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ABSTRACT

Motivated by cognitive radios, stochastic Multi-Player Multi-Armed
Bandits has been extensively studied in recent years. In this setting,
each player pulls an arm, and receives a reward corresponding to
the arm if there is no collision, namely the arm was selected by one
single player. Otherwise, the player receives no reward if collision
occurs. In this paper, we consider the presence of malicious players
(or attackers) who obstruct the cooperative players (or defenders)
from maximizing their rewards, by deliberately colliding with them.
We provide the first decentralized and robust algorithm RESYNC for
defenders whose performance deteriorates gracefully as 𝑂̃(𝐶) as the
number of collisions 𝐶 from the attackers increases. We show that
this algorithm is order-optimal by proving a lower bound which
scales as Ω(𝐶). This algorithm is agnostic to the algorithm used by
the attackers and agnostic to the number of collisions𝐶 faced from
attackers.
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1 INTRODUCTION

Multi-Player Multi-Armed Bandits (MP-MAB) algorithms have
found applications in distributed computing, social recommen-
dation systems, federated learning, sensor networks, Internet of
Things, web services and crowdsourcing systems. Typically, these
variants involve a large number of players playing a bandit instance,
and may or may not be communicating with each other. The objec-
tive of the players, together as a group, is to maximize the collective
reward. The distributed nature of these applications makes the
learning algorithms prone to attacks from malicious players (or
attackers).

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems

(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,

Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

In this paper, we focus an important and widely studied decen-
tralized MP-MAB setting motivated by cognitive radios ([2, 12]). In
this setting, an arm corresponds to a channel frequency, and the
player selects a channel to transmit information, where the reward
corresponding to this arm is given by the transmission quality of
the channel. A key feature of this MP-MAB setting is that if multiple
players choose the same arm (or channel) in a round, then colli-

sion occurs and all these players receive zero reward for that round.
Additionally, the players receive feedback whether or not a collision
occurred on the arm they pulled. Finally, in the decentralized case,
players are independent and cannot communicate with each other

through dedicated communication channels.
Decentralized MP-MAB setting has been widely studied in the

absence of attackers ([1, 3, 14, 15, 20]). The optimal algorithms in the
absence of attackers critically relies on the assumption that all the
players are cooperative and execute the same algorithm. However,
this assumption critically impairs the application of these algo-
rithms. For example, in cognitive radio, a channel can be accessed
by any player with a transmitter, and access is not restricted to co-
operative players alone. Therefore, malicious players (or attackers)
can obstruct cooperative players (or defenders) from maximizing
reward by deliberately colliding with them. Further, the algorithms
used by such attackers is unknown to the defenders. There has
been limited focus on addressing this key issue and designing ro-
bust MP-MAB algorithms for the defenders that are agnostic to the
algorithm used by attackers.

While the goal of the defenders is to minimize their collective
regret, the goal of the attackers is to force the defenders to incur
linear regret while minimizing the number of adversarial collisions
induced by them. To this end, at each round, each attacker may
pull an arm, observe the reward and the feedback if the collision
occurred corresponding to the arm. If the attacker chooses to not
to pull any arm, then no reward and collision information is ob-
served, also termed as “staying quiet" by [1]. This work focuses on
proposing algorithms for the defenders which are robust to these
attackers. As a motivating example, one may consider the defenders
as licensed spectrum users and the attackers as unlicensed ones. In
this case, the licensed users wish to find the optimal allocation of
arms, in the presence of interference from unlicensed users.

1.1 Related work

The concern of designing MP-MAB algorithms robust to malicious
players (or attackers) has been raised in multiple works ([13, 20])
but has only been studied under the assumption that the attacker
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Feedback Model Algorithm/ Reference Prior Knowledge Regret under our Attack model

Non-Distinguishable
Collision Sensing

mc, Proposition 1
[20] 𝑇,∆

E𝑅𝑇 = Ω(𝑇 )
under 𝐶 = 𝑂

(
𝐾
∆2 log (𝐾2𝑇 )

)
Non-Distinguishable
Collision Sensing

sic-mmab, Proposition 2
[6] 𝑇

E𝑅𝑇 = Ω
(
𝐾−𝑁
𝐾

𝑇

)
under 𝐶 = 𝑂

(
𝐾2 log𝑇

)
Non-Distinguishable
Collision Sensing

sic-gt, Proposition 3
[7] 𝑇

E𝑅𝑇 = Ω(𝑇 )
under 𝐶 = 𝑂

(
𝐾2 log𝑇

)
Non-Distinguishable
Collision Sensing

cnj,cuj, extended version of this paper [17]
[21] 𝑇,∆ E𝑅𝑇 = Ω (𝑇 )

under 𝐶 = 𝑂̃
(
log𝑇

)
Distinguishable
Collision Sensing

cdj, extended version of this paper [17]
[21] 𝑇,∆ E𝑅𝑇 = Ω (𝑇 )

under 𝐶 = 𝑂̃
(
log𝑇

)
Non-Distinguishable
Collision Sensing

resync, Theorem 1
This work 𝑇,∆, 𝑛, 𝑗 E𝑅𝑇 = 𝑂

(
𝐶𝑁 3 + 𝐾𝐶𝑁 log(𝐾2𝑇 )

∆2

)
Distinguishable
Collision Sensing

resync2, Theorem 2
This work 𝑇,∆ E𝑅𝑇 = 𝑂

(
𝐾𝐶𝑁 + 𝐾𝑁 log(𝐾2𝑇 )

