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ABSTRACT
In this work, we consider AI agents operating in Partially Observ-

able Markov Decision Processes (POMDPs)—a widely-used frame-

work for sequential decision making with incomplete state infor-

mation. Agents operating with partial information take actions not

only to advance their underlying goals but also to seek informa-

tion and reduce uncertainty. Despite rapid progress in explainable

AI, research on separating information-driven vs. goal-driven be-

haviors remains sparse. To address this gap, we introduce a novel

explanation generation framework called Sequential Information
Probing (SIP), to investigate the direct impact of state informa-

tion, or its absence, on agent behavior. To quantify the impact we

also propose two metrics under this SIP framework called Value
of Information (VoI) and Influence of Information (IoI). We

then theoretically derive several properties of these metrics. Fi-

nally, we present several experiments, including a case study on an

autonomous vehicle, that illustrate the efficacy of our method.
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1 INTRODUCTION
In an array of applications spanning from autonomous driving [37]

and communication networks [2] to healthcare [8], agents are in-

creasingly being tasked with executing sequential decisions. Yet,

in many of these scenarios, critical features essential for informed

decision-making are not directly observed by the agent. Hence, the

need for designing agents capable of reasoning about incomplete
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Figure 1: Example of sequential information probing (SIP) frame-
work eliciting counterfactual behavior of an autonomous driving
(AV) agent.

state information is paramount. The POMDP framework, with its ca-

pability to handle incomplete state information, has become the de

facto standard for modeling sequential decision-making problems

where some aspects of the world are not fully observable.

The complexities introduced by POMDPs often result in agents

adopting diverse strategies that are harder to explain, compared

with fully-observable settings. Consider the scenario in the original

world in Figure 1 where the agent is trying to choose between the

route 𝐺1 (more efficient) and the 𝐺2 while trying to reduce wait

time. In the fully observable case, The agent waits {𝑊 } for cars to
pass on 𝐿2 and then moves {𝑀} into the intersection. If 𝐿1 gets

blocked, it quickly takes a right turn {𝑇 } to avoid a risky collision

and ends up in 𝐺2; otherwise, it goes straight to 𝐺1. Now consider

the partially observable case. The agent’s sensor system takes a

while to estimate oncoming cars in 𝐿1 and 𝐿2. With each step the

agent chooses to wait, its estimates get better. On the other hand,

with each move step {𝑀 or 𝑇 } the estimate gets distorted. In this

case, the agent will first wait to improve its estimate of 𝐿2 and cars
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to pass (if any); then it will directly go to 𝐺2. It does not try to

reach 𝐺1 because even if all the uncertainty goes away initially;

after the agent takes the first move action the uncertainty about

𝐿1 will grow and it is risky to wait in the intersection to reduce

uncertainty.

Now, if we reveal the information about 𝐿1 and 𝐿2 for 1 step, the

AV will wait and let cars in 𝐿1 (if any) pass and make the right turn.

Importantly, the wait time will be reduced because the AV does

not have to fix its estimate. This will help the agent gain value by

reducing the time to reach its goal. Furthermore, in this scenario the

likelihood of observing the behavior {𝑊,𝑇 } goes down compared

to the original scenario because the agent sometimes takes a direct

right turn {𝑇 }. Now, if we reveal the status of 𝐿1 and 𝐿2 for multiple

steps, the agent starts to behave similarly to the fully observable

case, i.e., sometimes it goes to𝐺1 depending on the status of 𝐿1 and

thus can achieve even more value compared to a 1-step revelation.

Under this scenario, the likelihood of {𝑀,𝑀} and {𝑀,𝑇 } goes up
and {T} goes down. Notice that if we revealed only 𝐿1 or 𝐿2 the

impact will be different than revealing 𝐿1 ∧ 𝐿2.

The above example highlights two factors that play a key role

in the resulting counterfactual behavior: 1) the duration of infor-

mation probing (1-step or 𝑛-step), and 2) the type of information

(𝐿1 and/or 𝐿2). This underscores a few desired properties when

developing a framework for estimating the impact of imperfect

information on agents’ behavior. First, a flexible option for probing

information over a sequence of steps, and second, a fair mechanism

for distributing the benefits among the individual pieces of infor-

mation. This example also suggests useful metrics for analyzing

agent behavior, such as quantifying the change in the likelihood

of observing specific behaviors due to information probing and

calculating the change in the value function to estimate the impact

of missing information on agent performance. Despite the exten-

sive research on explainable AI [10, 11, 34], a significant gap exists

in the literature concerning the explainability of POMDP agents.

While a handful of prior works (e.g., [19, 36]) have delved into

explaining POMDP agents, to the best of our knowledge, none of

these methods focus on analyzing how missing information affects

an agent’s behavior through multi-step information probing.

