the agent training with
incorrect sub-goals introduced.

Algorithm Environments
FourRoom KeyDoor

HUBS-GO (specific sub-goals) 0.8904 ± 0.0044 0.8763 ± 0.0053
HUBS-GO (incorrect sub-goals) 0.7629 ± 0.0163 0.7274 ± 0.0123
h-DQN (specific sub-goals) 0.4287 ± 0.0166 0.4584 ± 0.0126
h-DQN (incorrect sub-goals) 0.2438 ± 0.0068 0.1430 ± 0.0072

HIGL 0.8447 ± 0.0172 0.5439 ± 0.0210
HADS 0.5610 ± 0.0095 0.7603 ± 0.0093
HIRO 0.8250 ± 0.0054 0.8332 ± 0.0064

Figure 7 illustrates the comparison of HUBS-GO with different
pre-identified correlations. Table 1 presents the quantitative results
and a comparison with the baselines. The results clearly demon-
strate that the settings with specific human knowledge achieve
the fastest convergence, while the settings with general and poor
knowledge perform slower convergence, especially in the fully in-
dependent scenario, the agent initially struggles due to the absence
of correlations, but eventually converges to the optimal policies.
More importantly, the fully connected configuration, despite not
involving any additional expertise beyond the sub-goal space, is
still able to outperform the baselines.

On the other hand, we also investigate the robustness of HUBS-
GO in scenarios where deliberately confusing sub-goals are pre-
sented, representing situations where humans may inadvertently
introduce incorrect knowledge. In the FourRoom and KeyDoor
tasks, we defined additional sub-goals in the corners of the room
that could mislead the agent to get far away from the correct solu-
tions, as shown in Figure 8. By comparing HUBS-GO with h-DQN
(using the same initial sub-goal space), HIRO, HADS and HIGL,
we evaluate the learning performance in Figure 9 and Table 2. The
results demonstrate that the incorrect sub-goals will temporarily
confuse the high-level model’s exploration during the initial stages,
but the agent will achieve fast convergence once overcame the
misleading sub-goals. Notably, introducing incorrect sub-goals will
significantly impact the learning efficiency of h-DQN.

The above results highlight how our algorithm can automati-
cally optimize the human-specified candidate space to refine the
introduced knowledge. The introduced correlation plays an indis-
pensable role, that allows the HRL algorithm with integration of
HUBS-GO to outperform other baselines. Additionally, the dynamic
sub-goal space, which timely reflects the filtered sub-goals, holds
great promise for applications in environments where there is in-
sufficient human knowledge.

5 CONCLUSION
We propose HUBS-GO, a mixed-initiative Bayesian sub-goal op-
timization algorithm. Incorporating the correlations among the
sub-goals reduces unnecessary exploration and enables the gen-
eration of dynamic sub-goal sets, leading to faster, more stable
convergence. Tested in high-dimensional, diverse control environ-
ments, HUBS-GO has displayed great prowess in deriving rational
sub-goal spaces and learning optimal policies. Its key strength lies
in its MRF-based distribution, capable of capturing sub-goal correla-
tions and addressing issues with multiple conflicting solutions and
parallel tasks. With the capability to refine the integrated human
knowledge, it broadens the scope for human-AI collaboration and
heightens robustness by enabling self-optimization of the sub-goal
space, an important trait more so in areas where specific prior
knowledge is scant. HUBS-GO helps in providing a more com-
prehensive understanding of black-box environments and can be
deployed into the goal-conditioned HRL frameworks without any
structural modifications, underlining its high expansibility.

Our initial work invites several avenues for future exploration.
First, as the HUBS-GO is built on the assumption that the sub-goals
and correlations are responsibly defined and cover at least a subset
that provides a positive decomposition of the final task, it still heav-
ily relies on human efforts. Second, as we model the correlations
among sub-goals with MRF models, it limits the sub-goal space
to discrete values. Extending the MRF models to continuous sub-
goal space is also a promising direction. Finally, we need to define
better performance measures that take into account human prefer-
ences and environmental uncertainties in meeting the objectives in
different contexts.