∆2

)
Non-Distinguishable
+ Distinguishable
Collision Sensing

lower bound, Theorem 3
This work N/A E𝑅𝑇 = Ω

(
𝑁
𝐾
𝐶

)
Table 1: Summary of Contributions: Regret Bounds of Decentralized MP-MAB Algorithms under 𝐶 number of collisions from

attackers. Here, 𝑁 denote the number of defenders, and ∆ = 𝜇(𝑁 ) − 𝜇(𝑁+1) is the gap between the expected rewards of 𝑁 -th and

(𝑁 + 1)-th best arms. We use 𝑗 to denote the prior knowledge where, each defender has access to a integer 𝑗 ∈ [𝑁 ] distinct from
every other defender (for more details refer Assumption 1).

behaviour is known in advance to the defenders. For instance, [21,
27] consider attackers that follow a specific algorithm of learning
and pulling the optimal set of arms, and construct robust defence
algorithms (cnj, cuj and cdj) against these specific attackers. In this
work, we show that these algorithms are not robust to an attacker
with a different attack strategy. Namely, we show that the existing
algorithms including these robust algorithms incur linear regret
Ω(𝑇 ) with only small𝑂(log𝑇 ) number of adversarial collisions from
an attacker with a different strategy.

[7] consider non-cooperative players whose incentives are to
maximize their own individual rewards. They provide the first algo-
rithm sic-gt, which is robust to selfish players i.e. following their
algorithm is a 𝜖-Nash equilibrium. For performance guarantees,
they assume that selfish players will not deviate from this particu-
lar 𝜖-Nash equilibrium where every player executes the same algo-
rithm. This assumption may fail in practice since non-cooperative
players may be unaware of the algorithm used by a specific group
of cooperative players, and given that the Nash equilibrium is not
unique, they may opt to use a single-player bandit algorithm to se-
lect arms instead. In this work, we also show that if even one player
deviates from the common algorithm, the cooperative players are
forced to suffer linear regret Ω(𝑇 ).

Against this background, our work addresses the limitations of
existing algorithms by proposing a robust algorithm whose perfor-
mance is agnostic to the attack strategy.

1.2 Contributions

In this work, we consider two feedback models: distinguishable and
non-distinguishable collision sensing. In distinguishable sensing

([21]), each defender receives feedback on whether a collision oc-
curred and can also distinguish whether the collision occurred from
an attacker or a defender. In non-distinguishable sensing ([5, 7, 24]),
a defender receives feedback on whether a collision occurred and
does not have the capability to distinguish whether a collision oc-
curred from an attacker or a defender. Our main contributions are
the following:

• First, we show that the representative existing algorithms
in the literature, namely mc, sic-mmab, sic-gt, cnj, cuj and
cdj, are not robust to adversarial collisions. More specifi-
cally, only 𝑂(log𝑇 ) adversarial collisions from a single at-
tacker are sufficient to ensure that the expected regret of
these algorithms scales linearly as Ω(𝑇 ), where 𝑇 is the to-
tal number of rounds for which the players interacts in the
MP-MAB setting. Table 1 summarizes the results showing
“non-robustness" for these existing algorithms.
• In the non-distinguishable collision-sensing setting, we pro-
pose a novel algorithm resync which exhibits robust be-
haviour to adversarial collisions. We show that the expected
regret of this algorithm deteriorates gracefully as 𝑂̃(𝐶), where
𝐶 is the total number of adversarial collisions from the attack-
ers. We also shows that this scaling with 𝐶 is order-optimal
up to logarithmic factors in 𝑇 by proving a corresponding
lower bound in MP-MAB setting which scales as Ω̃(𝐶).
• In the distinguishable collision-sensing setting, we propose
another novel algorithm resync2, and show that the ex-
pected regret of this algorithm also deteriorates linearly as
𝑂̃(𝐶). This scaling of the expected regret is order-optimal in
𝐶 . Due to an additional feedback information available in
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this setting, the regret bound of resync2 is further improved
by logarithmic factors in 𝑇 in comparison to resync.
• Finally, we present several experiments which validate our
theoretical findings.

Due to space limitations, we defer the proofs and experiments
to the extended version of this paper [17] .

2 PRELIMINARIES

We consider a multi-player variant of the standard stochastic MAB
problem with 𝐾 arms, denoted by set [𝐾] = {1, · · · , 𝐾}. For each
arm 𝑘 ∈ [𝐾] at time (or round) 𝑡 ≤ 𝑇 , we denote its realized
reward by 𝑋𝑘 (𝑡 ) ∈ [0, 1] drawn i.i.d according to distribution 𝜈𝑘
with expectation 𝜇𝑘 . Additionally, we assume that the expected
rewards of the arms are different, namely 𝜇(1) > 𝜇(2) > · · · > 𝜇(𝐾 )
where 𝜇(𝑖) denotes the 𝑖-th largest expected reward. We denote the
number of attackers by 𝑀 and the number of defenders by 𝑁 such
that 𝐾 ≥ 𝑁 (as commonly assumed in [8, 18, 22, 24, 26]). We index
the defenders using the set {1, . . . , 𝑁 } and the attackers using the
set {𝑁 + 1, . . . 𝑁 +𝑀}.

In decentralized MP-MAB, at each round 𝑡 ≤ 𝑇 , each player
𝑗 ∈ [𝑁 +𝑀] pulls an arm 𝜋 𝑗 (𝑡 ) ∈ [𝐾] and receives a reward

𝑟 𝑗 (𝑡 ) = 𝑋𝜋 𝑗 (𝑡 )(𝑡 )(1 − 𝜂𝜋 𝑗 (𝑡 )(𝑡 )), (1)

where 𝜂𝑘 (𝑡 ) := 1(|1 ≤ 𝑗 ≤ 𝑁 +𝑀 : 𝜋 𝑗 (𝑡 ) = 𝑘}|> 1) is the collision
indicator (this value is 1 if more than one player pulls that arm,
otherwise remains 0). At each round 𝑡 , each player who pulled
an arm observes their collision indicator 𝜂𝜋 𝑗 (𝑡 )(𝑡 ) and the corre-
sponding reward 𝑟 𝑗 (𝑡 ). If a collision occurred, namely 𝜂𝜋 𝑗 (𝑡 )(𝑡 ) = 1,
then the defenders may or may not receive additional informa-
tion to distinguish whether that collision occurred with defenders,
attackers or both. Based on the availability of this additional in-
formation, we consider two feedback models: Non-distinguishable
and Distinguishable collision sensing.