To bridge the existing gap, we introduce a novel framework

called Sequential Information Probing (SIP) to analyze how imper-

fect information affects agents’ behavior. SIP is a flexible framework

that can probe information for varying durations and offer well-

defined guarantees. In particular, we focus on three variants: 1)

guaranteed 𝐾-step information, 2) probabilistic 𝐾-step informa-

tion, and 3) myopic 𝐾-step information. Each of these methods is

progressively cheaper to (pre-)compute. In the former two cases,

the agent is aware of information probing and adjusts its behavior

accordingly, while in the latter case, the agent utilizes information

on the fly and does not adjust its strategy. The latter two can be

applied for very large 𝐾 while the former cannot. However, our

experiment shows that the former can reveal counterfactual behav-

iors that require guaranteed observability for multiple time steps.

In the above scenario, the agent will not make the move {𝑀,𝑀}
without the guarantee that 𝐿2 will be revealed for at least 2 steps.

SIP enables us to quantify different measurements that can help

explain POMDP agent behavior. We focus here on two quantities: 1)

Value of Information (VoI) and 2) Influence of information (IoI). VoI

quantifies the value of different pieces of information by looking

at the difference in the expected utility of the probed agent and

the original agent. This quantity allows us to understand how the

performance of the agent gets impacted due to missing information.

Prior work on explaining MDP agents [29] has shown through

large user studies that people overwhelmingly prefer explanations

derived from a value function, offering further justification for

studying this measure. On the other hand, IoI quantifies the changes

in the negative log-likelihood of observing a particular behavior

due to information probing. This helps us distinguish information-

seeking and goal-oriented behavior as the likelihood of seeing an

information-seeking behavior goes down when the agent already

has the information. Finally, once these quantities are calculated,

SIP fairly distributes the contribution of each individual piece of

information toward the overall measure using the widely-used,

game-theoretic Shapley value [31]. In the above scenario, revealing

𝐿1 ∧ 𝐿2 results in the highest value gain. The Shapley value allows

us to find marginal contributions of 𝐿1 and 𝐿2 in that value gain.

Besides introducing the SIP framework, we also provide efficient

methods for pre-computing key steps of VoI and IoI calculation for

both discrete and continuous state spaces, which allows explana-

tions to be displayed in real-time. Additionally, we derive several

theoretical properties of VoI and IoI including a direct connection

between these two quantities. Finally, Our empirical evaluation

utilizes multiple POMDP models that simulate various scenarios

in autonomous driving, including a study of a real autonomous

vehicle (AV). In the AV setting, understanding the implications of

incomplete information can offer real-world safety benefits. We

report and analyze several quantitative measures including compu-

tational efficiency, consistency, and the similarities and differences

among different types of information probing.

2 LITERATURE REVIEW
Explainable AI (XAI). To foster broad adoption of autonomous

systems, it is crucial to establish user trust in these systems’ capa-

bilities [25, 33, 38]. It is well recognized that providing explanations

can bolster trust [12, 18, 26]. In explainable AI, feature attributions

are commonly used to elucidate how input features affect model out-

puts in tasks such as classification and regression. Notable feature

attribution methods include LIME [30], SHAP [35], and Saliency

Maps [1, 32]. In this study, similar to SHAP we too leverage Shapley

value to estimate the marginal impact of information about differ-

ent subsets of the features on the agent’s decisions. However, prior

methods generate explanations by single-step probing of the input;

which as shown in the introduction is not sufficient to produce

many nuanced behaviors in the POMDP setting. As the main focus

of our paper is to explain POMDP-based agents we keep our dis-

cussion about broader XAI research short, however, some excellent

reviews can be found in [4, 7, 10, 34].

Explanation for Sequential Decision Making. Research on

explanations for stochastic planners has been limited, with a few

notable studies. Elizalde et al. [14] highlighted crucial state factors

by examining changes in the value function by altering state factors

for a single step. On the other hand, works such as [6, 20, 22] explain

the agent’s behavior through the lens of the reward function. Addi-

tionally, broad classes of explanation methods for MDPs, such as
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model reconciliation [11] and policy summarization [3], have also

been proposed. Yet, a gap remains: none of these methods address

the consequences of having partial information on agent decisions.

Wang et al. [36] made an attempt to explain POMDP policies by

conveying the comparative probabilities of various events or belief

levels. Meanwhile, several techniques have been developed to ex-

plain deep reinforcement learning[19] that could potentially explain

certain aspects of POMDP-based decision-making. Nevertheless,

these methods neither delve into the effects of partial information

on POMDP agents nor differentiate between information-seeking

and goal-driven behaviors. Importantly, the idea of sequential prob-

ing is missing. Finally, ideas similar to the value of information

have been explored in prior literature on active sensing [16, 39]

and formal methods [9]. However, these works generally focus on

optimizing the cost of observation rather than explaining POMDP

agents. Further, SIP is a general framework that allows us to analyze

the effect of counterfactual information on an agent’s decisions

through many different quantities beyond VoI.