ACKNOWLEDGMENTS
This research is supported by an Academic Research Grant No.
MOE-T2EP20121-0015 from theMinistry of Education in Singapore.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1335

REFERENCES
[1] James E Allen, Curry I Guinn, and Eric Horvtz. 1999. Mixed-initiative interaction.

IEEE Intelligent Systems and their Applications 14, 5 (1999), 14–23.
[2] Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. The option-critic architec-

ture. In Proceedings of the AAAI Conference on Artificial Intelligence.
[3] Bram Bakker, Jürgen Schmidhuber, et al. 2004. Hierarchical reinforcement learn-

ing based on subgoal discovery and subpolicy specialization. In Proc. of the 8-th
Conf. on Intelligent Autonomous Systems. Citeseer, 438–445.

[4] Nicolò Cesa-Bianchi, Claudio Gentile, Gábor Lugosi, and Gergely Neu. 2017.
Boltzmann exploration done right. Advances in Neural Information Processing
Systems 30 (2017).

[5] Andrew Chester, Michael Dann, Fabio Zambetta, and John Thangarajah. 2023.
Oracle-SAGE: Planning Ahead in Graph-Based Deep Reinforcement Learning. In
Machine Learning and Knowledge Discovery in Databases: European Conference,
ECML PKDD 2022, Grenoble, France, September 19–23, 2022, Proceedings, Part IV.
Springer, 52–67.

[6] Maxime Chevalier-Boisvert, Lucas Willems, and Suman Pal. 2018. Minimal-
istic Gridworld Environment for Gymnasium. https://github.com/Farama-
Foundation/Minigrid

[7] Carlos Florensa, Yan Duan, and Pieter Abbeel. 2016. Stochastic Neural Networks
for Hierarchical Reinforcement Learning. In International Conference on Learning
Representations.

[8] Meire Fortunato, Mohammad Gheshlaghi Azar, Bilal Piot, Jacob Menick, Ian
Osband, Alex Graves, Vlad Mnih, Remi Munos, Demis Hassabis, Olivier Pietquin,
et al. 2018. Noisy networks for exploration. (2018).

[9] Roy Fox, Sanjay Krishnan, Ion Stoica, and Ken Goldberg. 2017. Multi-level
discovery of deep options. arXiv preprint arXiv:1703.08294 (2017).

[10] Scott Fujimoto, Herke Hoof, and David Meger. 2018. Addressing function ap-
proximation error in actor-critic methods. In International Conference on Machine
Learning. PMLR, 1587–1596.

[11] Quentin Gallouédec, Nicolas Cazin, Emmanuel Dellandréa, and Liming Chen.
2021. panda-gym: Open-Source Goal-Conditioned Environments for Robotic
Learning. 4th Robot Learning Workshop: Self-Supervised and Lifelong Learning at
NeurIPS (2021).

[12] Will Grathwohl, Kevin Swersky, Milad Hashemi, David Duvenaud, and Chris
Maddison. 2021. Oops i took a gradient: Scalable sampling for discrete distribu-
tions. In International Conference on Machine Learning. PMLR, 3831–3841.

[13] Nico Gürtler, Dieter Büchler, and GeorgMartius. 2021. Hierarchical reinforcement
learning with timed subgoals. Advances in Neural Information Processing Systems
34 (2021), 21732–21743.

[14] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft
actor-critic: Off-policy maximum entropy deep reinforcement learning with a
stochastic actor. In International Conference on Machine Learning. PMLR, 1861–
1870.

[15] Matteo Hessel, Joseph Modayil, Hado Van Hasselt, Tom Schaul, Georg Ostrovski,
Will Dabney, Dan Horgan, Bilal Piot, Mohammad Azar, and David Silver. 2018.
Rainbow: Combining improvements in deep reinforcement learning. In Thirty-
second AAAI Conference on Artificial Intelligence.