In non-distinguishable collision sensing, the feedback is limited to
the corresponding reward 𝑟 𝑗 (𝑡 ) and the collision indicator 𝜂𝜋 𝑗 (𝑡 )(𝑡 )
at each round 𝑡 for player 𝑗 . No additional information is available
to the defenders to distinguish between the players causing the
collisions.

In distinguishable collision sensing, the defenders receive the
information about the nature of the players who caused the collision.
More specifically, at each round 𝑡 , defender 𝑗 observes the reward
𝑟 𝑗 (𝑡 ) and the collision indicators

𝜂𝐷
𝑘

(𝑡 ) := 1(|{1 ≤ 𝑗 ≤ 𝑁 : 𝜋 𝑗 (𝑡 ) = 𝑘}|> 1) (2)

𝜂𝐴
𝑘

(𝑡 ) := 1(|{𝑁 < 𝑗 ≤ 𝑁 +𝑀 : 𝜋 𝑗 (𝑡 ) = 𝑘}|≥ 1) (3)

where 𝜂𝐷
𝑘

(𝑡 ) and 𝜂𝐴
𝑘

(𝑡 ) represent if the collision occurred due to a de-
fender and an attacker, respectively. Note that 𝜂𝜋 𝑗 (𝑡 )(𝑡 ) = 𝜂𝐴

𝜋 𝑗 (𝑡 )(𝑡 )∨
𝜂𝐷
𝜋 𝑗 (𝑡 )(𝑡 ). These indicators enable the defenders to distinguish be-
tween collisions from an attacker and a defender. As an illustra-
tion of this feedback model from [21], in cognitive radio networks
(CRNs) defenders would be able to distinguish between collisions
between themselves and attackers through acknowledgments. At
the end of each round, each defender receives an ACK/NACK feed-
back. If a collision happens due to other defenders but not the
attackers, each defender receives a NACK signal. However, if the

collision is due to the attackers alone, no NACK signal is received.
Finally if collision occurs simultaneously, a corrupted NACK signal
is received.

The performance of an algorithm is measured in terms of ex-
pected regret which is defined as the difference between the maxi-
mal expected reward and the algorithm cumulative reward over 𝑇
steps, namely

𝑅𝑇 := 𝑇
𝑁∑︁
𝑘=1

𝜇(𝑘) −
𝑇∑︁
𝑡=1

𝑁∑︁
𝑗=1

𝜇𝜋 𝑗 (𝑡 ) · (1 − 𝜂𝜋 𝑗 (𝑡 )(𝑡 )). (4)

The maximal expected reward corresponds to the top 𝑁 arms, also
referred to as the optimal set of arms.

The goal of the attackers is to force the defenders to incur linear
regret while keeping the number of collisions they induce to be as
small as possible to remain stealthy. The motivation for stealthy
attacks is best illustrated using an example. As noted by [27], in
CRNs, licensed users are protected by law. Therefore users of the
network are motivated to reduce their interference with licensed
users, since there will be heavy penalties if the licensed users de-
tect prolonged interference from them ([25]). Therefore from an
attackers perspective, collisions (or interference in the example)
against defenders (or licensed users in the example) are inherently
expensive. Hence, we evaluate the defenders’ regret in terms of the
number of times the attacker collides with the defender. Thus, the
attack cost 𝐶 is the number of adversarial collisions encountered
by the defenders, namely

𝐶 =
𝑇∑︁
𝑡=1

1
(
∃𝑑, ∃𝑎 : 1 ≤ 𝑑 ≤ 𝑁, 𝑁 + 1 ≤ 𝑎 ≤ 𝑁 +𝑀,

𝜋𝑑 (𝑡 ) = 𝜋𝑎(𝑡 )
)

(5)

We exclusively consider the casewhere the attack cost𝐶 is unknown
to the defenders. In other words, the defenders are agnostic to 𝐶 .

3 LIMITS OF EXISTING ALGORITHMS

This section shows the limitations of existing algorithms against a
single attacker who has no prior information about the defenders
and expected rewards of arms.

Attack on mc: In [20], the “Musical Chairs" subroutine in the mc
algorithm is used to allocate players to optimal arms. This subrou-
tine has inspired many algorithms to follow the same (or slightly
modified) procedure ([4, 14, 24, 26]). By successfully attacking this
subroutine in mc algorithm, we show that there is a critical threat
to any follow-up algorithms that use this subroutine. The following
proposition proves that the mc algorithm is not robust to a single
attacker.

Proposition 1. Assuming that the defenders use mc, there exists

an attack strategy with expected attack cost of

𝑂

(
max

(
𝐾 log (𝐾2𝑇 )/∆2

𝑚𝑖𝑛, 𝐾
2 log𝑇

))
which ensures that the expected regret of the defenders is Ω(𝑇 ), where
∆𝑚𝑖𝑛 = min𝑖 𝜇(𝑖) − 𝜇(𝑖+1).

Attack on sic-mmab: The seminal work of [6] introducing the
sic-mmab algorithm with implicit communication through forced
collisions has inspired many algorithms to follow suit ([9, 11, 16, 18,
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23, 26]). We present an attack on sic-mmab algorithm which can
be slightly modified to show the non-robustness of these follow
up works. The following proposition proves that the sic-mmab
algorithm is not robust to a single attacker.