Evaluation of Explanations. Several quantitative and qual-

itative metrics have been suggested for assessing automatically

generated explanations. Prominent qualitative metrics encompass

aspects like Complexity, Interactivity, and User Preference [28].

Conversely, frequently adopted quantitative metrics are Fidelity,

Consistency, Coverage, Generalization, and Robustness [13, 28].

While both types of metrics offer important perspectives, the al-

gorithmic nature of our study led us to prioritize the quantitative

assessment of our approach.

3 BACKGROUND
This section provides a foundational understanding of the key con-

cepts: Partially Observable Markov Decision Processes (POMDPs),

solutions methods for POMDPs, and the Shapley value.

3.1 Partially Observable Markov Decision
Processes (POMDPs)

A POMDP is a tuple 𝑃 = ⟨𝑆,𝐴,𝑂,𝑇 ,Ω, 𝑅,𝛾⟩ where:
• 𝑆 is a finite set of states {𝑠1, 𝑠2, 𝑠3, ..., 𝑠 |𝑆 | } where each state

consist of a set of feature 𝐹 = {𝑓1, 𝑓2, 𝑓3, ...𝑓 |𝐹 | }.
• 𝐴 is a finite set of actions {𝑎1, 𝑎2, 𝑎3, ..., 𝑎 |𝐴 | }.
• 𝑂 is a finite set of observations {𝑜1, 𝑜2, 𝑜3, ..., 𝑜 |𝑂 | }.
• 𝑇 : 𝑆 ×𝐴 × 𝑆 → [0, 1] is the state transition function, where

𝑇 (𝑠, 𝑎, 𝑠′) represents the probability of moving from state 𝑠

to state 𝑠′ given action 𝑎.

• Ω : 𝐴 × 𝑆 ×𝑂 → [0, 1] is the observation function, where

𝑂 (𝑎, 𝑠′, 𝑜) is the probability of receiving observation 𝑜 after

taking action 𝑎 and ending up in state 𝑠′.
• 𝑅 : 𝑆 ×𝐴→ R is the reward function.

• 𝛾 ∈ [0, 1) is the discount factor.

3.2 Solutions Methods for POMDPs
The objective of a POMDP agent is to maximize its expected cumu-

lative discounted reward given by:

E

[ ∞∑︁
𝑡=0

𝜆𝑡𝑅(𝑠𝑡 , 𝑎𝑡 )
]
,

where 𝑠𝑡 and 𝑎𝑡 is the state and action at time 𝑡 . The solution

to a POMDP is a policy that maximizes this objective. A policy

𝜋 : 𝐵 → Δ𝐴 maps a belief 𝑏 ∈ 𝐵 to a distribution over actions

in 𝐴 where a belief 𝑏 ∈ 𝐵 is a probability distribution over 𝑆 . A

value function 𝑉 induced by a policy 𝜋 specifies the expected total

reward of executing policy 𝜋 starting from belief 𝑏:

𝑉 (𝑏) = 𝑅(𝑏, 𝜋 (𝑏)) + 𝛾
∑︁
𝑏′
𝑃𝑟 (𝑏′ |𝑏, 𝜋 (𝑏))𝑉 (𝑏′)

where 𝑃𝑟 (𝑏′ |𝑏, 𝑎) is the probability of transitioning to belief 𝑏′

using the observation received after taking action 𝑎. Similarly, we

can also derive a Q-function for a given policy 𝜋 :

𝑄 (𝑏, 𝑎) = 𝑅(𝑏, 𝑎) + 𝛾
∑︁
𝑏′
𝑃𝑟 (𝑏′ |𝑏, 𝑎)𝑉 (𝑏′) .

It is known that 𝑉 ∗, the value function associated with the opti-

mal policy 𝜋∗, can be approximated arbitrarily closely by a convex,

piecewise-linear function [23]. Hence:

𝑉 (𝑏) = max

𝛼∈Γ
(𝛼 · 𝑏);𝑄 (𝑏, 𝑎) = max

𝛼∈Γ∧A(𝛼 )=𝑎
(𝛼 · 𝑏);

where Γ is a finite set of vectors called 𝛼-vectors and A maps

each 𝛼-vector to an action 𝑎 ∈ 𝐴. However, when dealing with a

continuous state space, it is convenient to view the POMDPs as a

belief-space MDP. In this case, the agent considers its belief space

𝐵 as its state space 𝑆 . For a belief-space MDP, we can rewrite the

Q-function as follows:

𝑄 (𝑏, 𝑎) = 𝑅(𝑏, 𝑎) + 𝛾 E
𝑏′∼𝑇 (𝑏,𝑎)

[𝑉 (𝑏′) .]