[16] Rodrigo Toro Icarte, Toryn Klassen, Richard Valenzano, and Sheila McIlraith. 2018.
Using reward machines for high-level task specification and decomposition in
reinforcement learning. In International Conference on Machine Learning. PMLR,
2107–2116.

[17] Eric Jang, Shixiang Gu, and Ben Poole. 2016. Categorical Reparameterization
with Gumbel-Softmax. In International Conference on Learning Representations.

[18] Khimya Khetarpal and Doina Precup. 2019. Learning options with interest
functions. In Proceedings of the AAAI Conference on Artificial Intelligence. 9955–
9956.

[19] Junsu Kim, Younggyo Seo, and Jinwoo Shin. 2021. Landmark-guided subgoal
generation in hierarchical reinforcement learning. Advances in Neural Information
Processing Systems 34 (2021), 28336–28349.

[20] Martin Klissarov, Pierre-Luc Bacon, Jean Harb, and Doina Precup. 2017. Learnings
options end-to-end for continuous action tasks. arXiv preprint arXiv:1712.00004
(2017).

[21] Daphne Koller and Nir Friedman. 2009. Probabilistic graphical models: principles
and techniques. MIT press.

[22] Tejas D Kulkarni, Karthik Narasimhan, Ardavan Saeedi, and Josh Tenenbaum.
2016. Hierarchical deep reinforcement learning: Integrating temporal abstraction
and intrinsic motivation. Advances in Neural Information Processing Systems 29
(2016).

[23] Andrew Levy, George Konidaris, Robert Platt, and Kate Saenko. 2018. Learning
Multi-Level Hierarchies with Hindsight. In International Conference on Learning
Representations.

[24] Timothy P Lillicrap, Jonathan J Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez,
Yuval Tassa, David Silver, and Daan Wierstra. 2015. Continuous control with
deep reinforcement learning. arXiv preprint arXiv:1509.02971 (2015).

[25] Chenghao Liu, Fei Zhu, Quan Liu, and Yuchen Fu. 2021. Hierarchical reinforce-
ment learning with automatic sub-goal identification. IEEE/CAA Journal of

Automatica Sinica 8, 10 (2021), 1686–1696.
[26] Daoming Lyu, Fangkai Yang, Bo Liu, and Steven Gustafson. 2019. SDRL: in-

terpretable and data-efficient deep reinforcement learning leveraging symbolic
planning. In Proceedings of the AAAI Conference on Artificial Intelligence. 2970–
2977.

[27] Haozhe Ma, Thanh Vinh Vo, and Tze-Yun Leong. 2023. Hierarchical Reinforce-
ment Learning with Human-AI Collaborative Sub-Goals Optimization. In Proceed-
ings of the 2023 International Conference on Autonomous Agents and Multiagent
Systems. 2310–2312.

[28] Haozhe Ma, Thanh Vinh Vo, and Tze-Yun Leong. 2023. Human-AI Collaborative
Sub-Goal Optimization in Hierarchical Reinforcement Learning. In Proceedings
of the AAAI Symposium Series, Vol. 1. 86–89.

[29] Marlos C Machado, Marc G Bellemare, and Michael Bowling. 2017. A lapla-
cian framework for option discovery in reinforcement learning. In International
Conference on Machine Learning. PMLR, 2295–2304.

[30] Marlos CMachado, Clemens Rosenbaum, Xiaoxiao Guo,Miao Liu, Gerald Tesauro,
and Murray Campbell. 2018. Eigenoption Discovery through the Deep Successor
Representation. In International Conference on Learning Representations.

[31] Sridhar Mahadevan and Mauro Maggioni. 2007. Proto-value Functions: A Lapla-
cian Framework for Learning Representation and Control in Markov Decision
Processes. Journal of Machine Learning Research 8, 10 (2007).

[32] Volodymyr Mnih, Adria Puigdomenech Badia, Mehdi Mirza, Alex Graves, Timo-
thy Lillicrap, Tim Harley, David Silver, and Koray Kavukcuoglu. 2016. Asynchro-
nous methods for deep reinforcement learning. In International Conference on
Machine Learning. PMLR, 1928–1937.