Proposition 2. Assuming that the defenders use sic-mmab, there

exists an attack strategy with expected attack cost𝑂

(
𝐾2 log𝑇

)
which

ensures that the expected regret of the defenders is Ω(𝑇 ).

Attack on sic-gt: The sic-gt algorithm by [7] is robust to selfish
players, namely the attacker is a reward maximizing player who
gains reward from pulling arms. Playing sic-gt is an 𝜖-Nash equilib-
rium, and this equilibrium is achieved through “Grim Trigger" ([10])
punitive strategies. However, the following proposition proves that
the sic-gt algorithm is not robust to a single attacker.

Proposition 3. Assuming that the defenders use sic-gt, there

exists an attack strategy with expected attack cost 𝑂(𝐾2 log𝑇 ) which
ensures that the expected regret of the defenders is Ω(𝑇 ).

The attack strategies are presented in the extended version of
this paper [17].

4 THE RESYNC ALGORITHM

In this section we consider the non-distinguishable collision sensing
model, where defenders cannot determine whether a collision is
from an attacker or a defender. We propose the algorithm resync
which is robust to adversarial collisions. We make the following
assumption on the prior knowledge of defenders:

Assumption 1. All defenders know the number of defenders 𝑁 .

Additionally, each defender has a unique identification number 𝑗 ∈
[𝑁 ], also referred as internal rank, and has knowledge of their own
internal rank.

The internal rank allows the defenders to coordinate in the bandit
game. In Section 5 where we consider the distinguishable collision
case, we remove this assumption, and use the additional feedback
to devise a sub-routine to estimate 𝑁 and 𝑗 .

4.1 Description of resync

resync consists of an exploration phase and an exploitation phase,
where a defender may alternate between phases based on the col-
lision feedback. The algorithm divides the time-horizon 𝑇 into
successive epochs of size 𝑇𝐵 = 𝑇0 + 2𝑁 2 + 𝑁 rounds where 𝑇0 =
8𝐾 ⌈log(2𝐾2𝑇 )/∆2⌉. Both exploration and exploitation phases run
for 𝑇𝐵 rounds. At any epoch some defenders may be in the ex-
ploration phase while other defenders may be in the exploitation
phase. In both of these phases, each defender will choose whether
or not to “restart", and enter the exploration phase in the next
epoch. Whether or not a defender chooses to restart depends on
the collisions sensed by the defender in each phase. We say that
the defenders are synchronized over an epoch if all of them are in
the same phase (exploration/exploitation) in that epoch. Otherwise
we say that the defenders are desynchronized over that epoch.

resync relies on three key ideas to solve the limitations of the
existing approaches in the literature. First, the algorithm obtain
sufficient number of uncorrupted observations to determine the
optimal set of arms with high probability in a decentralized manner.

Algorithm 1: resync
Input:𝑇 (horizon), 𝑁 (number of defenders), 𝑗 (internal rank),𝑇𝐵

(length of an epoch)
1 Initialize: Restart← True, Opt← ∅, ∀𝑖 : 𝜇̃𝑖 ← 0, 𝑜𝑖 ← 0, 𝑠𝑖 ← 0
2 for ⌊ 𝑇

𝑇𝐵
⌋ epochs do

3 if Restart then
4 (Restart, Opt)← Exploration(Restart, 𝑗, ∀𝑖 𝑜𝑖 , 𝑠𝑖 ) ;

// Restart ← True ⇐⇒ collision occurs during

sequential hopping or verdict of

(intra/inter)-communication phase is to Restart

5 else

6 Restart← Exploitation(Restart, 𝑗 , Opt) ; // Restart ←
True ⇐⇒ collision occurs during

inter-communication phase

Subroutine 2: Exploitation
1 Input:Restart, 𝑗 , Opt; Output Restart
2 Initialize Restart← False, and𝑇0 ← 8𝐾 ⌈log(2𝐾2𝑇 )/∆2 ⌉
3 for 𝑇0 + 2𝑁 2

times steps do

4 Set 𝑘 = 𝑡 + 𝑗 (mod 𝑁 ); Pull Opt[𝑘]
5 for 𝑁 rounds do // Inter-communication phase

6 Set 𝑘 = 𝑡 + 𝑗 (mod 𝑁 )
7 Pull Opt[𝑘] and receive 𝜂Opt[𝑘]
8 if 𝜂

Opt[𝑘] = 1 then

9 Restart← True

10 return (Restart)

Second, the algorithm maintains synchronization over the defend-
ers against attackers that challenge to desynchronize the system.
Third, the algorithm ensures that the defenders pull the optimal
set of arms in an orthogonal fashion (with no collisions amongst
themselves), for the majority of the time-horizon.

The outline of resync (Restart Synchronously under Adversar-
ial Collisions) is provided in Algorithm 1, with the exploration and
exploitation protocols provided in Subroutines 3 and 2 respectively.
We use 𝑡 ∈ [𝑇 ] to denote the round of the bandit game, and assume
every defender knows about 𝑡 at all times.

Exploration. (Subroutine 3) Within the exploration phase, there
are four sub-phases, which are as follows: sequential hopping
that runs for 𝑇0 rounds, sensing that runs for 𝑁 2 rounds, intra-
communication that runs for 𝑁 2 rounds and inter-communication
that runs for 𝑁 rounds.