Here,𝑇 (·, ·) is the belief transitionmodel. Usually, we do not have

access to𝑇 (·, ·), and therefore, it is convenient to apply a model-free

reinforcement learning algorithm to solve them. In such settings,

the Q function is usually represented using a neural network.

3.3 Shapley Values
The Shapley value [31] is a concept from cooperative game theory

used to fairly distribute a collective reward among players based

on their individual contributions. For a game with characteristic

function 𝑣 : P(𝑁 ) → R, where 𝑁 is the set of players and P(𝐹 ) is
the power set of 𝑁 , the Shapley value 𝐶𝑖 (𝑣) of player 𝑖 is defined
as:

𝐶𝑖 (𝑣) =
1

|𝑁 |!
∑︁

𝑝𝑟 ∈𝑃𝑟𝑁

[
𝑣 (𝐺𝑝𝑟

𝑖
∪ {𝑖}) − 𝑣 (𝐺𝑝𝑟

𝑖
)
]
. (1)

Here, 𝑃𝑟𝑁 is the set of all permutations of𝑁 , and𝐺
𝑝𝑟

𝑖
is the set of

players preceding 𝑖 in permutation 𝑝𝑟 . The Shapley value essentially

measures the average marginal contribution of a player across all

possible permutations. In our case, VoI or IoI can be considered as

the characteristic function 𝑣 and each player represents information

related to a particular feature.

4 SIP: SEQUENTIAL INFORMATION PROBING
In this section, we first give an introduction to the general frame-

work of Sequential Information Probing (SIP). We then define two

important measurements under this framework, namely VoI and IoI.

In SIP (Figure 1), we have two POMDP models: the original and the

mirror. The original and the mirror are equivalent in every aspect

except that in the mirror, the agent can perfectly observe 𝐹𝑖 ∈ P(𝐹 ) .
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For example in the scenario from the introduction we can construct

a mirror world where the agent could have perfect information

about {𝐿1}, {𝐿2}, or {𝐿1 ∧ 𝐿2}. To isolate the impact of sequential

information probing, we take two measurements of a quantity: one

by placing the agent in the original world, and another by placing

the agent in a mirror world, allowing it to take a sequence of steps

and then transporting it back to the original world. The difference

between these two measurements is the impact of sequential in-

formation probing on the corresponding quantity. We repeat this

for different subsets of the features and finally marginalize it using

the Shapley value to calculate the fair impact of each individual

feature.

How the agent is transported back to the original world has

computational implications when calculating measurements such

as VoI or IoI and the type of counterfactual behavior they can induce.

We consider 3 transportation approaches:

(1) [𝐾𝑆]: The agent stays exactly 𝐾 steps in the mirror world

and adapts its policy to exploit the available information.

(2) [𝐺𝐸]: The agent stays 𝐾 steps in expectation with 𝐾 ∼
𝐺𝑒𝑜𝑚𝑒𝑡𝑟𝑖𝑐 (1−𝜆) in the mirror world. Under this transporta-

tion approach, the agent can transport back to the original

world at each step with probability 1−𝜆. Similarly, the agent

adapts its policy to exploit the available information.

(3) [𝑀𝑌 ]: The agent remains in the mirror world for 𝐾 steps.

However, the agent does not adapt its policy to utilize the

additional information available in the mirror world but

rather keeps on using the policy computed for the original

world, leading to a myopic use of the available information.

Computationally this strategy is much simpler to compute

and may be preferable in certain settings.

4.1 Value of Information
The Value of Information (VoI) tries to quantify how imperfect

information about a subset of features affects agents’ performance.

More specifically, VoI quantifies the expected utility the agent loses

due to the lack of information about the subset of feature 𝐹𝑖 ⊆ P(𝐹 )
for the next 𝐾 time steps. If certain features have high VoI then a

utility-maximizing agent is more likely to seek that information and

vice-versa. Hence, VoI can be used as an indicator of that agent’s

propensity to seek information in the near future.