[33] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,
Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg
Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.
Nature 518, 7540 (2015), 529–533.

[34] Ofir Nachum, Shixiang Shane Gu, Honglak Lee, and Sergey Levine. 2018. Data-
efficient hierarchical reinforcement learning. Advances in Neural Information
Processing Systems 31 (2018).

[35] Shubham Pateria, Budhitama Subagdja, Ah-hwee Tan, and Chai Quek. 2021.
Hierarchical reinforcement learning: A comprehensive survey. ACM Computing
Surveys (CSUR) 54, 5 (2021), 1–35.

[36] Rajesh Ranganath, Sean Gerrish, and David Blei. 2014. Black box variational
inference. In Artificial Intelligence and Statistics. PMLR, 814–822.

[37] Matthew Riemer, Miao Liu, and Gerald Tesauro. 2018. Learning abstract options.
Advances in Neural Information Processing Systems 31 (2018).

[38] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.
2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[39] Özgür Şimşek and Andrew Barto. 2008. Skill characterization based on between-
ness. Advances in neural information processing systems 21 (2008).

[40] Özgür Şimşek, Alicia P Wolfe, and Andrew G Barto. 2005. Identifying useful
subgoals in reinforcement learning by local graph partitioning. In Proceedings of
the 22nd international conference on Machine learning. 816–823.

[41] Sainbayar Sukhbaatar, Emily Denton, Arthur Szlam, and Rob Fergus. 2018. Learn-
ing goal embeddings via self-play for hierarchical reinforcement learning. arXiv
preprint arXiv:1811.09083 (2018).

[42] Sainbayar Sukhbaatar, Zeming Lin, Ilya Kostrikov, Gabriel Synnaeve, Arthur
Szlam, and Rob Fergus. 2018. Intrinsic Motivation and Automatic Curricula via
Asymmetric Self-Play. In International Conference on Learning Representations.

[43] Richard S Sutton and Andrew G Barto. 2018. Reinforcement learning: An intro-
duction. MIT press.

[44] Richard S Sutton, Doina Precup, and Satinder Singh. 1999. Between MDPs and
semi-MDPs: A framework for temporal abstraction in reinforcement learning.
Artificial intelligence 112, 1-2 (1999), 181–211.

[45] Hado VanHasselt, Arthur Guez, and David Silver. 2016. Deep reinforcement learn-
ing with double q-learning. In Proceedings of the AAAI Conference on Artificial
Intelligence.

[46] Alexander Sasha Vezhnevets, Simon Osindero, Tom Schaul, Nicolas Heess, Max
Jaderberg, David Silver, and Koray Kavukcuoglu. 2017. Feudal networks for hier-
archical reinforcement learning. In International Conference on Machine Learning.
PMLR, 3540–3549.

[47] Cheng Zhang, Judith Bütepage, Hedvig Kjellström, and Stephan Mandt. 2018.
Advances in variational inference. IEEE Transactions on Pattern Analysis and
Machine Intelligence 41, 8 (2018), 2008–2026.

[48] Tianren Zhang, Shangqi Guo, Tian Tan, Xiaolin Hu, and Feng Chen. 2020. Gen-
erating adjacency-constrained subgoals in hierarchical reinforcement learning.
Advances in Neural Information Processing Systems 33 (2020), 21579–21590.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1336

https://github.com/Farama-Foundation/Minigrid
https://github.com/Farama-Foundation/Minigrid

	Abstract
	1 Introduction
	2 Background and Related Work
	3 Methodology
	3.1 Problem Formulation
	3.2 Preliminaries: Goal-Conditioned HRL Framework
	3.3 Bayesian Sub-Goal Optimization
	3.4 Dynamically Filtered Sub-Goals

	4 Experiments
	4.1 Sub-Goal Optimization
	4.2 HUBS-GO Embedded Hierarchical Reinforcement Learning
	4.3 Human Knowledge Refinement

	5 Conclusion
	Acknowledgments
	References