Sequential Hopping. (Subroutine 3 lines 4-16) This sub-phase
lasts for 𝑇0 = 8𝐾 ⌈log(2𝐾2𝑇 )/∆2⌉ rounds. At each round, each de-
fender pulls an arm, namely 𝑗+𝑡 (mod𝐾 ) ∈ [𝐾], based on its internal
rank 𝑗 and round of the bandit game 𝑡 ∈ [𝑇 ]. If all the defenders
are in exploration phase, then this strategy ensures that there is
no collision between the defenders. At each round 𝑡 , the defender
will also observe the reward and collision indicator. For the rounds
when the the collision indicator is 0 indicating no collision, the
defender maintains the cumulative sum of observed rewards and
number of observations for each arm 𝑘 ∈ [𝐾]. If there is a collision,
then the Restart variable is set to True and the observation received
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Subroutine 3: Exploration
1 Input Restart, 𝑗 , and for all 𝑖 ∈ [𝐾], 𝑜𝑖 , 𝑠𝑖 ;
2 Output: Restart, Opt
3 Initialize: Restart← False, SufficientObservations← False, and

𝑇0 ← 8𝐾 ⌈log(2𝐾2𝑇 )/∆2 ⌉
4 for𝑇0 rounds do // Sequential hopping phase

5 Pull 𝑘 = 𝑡 + 𝑗 (mod 𝐾 ) and receive 𝜂𝑘 and 𝑟𝑘 (𝑡 )
6 if 𝜂𝑘 = 0 then

7 𝑜𝑘 ← 𝑜𝑘 + 1
8 𝑠𝑘 ← 𝑠𝑘 + 𝑟𝑘 (𝑡 )
9 else

10 Restart← True

11 if ∀𝑖 : 𝑜𝑖 ≥ 𝑇0/𝐾 then

12 SufficientObservations← True
13 For all 𝑖 ∈ [𝐾], we have 𝜇̃𝑖 = 𝑠𝑖/𝑜𝑖
14 Opt← List of 𝑁 best empirically performing arms sorted

according to arm index 𝑖 ∈ [𝐾].
15 else

16 Restart← True
17 for (𝑖, 𝑘) ∈ [𝑁 ] × [𝑁 ] do // Sensing phase

18 if 𝑗 = 𝑖 then
19 if SufficientObservations then
20 Pull Opt[1] and receive 𝜂𝑂𝑝𝑡 [1] // attempt to sense

the presence of defenders that are in

exploitation phase

21 if 𝜂𝑂𝑝𝑡 [1] = 1 then

22 Restart← True

23 else

24 Pull 1

25 else

26 if SufficientObservations then
27 Pull Opt[1] + 1 (mod 𝐾 )
28 else

29 Pull 1

30 for (𝑖, 𝑘) ∈ [𝑁 ] × [𝑁 ] do // Intra-communication phase

31 if 𝑗 = 𝑖 then // send

32 if Restart then
33 Pull 𝑘
34 else

35 Pull 𝑗

36 else // receive

37 Pull 𝑗 and receive 𝜂 𝑗
38 if 𝜂 𝑗 = 1 then

39 Restart← True

40 for 𝑁 rounds do // Inter-communication phase

41 if SufficientObservations then
42 Pull Opt[1] // to notify any defenders in exploitation

phase to rejoin exploration in the next epoch

43 else

44 Pull 1

45 return (Restart, Opt)

is ignored. If there are sufficient reliable observations for all arms,
then the defender sets the flag SufficientObservations to be True.

Sensing. (Subroutine 3 lines 17-29) This sub-phase lasts for 𝑁 2

rounds. In this sub-phase, a defender attempts to detect whether
there is at least one other defender in the exploitation phase using
the collision feedback she receives. This sub-phase is used to help
defenders synchronize in the next epoch if they are desynchronized
in the current epoch. In the sensing sub-phase, if a defender has the
flag SufficientObservations to be True, then she pulls the optimal arm
with least index (which we refer to as Opt[1]) in the 𝑗𝑁 -th, . . . , ( 𝑗𝑁 +
𝑁 −1)− -th rounds of this sub-phase, and pulls arm Opt[1] + 1 (mod
𝐾) in the other rounds of the sub-phase. Note that this defender
pulls Opt[1] for 𝑁 consecutive rounds in this sub-phase, and sets
Restart to True if a collision occurs in those 𝑁 rounds.

Intra-Communication. (Subroutine 3 lines 30-39) In this sub-
phase each defender in exploration phase communicates with every
other defender in the same phase, whether or not to re-enter the ex-
ploration phase in the next epoch based on whether every defender
has Restart to be True. Each defender has her own communicating
arm, corresponding to her internal rank. When the defender 𝑖 is
communicating, she sends a bit at a round to the defender 𝑘 by
deciding which arm to pull: a 1 bit is sent by pulling the communi-
cating arm of defender 𝑘 (a collision occurs and collision feedback
is received by defender 𝑘) and a 0 bit is sent by pulling her own
arm.

During this phase if a defender has Restart to be True, then
she sends a 1 bit to each defender in order to signal a restart. If
a defender has Restart to be False, then she sends a 0 bit to every
defender. Crucially, an attacker can change this 0 bit to a 1 bit by
inducing adversarial collisions, however the attacker cannot change
a 1 bit to a 0 bit, since collisions from one defender to another
cannot be reversed by an attacker. Therefore if some defender in
the exploration phase has insufficient observations on some arm,
every defender restarts, and enters an exploration phase in the next
epoch.

Inter-Communication. (Subroutine 3 lines 40-44) This sub-
phase is used for defenders in exploration phase to communi-
cate with the defenders in the exploitation phase within the same
epoch so that they can synchronize in the next epoch. In the inter-
communication sub-phase, if SufficientObservations is True, then
the defender pulls Opt[1] for 𝑁 consecutive rounds to signal to any
possible defenders in the exploitation phase, that they should enter
the exploration phase in the next epoch.