We now formally define VoI. Consider the value function that

gives the expected utility the agent could achieve from current belief

𝑏, and true state 𝑠𝑡 , if the perfect information about 𝐹𝑖 ⊆ P(𝐹 ) is
given for the next 𝐾 steps with 𝐾𝑆 strategy, 𝑉𝐹𝑖 ,𝑠𝑡 (𝑏, 𝐾):

𝑅(𝑏𝑠𝑡
𝐹𝑖
, 𝜋𝐹𝑖 (𝑏𝑠𝑡

𝐹𝑖
)) + 𝛾

∑︁
𝑏′
𝑃𝑟 (𝑏′ |𝑏𝑠𝑡

𝐹𝑖
, 𝜋𝐹𝑖 (𝑏𝑠𝑡

𝐹𝑖
))𝑉𝐹𝑖 ,𝑠𝑡+1 (𝑏

′, 𝐾 − 1) (2)

Here, 𝑏
𝑠𝑡
𝐹𝑖

is the updated belief 𝑏 we get using information about

𝐹𝑖 = 𝐹𝑖 (𝑠). 𝑏𝑠𝑡𝐹𝑖 can be written as 𝑏
𝑠𝑡
𝐹𝑖

= 𝑛𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑 (𝑏𝑠𝑡
𝐹𝑖
) where:

𝑏
𝑠𝑡
𝐹𝑖
(𝑠) =


𝑏 (𝑠), if 𝐾 > 0 ∧ 𝐹𝑖 (𝑠) = 𝐹𝑖 (𝑠𝑡 ),
0, if 𝐾 > 0 ∧ 𝐹𝑖 (𝑠) ≠ 𝐹𝑖 (𝑠𝑡 ),
𝑏 (𝑠), if 𝐾 ≤ 0,

Also, here 𝜋𝐹𝑖 is the optimal policy when the feature set 𝐹𝑖
is revealed. Now, we can similarly define 𝑉𝐹𝑖 ,𝑠𝑡 function for 𝑀𝑌

strategy simply by replacing 𝜋𝐹𝑖 with 𝜋 ∅ (i.e. original POMDP

policy). Finally, We can write 𝑉𝐹𝑖 ,𝑠𝑡 (𝑏,𝑀, 𝜆) for 𝐺𝐸 strategy:

𝑅(𝑏𝑠𝑡
𝐹𝑖
, 𝜋𝐹𝑖 (𝑏𝑠𝑡

𝐹𝑖
)) + 𝛾

∑︁
𝑏′
𝑃𝑟 (𝑏′ |𝑏𝑠𝑡

𝐹𝑖
, 𝜋𝐹𝑖 (𝑏𝑠𝑡

𝐹𝑖
))𝑑𝑉𝜆, (3)

where 𝑑𝑉𝜆 =
[
𝜆𝑉𝐹𝑖 ,𝑠𝑡+1 (𝑏′, 𝑀) + (1− 𝜆)𝑉𝐹𝑖 ,𝑠𝑡+1 (𝑏′, �̄�)

]
,𝑀 indicates

the mirror world and �̄� indicates the original world. Here, 𝑏𝐹𝑖 ,𝑠𝑡
has a similar definition as above with𝑀 being equivalent to 𝐾 > 0

and �̄� being equivalent to 𝐾 ≤ 0. Based on this we can define the

value of the sequence of information in 𝐾𝑆 strategy as the expected

difference between the value function without information probing

𝑉 and 𝑉𝐹𝑖 ,𝑠𝑡 :

𝑉𝑜𝐼 (𝑏, 𝐹𝑖 , 𝐾) = 𝐸𝑠𝑡∼𝑏 [𝑉𝐹𝑖 ,𝑠𝑡 (𝑏, 𝐾) −𝑉 (𝑏)] (4)

In reality, we do not have access to the true state and hence

expectation is taken over the agent’s belief of the true state. We

can similarly define VoI for 𝐺𝑆 strategy 𝑉𝑜𝐼 (𝑏, 𝐹𝑖 , 𝑀, 𝜆). Finally, in
order to get the marginal value of each feature we apply the Shapley

Value Framework:

𝐶𝑖 (𝑉𝑜𝐼 ) =
1

|𝐹 |!
∑︁

𝑝𝑟 ∈𝑃𝑟𝑁

[
𝑉𝑜𝐼 (𝐹𝑝𝑟

𝐹𝑖
∪ {𝐹𝑖 }, 𝑏, 𝐾) −𝑉𝑜𝐼 (𝐹𝑝𝑟𝐹𝑖 , 𝑏, 𝐾)

]
We now describe some of the important theoretical properties

1
of

the VoI.

Property 1. Null 1 : 𝑉𝑜𝐼 (𝐹𝑖 , 𝑏, 0) = 0; 𝑉𝑜𝐼 (𝐹𝑖 , 𝑏, 𝑀, 0) = 0.

Property 2. Null 2 : 𝑉𝑜𝐼 (∅, 𝑏, ·) = 0.

Property 3. Efficiency: 𝑉𝑜𝐼 (𝐹, 𝑏, ·) = ∑ |𝐹 |
𝑖
𝐶𝑖 (𝑉𝑜𝐼 ).