Exploitation. (Subroutine 2) In the exploitation phase, the de-
fender sequentially hops over the optimal set of arms throughout
the entire epoch. The last 𝑁 rounds of this protocol is the inter-
communication sub-phase within the exploitation phase (Subrou-
tine 2 lines 5-9) used to receive communication from defenders in
exploration phase. If a defender in exploitation phase experiences
a collision during the inter-communication phase, then this is in-
terpreted as a signal from at least one defender in the exploration
phase to enter the exploration in the next epoch.

4.2 Analysis of the resync Algorithm

Theorem 1 bounds the expected regret incurred by resync given
the attack cost 𝐶 .
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Theorem 1. Assume 𝑁 defenders run resync against𝑀 attackers,

with ∆ = 𝜇(𝑁 ) − 𝜇(𝑁+1). Given the attack cost is𝐶 , the expected regret

of resync is bounded by 𝑂

(
𝐶𝑁 3 +𝐶𝐾𝑁 log(𝐾2𝑇 )

∆2

)
.

The proof of Theorem 1 is composed of three key arguments
whose main ideas are presented below. Formal proof appears in the
extended version of this paper [17].

We begin by upper bounding the number of rounds required
for all defenders to collect sufficient observations for each arm,
to determine the optimal set of arms with high probability. The
following Lemma can be easily derived from [20].

Lemma 1. If all defenders have collected at least 8⌈log(2𝐾2𝑇 )/∆2⌉
observations for each arm, then all defenders have determined the

optimal set of arms with probability at least 1 − 1/𝑇 .

The concept of restarting under insufficient observations, and
the design of the intra-communication phase where all defenders
can communicate whether or not they have sufficient observations
for each arm (in the presence of attackers) yields the following two
“synchronization" Lemmas:

Lemma 2. Suppose all defenders are in exploration phase in a

certain epoch. If there exists a defender who does not have at least

8⌈log(2𝐾2𝑇 )/∆2⌉ observations for each arm, then all defenders re-

enter the exploration phase in the next epoch.

Lemma 3. All defenders have collected at least 8⌈log(2𝐾2𝑇 )/∆2⌉
reliable observations for each arm after at most 𝑇𝐵 +𝐶 rounds since

the start of the game

We then state the third synchronization lemma that completely
describes the behaviour of defenders over epochs in the absence of
adversarial collisions.

Lemma 4. Suppose all defenders are in exploration phase or all

defenders are in exploitation phase in a certain epoch. If no attacker

collides with any defender during this epoch then all defenders enter

exploitation phase in the next epoch.

The following is the situation where desynchronization occurs
under adversarial collisions. Suppose all defenders are in explo-
ration phase or all defenders are in exploitation phase in a certain
epoch. If the attackers cause 𝑁1 defenders trigger restart and 𝑁2 to
not, then the 𝑁1 defenders re-enter exploration phase while the 𝑁2
enter exploitation phase. What is crucial is that all defenders are
able to synchronize in the next epoch, which the final synchroniza-
tion lemma proves is true.

Lemma 5. Suppose 𝑁1 ≥ 1 defenders are in exploration phase

and 𝑁2 defenders are in exploitation phase in a certain epoch. Then

independent of the arms pulled by attackers during the epoch, all

defenders enter exploration phase in the next epoch.

The above Lemma holds due to the design of the sensing sub-
phase (where defenders in exploration phase can sense the presence
of defenders in the exploitation phase in the presence of attackers)
and inter-communication sub-phase (where defenders in explo-
ration phase communicate with defenders in exploitation phase
and force them to rejoin exploration in the next epoch).

explore

desync

exploitC

C’

N

C

C

C’

N

Figure 1: Transition Dynamics of the System of Defenders

over epochs

Finally using the synchronization lemmas, we can upper bound
the number of epochs in which not all defenders are in exploitation
phase, which is the main argument to bound the regret. To achieve
this we consider the transition dynamics of the system of defenders
over epochs (see Figure 1). For the formal description refer to the
extended version of this paper [17].

The states explore, desync and exploit in Figure 1 correspond
to the state of the bandit game in a certain epochwhere all defenders
are in exploration phase, at least one defender is in exploration
phase and at least one defender is in exploitation phase, or all
defenders are in exploitation phase respectively. Similarly the action
space {N, C, C’} corresponds to the actions the attackers can take
over epochs. Formally, N corresponds to arm pulls during an epoch
that cause no collisions with defenders, C to arm pulls during an
epoch that cause all defenders to restart exploration on the next
epoch, and C’ to arm pulls during an epoch that cause 𝑁1 : 1 <

𝑁1 < 𝑁 defenders to restart respectively. Here we upper bound the
number of epochs the state is not exploit, given that the number
of epochs in which actions C and C’ are played by the attackers are
at most 𝐶 .

Lemma 6. (Informal) After ⌈1 + 𝐶/𝑇𝐵⌉ epochs since the start of
the game, the number of epochs in which, not all defenders are in

exploitation phase, is at most 𝑂(𝐶).

When all defenders are in exploitation phase, they pull the top
𝑁 arms with no collisions amongst themselves, conditioned on the
event that all of them have determined the optimal set of arms.
These arguments show that the leading term in the expected regret
is 𝑂(𝐶𝑇𝐵 ) = 𝑂(𝐶𝑁 3 + 𝐾𝐶𝑁 log(𝐾2𝑇 )/∆2).

5 THE RESYNC2 ALGORITHM

This section proposes resync2 for the distinguishable collision
sensing setting, where defenders can determine whether a collision
is from an attacker or a defender. We remove Assumption 1 and
show that the additional feedback allows resync2 to have better
performance than resync.

The algorithm resync2, consists of three phases that run sequen-
tially, namely, initialization, exploration and exploitation. Note that
unlike resync, the exploration and exploitation phases are not
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intertwined, thereby removing the necessity of the sensing and
inter-communication sub-phases in resync.

Initialization. The purpose of the initialization phase is to es-
timate the total number of defenders, and assign distinct internal
ranks between the defenders. The initialization phase is similar to
the one from sic-mmab ([6]) although adapted to the distinguish-
able collision sensing setting, so number of defenders and internal
ranks can be determined in the presence of attackers.

Exploration. The exploration phase progresses in epochs of size
2𝐾 , with two sub-phases, sequential hopping (from resync) but
which lasts only for 𝐾 rounds and a modified intra-communication
phase (also from resync) that also lasts only for 𝐾 rounds. The
interplay between sequential hopping and inter-communication is
similar to that of resync in the sense that, the outcome of sequential
hopping (whether one reliable observation was received for each
arm during sequential hopping) is communicated through forced
collisions in the intra-communication phase. We say an epoch is
successful if each defender received one reliable observation for
each arm during sequential hopping. The defenders explore until
there are 8⌈log(2𝐾2𝑇 )/∆2⌉ successful epochs.

Exploitation In the exploitation phase, the defenders sequen-
tially hop over the optimal set of arms until the end of the time-
horizon.

The complete pseudocode of resync2 is given in the extended
version of this paper [17].

The performance of resync2 improves from that of resync due
to the additional feedback available in distinguishable collision sens-
ing. This feedback allows defenders to communicate robustly using
collisions and collision feedback even in the presence of attackers.
That is, they can determine with certainty whether a 1 bit or a 0
bit was sent by a defender during an inter-communication phase,
by reading the collision indicator 𝜂𝐷

𝑘
. In the previous feedback set-

ting, only 𝜂𝑘 is available and the bits sent in this manner between
defenders can be modified by an attacker through adversarial col-
lisions. This robust communication allows us to disentangle the
exploration and exploitation phases from resync, leading to the

size of the epochs to reduce from 𝑂

(
𝑁 2 + 𝐾 log(𝐾2𝑇 )/∆2

)
to just

𝑂(𝐾 ), thereby improving the regret guarantee.

5.1 Analysis of the resync2 Algorithm

Theorem 2 bounds the expected regret incurred by resync2 given
the attack cost 𝐶 .

Theorem 2. Assume 𝑁 defenders run resync2 against𝑀 attack-

ers, with ∆ = 𝜇(𝑁 ) − 𝜇(𝑁+1). Conditioned on the number of attacks

being 𝐶 , the expected regret of resync2 is bounded by

𝑂

(
𝐾𝐶𝑁 + 𝐾𝑁 log(𝐾2𝑇 )

∆2

)
The proof of Theorem 2 is composed of two key arguments

whose main idea is presented below.
We begin by showing that after initialization phase is complete,

all defenders have estimated the number of defenders 𝑁 correctly,
and have distinct internal ranks in [𝑁 ] with high probability. It is
worth noting that the initialization phase is successful with high
probability, irrespective of the arms pulled by the attackers, whereas

if the same initialization phase from [6] was used, this would not
be the case.

Then similar to the analysis for Theorem 1, we upper bound the
number of rounds required for all defenders to collect sufficient
observations for each arm, in order to determine the optimal set
of arms with high probability using Lemma 1 and the following
Lemma.

Lemma 7. After at most𝐶 + 8log (2𝐾2𝑇 )/∆2
epochs of exploration,

all defenders have collected at least 8⌈log(2𝐾2𝑇 )/∆2⌉ observations
for each arm.

After each defender has sufficient observations on each arm, all
defenders will enter the exploitation phase and never leave this
phase, where they will pull the top 𝑁 arms orthogonally until the
end of the time-horizon. These arguments show that the leading

term in the expected regret is 𝑂
(
𝐾𝐶𝑁 + 𝐾𝑁 log(𝐾2𝑇 )/∆2

)
.

6 REMOVING THE ASSUMPTION THAT ∆ IS

KNOWN

In this section we highlight how the techniques from resync2 can
be combined with sic-mmab in order to remove all prior knowledge
except𝑇 in the distinguishable collision sensing setting. The result-
ing algorithm will have the structure of sic-mmab along with the
robust phases presented in resync2. The resulting algorithm will
have an initialization phase along with exploration-communication
phases. Each exploration phase will contain a sequential hopping
and intra-communication phase. There will also be a separate com-
munication phase outside the exploration phase used to communi-
cate arm-statistics with other defenders. For the remainder of this
section, we use 𝑁𝑝 , 𝐾𝑝 to denote the active number of defenders in
phase 𝑝 and active number of arms in phase 𝑝 respectively.
Initialization. The initialization phase will require the follow-
ing substitutions of subroutines in sic-mmab. The Musical Chairs
subroutine from sic-mmab must be substituted with the Orthogo-
nalization subroutine from resync2 and the Estimate_M subroutine
from sic-mmab must be substituted with the Estimate-Defenders
subroutine from resync2. This must be done to ensure the initial-
ization phase is robust to adversarial collisions.
Communication.Next as pointed out in Section 5, communication
can be made robust (i.e. defenders can exchange bits in the pres-
ence of attackers) by relying on the collision indicator 𝜂𝐷

𝑘
instead

of 𝜂𝑘 . Therefore the communication phase from sic-mmab can be
preserved by substituting each occurrence of 𝜂𝑘 in the algorithm
with 𝜂𝐷

𝑘
.