Property 4. Relation between KS and MY :
𝑉𝑜𝐼𝑀𝑌 (𝐹𝑖 , 𝑏, 𝐾) ≤ 𝑉𝑜𝐼𝐾𝑆 (𝐹𝑖 , 𝑏, 𝐾)

Property 5. Bounded: 0 ≤ 𝑉𝑜𝐼 (𝐹𝑖 , 𝑏, 𝐾) ≤ 𝑄𝑀𝐷𝑃 (𝑏) −𝑉 ∗ (𝑏).
where QMDP is defined as in [17].

While other feature attribution methods can be used one of

the main reasons for selecting the Shapley value is Property 3. By

combining properties 3 and 5, it can be shown that VoI can be can

be normalized to a scale of [0,1]. This allows easy comparison of

the value of a different set of features within a specific POMDP and

across different POMDPs.

4.2 Influence of Information
While VoI quantifies how imperfect information affects an agent’s

behavior in the near future it does provide a direct explanation of a

particular behavior. Therefore, we also introduce the Influence of

Information (IoI) to quantify how the likelihood of observing a be-

havior 𝜏 = {𝑏, 𝑠0, 𝑎0, 𝑜1, 𝑠1, 𝑎1, ..., 𝑜𝑇 , 𝑠𝑇 , 𝑎𝑇 } changes when probed

with sequential information. To do this, IoI tries to calculate the

Negative-log likelihood (NLL) ratio of observing 𝜏 under different

subsets of perfect information and original POMDP. Note that IOI’s

unit is in bits when used with base-2 logarithm. This measure can

be interpreted as the surprise associated with the observed behavior

given the sequence of information. The NLL of behavior 𝜏 is as

1
Proofs can be found in the extended version of the paper at https://sequential-

information-probing.github.io.
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follows:

− log𝑃 (𝜏 |𝜋 ) = −
𝑇∑︁
𝑡=0

log𝜋 (𝑎𝑡 |𝑏𝑡 ) −
𝑇∑︁
𝑡=1

log𝑇 (𝑠𝑡 |𝑎𝑡−1, 𝑠𝑡−1 )

−
𝑇∑︁
𝑡=1

log𝑂 (𝑜𝑡 |𝑎𝑡−1, 𝑠𝑡 )

(5)

If we consider an entropy regularized [15] policy 𝜋 then the

probability distribution over the actions 𝐴 is:

𝜋 (𝑎 |𝑏) = 𝑒𝑄 (𝑏,𝑎)∑
𝑎 𝑗 ∈𝐴 𝑒𝑄 (𝑏,𝑎

𝑗 )

On the other hand, if we consider a deterministic policy 𝜋 then we

can consider 𝜖-smooth probability distribution over the actions𝐴:

𝜋 (𝑎 |𝑏 ) =
{

1 − 𝜖, if 𝑎 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎∈𝐴𝑄 (𝑏, 𝑎),
𝜖
|𝐴|−1

, otherwise

Finally, we define the influence of sequential information probing

on the behavior 𝜏 as NLL-Ratio under the original policy 𝜋 and 𝜋𝐹𝑖 .

𝐼𝑜𝐼 (𝜏 − 𝜏𝑠 , 𝐹𝑖 ) = 𝐸𝜏𝑠∼D [− log

𝑃 (𝜏𝐹𝑖 |𝜋𝐹𝑖 )
𝑃 (𝜏 |𝜋) ] (6)

Here, 𝜏𝑠 is the sequence of state from 𝜏 . Since we do not observe

the states IoI is defined with 𝜏 −𝜏𝑠 .D is a distribution
2
from which

we sample 𝜏𝑠 . Finally, 𝜏𝐹𝑖 is the feature set 𝐹𝑖 augmented trajectory

meaning for a belief𝑏𝑡 from 𝜏 we use𝑏
𝑠𝑡
𝑡,𝐹𝑖

. Now, it can be shown that

the𝑇 -terms and𝑂-terms cancel each other and the 𝐼𝑜𝐼𝐹𝑖 (𝜏 − 𝜏𝑠 , 𝐹𝑖 )
becomes simplified:

𝐸𝜏𝑠∼D [
𝑇∑︁
𝑡=0

log𝜋 (𝑎𝑡 |𝑏𝑡 ) −
𝑇∑︁
𝑡=0

log𝜋𝐹𝑖 (𝑎𝑡 |𝑏𝑠𝑡𝑡,𝐹𝑖 )] (7)

Finally, for𝑀𝑌 strategy we can write 𝐼𝑜𝐼𝐹𝑖 (𝜏 − 𝜏𝑠 , 𝐹𝑖 ) as follows:

𝐸𝜏𝑠∼D [
𝑇∑︁
𝑡=0

log𝜋 (𝑎𝑡 |𝑏𝑡 ) −
𝑇∑︁
𝑡=0

log𝜋 (𝑎𝑡 |𝑏𝑠𝑡𝑡,𝐹𝑖 )] (8)

Property 6. Null (𝐹𝑖 = ∅): 𝐼𝑜𝐼 (𝜏 − 𝜏𝑠 , 𝐹𝑖 ) = 0.