Exploration. Finally the exploration phase will need to inherit
the intra-communication sub phase from resync2 in order to en-
sure robust exploration. That is, the outcome of sequential hopping
(whether one reliable observation was received for each arm during
sequential hopping) must be communicated through forced colli-
sions in the intra-communication phase. In the 𝑝-th exploration-
communication phase, the exploration phasewill progress in epochs
of size 2𝐾𝑝 , and until there are 2𝑝 successful epochs. By successful
epoch we mean that each defender recieves one reliable observation
for each active arm in that epoch. During the first 𝐾𝑝 rounds of an
epoch the defenders sequentially hop the active set of arms and the
next 𝐾𝑝 rounds of exploration is an intra-communication phase as
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Subroutine 4: Exploration Phase
1 𝜋 ← 𝑗-th active arm, epochNumber← 0
2 while epochNumber ≤ 2𝑝 do

3 for 𝐾𝑝 rounds do

4 Restart← False
5 𝜋 ← 𝜋 + 1 (mod [𝐾𝑝 ])
6 Pull 𝜋 and receive 𝜂𝐷𝜋 , 𝜂𝐴𝜋 , 𝑟𝜋 (𝑡 )
7 𝜂𝜋 ← 𝜂𝐷𝜋 ∨ 𝜂𝐴𝜋
8 if 𝜂𝜋 = 0 then

9 𝑠[𝜋]← 𝑠[𝜋] + 𝑟𝜋 (𝑡 )
10 else

11 Restart← True

12 for 𝐾𝑝 rounds do

13 if Restart then

14 Pull 𝐾𝑝 [1]
15 else

16 𝜋 ← 𝜋 + 1 (mod [𝐾𝑝 ])
17 Pull 𝜋 and receive 𝜂𝐷𝜋
18 if 𝜂𝐷𝜋 = 1 then

19 Restart← True

20 if not Restart then

21 epochNumber← epochNumber +1

in resync2. The following exploration phase must be substituted
in sic-mmab.

Finally the statistics are updated according to the description in
sic-mmab. The technical innovations required to save sic-mmab
from attackers are to incorporate our robust initialization, explo-
ration and communication phases that we have described here
which were inherited from our algorithm resync2. For the expected
regret an additional factor of𝑂(𝐶𝐾 ) is incurred to the regret bound
in Theorem 1 from [6] due to the robust exploration phase detailed
above (for details of the bound 𝑂(𝐶𝐾) refer Proof of Theorem 2).
The final bound on expected regret of the resulting algorithm is
𝑂

(
𝐶𝐾 + ∑

𝑘>𝑁
log𝑇

𝜇(𝑁 )−𝜇(𝑘)
+𝑀𝐾 log𝑇

)
where𝐶 is the number of col-

lisions from attackers. For contrast, the expected regret of sic-mmab
in the presence of no attackers is 𝑂

(∑
𝑘>𝑁

log𝑇
𝜇(𝑁 )−𝜇(𝑘)

+𝑀𝐾 log𝑇
)
.

7 LOWER BOUNDS

In this section, we consider lower bounds on expected regret of
the defenders, when the attack cost is 𝐶 , and will show that the
expected regret of the defenders has a linear dependence on the
attack cost.

The following theorem establishes a lower bound on the expected
regret of any MP-MAB algorithm in terms of 𝐶 .

Theorem 3. There exists an attacker with expected number of

attacks at most𝐶 , for which any MP-MAB algorithm suffers expected

regret Ω(𝑁𝐶/𝐾 ).

Proof. The attacker samples an arm 𝑘 ∼ U(𝐾), pulls 𝑘 for 𝐶
rounds, and pulls no arm for the remaining rounds. Clearly the

number of collisions any defender will face from the attacker is at
most 𝐶 . The sampled arm is in the optimal set of arms with proba-
bility 𝑁

𝐾
. Under this event, during the first𝐶 rounds, any algorithm

has per-round regret at least 𝜇(𝑁 ) − 𝜇(𝑁+1). So, the expected regret
over 𝑇 rounds under this attack is at least 𝐶 · (𝜇(𝑁 ) − 𝜇(𝑁+1)) · 𝑁𝐾 =
Ω
(
𝑁𝐶
𝐾

)
. □

Hence, this lower bound establishes that both resync and resync2
exhibit order-optimal behaviour in terms of 𝐶 .

8 DISCUSSION

We studied a setting in which 𝑁 defenders collaborate to minimize
regret from a multi-armed bandit where several players simulta-
neously pull arms and𝑀 attackers disrupt collaboration between
defenders. We showed that even when𝑀 = 1, existing algorithms,
including algorithms robust to jammers and selfish players, incur
linear regret with only logarithmic number of collisions from the
attacker. We thus proposed the algorithm resync and resync2
based on restarting synchronously under adversarial collisions in
which the performance deteriorates gracefully as the number of col-
lisions from multiple attackers increases. We then provided lower
bound that proves that the regret scales linearly with the number
of collisions from attackers. In conclusion, we establish that our
proposed algorithms are order-optimal in terms of the attack cost.

This work leaves several questions open. Firstly, although the
assumption that a lower bound on ∆ is known can be removed in
the distinguishable collision sensing setting (refer Section 6), by
combining our synchronization mechanism with a generalization
of the Successive-Eliminations algorithm ([19]) as in sic-mmab [6],
it is unclear what algorithmic mechanism can be used in the non-
distinguishable collision sensing setting when ∆ is unknown and
attackers exist in the game. Next, it would be interesting to remove
Assumption 1 in the non-distinguishable collision sensing setting,
either with algorithms that robustly estimate the value 𝑁 online or
by using an approach that does not require knowledge of 𝑁 (as in
[5]). Further, one may look at robustness to adversarial collisions in
the no-sensing setting where no collision information is observed
and the heterogeneous setting where the arm means vary among
players.
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