Property 7. Efficiency ofmarginal IoI: 𝐼𝑜𝐼 (𝜏−𝜏𝑠 , ∅) =
∑ |𝐹 |
𝑖
𝐶𝑖 (𝐼𝑜𝐼 ).

Property 8. Relation to VoI: With D(𝜏𝑠 ) =
∏𝑇
𝑡=0

𝑝 (𝑠𝑡 |𝑏𝑡 ) and
entropy regularized policy the following relation holds,

| ≤ 𝐼𝑜𝐼 (𝜏 − 𝜏𝑠 , 𝐹𝑖 ) −
𝑇∑︁
𝑡=0

[𝑉𝑜𝐼 (𝑏𝑡 , 𝐹𝑖 ) −𝑄𝑜𝐼 (𝑏𝑡 , 𝐹𝑖 )] | ≤ 𝑙𝑜𝑔( |𝐴|)

.
Here, QoI can be derived by replacing the value function with the
Q-function in Equation 4.

5 CALCULATING VOI AND IOI
In this section, we describe methods for computing VoI and IoI

for both discrete and continuous state spaces. It consists of a pre-

computation step where we calculate all the probed value functions

for 𝐹𝑖 ∈ P(𝐹 ). After that explanations can be generated efficiently

during the deployment of the system in real time.

2
The natural choice for distribution is the one induced by the observation in 𝜏 .

5.1 Discrete State Space
We can pre-compute the main component of VoI, by generating a

combined POMDP model 𝑃𝐹𝑖 = ⟨𝑆,𝐴,𝑂,𝑇 ,Ω, 𝑅,𝛾⟩ of the original
and mirror worlds. For the 𝐾𝑆 strategy we can define 𝑃𝐹𝑖 as follows:

• 𝑆 is an augmented state spacewith 𝐹 = {𝑓1, 𝑓2, 𝑓3, ...𝑓 |𝐹 | , 𝑡𝑖𝑚𝑒}.
Here, 𝑡𝑖𝑚𝑒 ∈ {0, 1, ..., 𝐾} and indicates the number of steps

till information injection ends.

• 𝑂 is a finite set of observations by adding the true value

of features in 𝐹𝑖 ⊆ 𝐹 and 𝑇𝑖𝑚𝑒 . For example, instead of

receiving 𝑜𝑖 at 𝑡𝑖𝑚𝑒 = 𝑡 , the agent receives {𝑜𝑖 , 𝑡, 𝐹𝑖 (𝑠)}when
𝑡 > 0 and {𝑜𝑖 , 0, ∅} otherwise.
• 𝑇 : 𝑆 × 𝐴 × 𝑆 → [0, 1] is the augmented state transition

function defined as follows:

𝑇 (𝑠, 𝑎, 𝑠′ ) =


𝑇 (𝑠, 𝑎, 𝑠′ ), if 𝑡𝑖𝑚𝑒 (𝑠 ) = 𝑡𝑖𝑚𝑒 (𝑠′ ) = 0,

𝑇 (𝑠, 𝑎, 𝑠′ ), if 𝑡𝑖𝑚𝑒 (𝑠 ) = 𝑡𝑖𝑚𝑒 (𝑠′ ) + 1,

0, otherwise

• Ω : 𝐴×𝑆×𝑂 → [0, 1] is the augmented observation function,

defined as follows:

Ω (𝑎, 𝑠′, 𝑜 ) =


Ω (𝑎, 𝑠′, 𝑜 ), if𝑇𝑖𝑚𝑒 (𝑠 ) = 0 ∧ 𝑜 = {𝑜, 0, ∅},
Ω (𝑎, 𝑠′, 𝑜 ), if𝑇𝑖𝑚𝑒 (𝑠 ) > 0 ∧ 𝑜 = {𝑜,𝑇𝑖𝑚𝑒 (𝑠 ), 𝐹𝑖 (𝑠 ) },
0, otherwise

For the 𝐺𝐸 strategy we can define 𝑃𝐹𝑖 as follows:

• 𝑆 is an augmented state space with 𝐹 = {𝑓1, 𝑓2, 𝑓3, ...𝑓 |𝐹 | , 𝑀}
where𝑀 is an indicator variable showing whether the agent

is in the mirror world or not.

• 𝑂 is a finite set of observations by adding the true value of

features in 𝐹𝑖 ⊆ 𝐹 similar to the 𝐾𝑆 strategy.

• 𝑇 : 𝑆 × 𝐴 × 𝑆 → [0, 1] is the augmented state transition

function defined as follows:

𝑇 (𝑠, 𝑎, 𝑠′ ) =


𝑇 (𝑠, 𝑎, 𝑠′ ), if𝑀 (𝑠 ) = 𝑀 (𝑠′ ) = 𝐹𝑎𝑙𝑠𝑒,
(1 − 𝜆) ∗𝑇 (𝑠, 𝑎, 𝑠′ ), if𝑀 (𝑠 ) = 𝑇𝑟𝑢𝑒 ∧𝑀 (𝑠′ ) = 𝐹𝑎𝑙𝑠𝑒,
𝜆 ∗𝑇 (𝑠, 𝑎, 𝑠′ ), if𝑀 (𝑠 ) = 𝑀 (𝑠′ ) = 𝑇𝑟𝑢𝑒,
0, if𝑀 (𝑠 ) = 𝐹𝑎𝑙𝑠𝑒 ∧𝑀 (𝑠′ ) = 𝑇𝑟𝑢𝑒

• Ω : 𝐴×𝑆×𝑂 → [0, 1] is the augmented observation function,

defined as follows:

Ω (𝑎, 𝑠′, 𝑜 ) =


Ω (𝑎, 𝑠′, 𝑜 ), if𝑀 (𝑠′ ) = 𝐹𝑎𝑙𝑠𝑒 ∧ 𝑜 = {𝑜, ∅},
Ω (𝑎, 𝑠′, 𝑜 ), if𝑀 (𝑠′ ) = 𝑇𝑟𝑢𝑒 ∧ 𝑜 = {𝑜, 𝐹𝑖 (𝑠 ) },
0, otherwise

Notice that the combined POMDP of 𝐺𝐸 has 𝐾/2 times the smaller

number of states and 𝐾 times the smaller number of observations.

Also, notice that the𝑀𝑌 strategy only requires that we estimate the

𝑉𝐹𝑖 ,𝑠𝑡 (𝑏, 𝐾) under the original POMDP policy. This can be estimated

with a straightforward Monte-Carlo sampling strategy.

5.2 Continues State Space
Many practical problems require modeling with continuous state

spaces. In such scenarios, explicit representation of 𝑇 and 𝑂 is not

available and it is common to train the agent using a simulation of

the environment. Further, large or infinite state spaces can make it

impossible to apply 𝛼-vector policy representation. To solve this,

the predominant approach is to use deep reinforcement learning on

the belief state. Further, if an explicit belief update is not available,
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Algorithm 1 Meta-CDQL

Require: 𝑄
𝜃
, 𝐵
𝜙
, Transition strategy 𝑇𝑆

1: 𝑄𝑀
𝜃
← Initialize randomly

2: 𝐵𝑀
𝜙
← Initialize randomly

3: Replay_Buffer← ∅
4: while Condition not met do
5: ℎ0, 𝑠0 ∼ 𝑠𝑖𝑚𝑢𝑙𝑎𝑡𝑒 (𝑄𝜃 , 𝐵𝜙 )
6: 𝐹𝑖 ∼ P(𝐹 )
7: 𝐷 ← Collect_Transitions(𝑄𝑀

𝜃
, 𝐵𝑀
𝜙
, ℎ0, 𝑠0, 𝐹𝑖 ,𝑇𝑆)

8: Replay_Buffer← Update(Replay_Buffer, 𝐷)

9: Update 𝑄𝑀
𝜃
, 𝐵𝑀
𝜙

using Eq. 9, 10, 11, 12

10: end while
11: return 𝑀𝑒𝑡𝑎 −𝑄𝜙,𝜃

one can jointly learn the belief update function along with the

policy. We now extend VoI and IoI to such scenarios.

For VoI and IoI we need to estimate a set of counterfactual values

and policies corresponding to each 𝐹𝑖 ∈ 𝐹 . To address this, a simple

meta counterfactual Q-value estimation algorithm (Meta-CDQL) is

designed that jointly learns the Q-value function for each 𝐹𝑖 ∈ 𝐹 .
Note that we assume that the Q-function for the policy that will

be used during deployment is given. The choice for using Deep-Q

Learning [27] is purely due to simplicity and the estimation could

be done with other value-function-based Deep RL algorithms [5].

A sketch of the algorithm is given in Algorithm 1. The algorithm

takes input Q-function and belief update function 𝑄
𝜃
, 𝐵
𝜙
for the

original POMDP. The process starts by initializing the a meta-Q

function 𝑄𝑀
𝜃
, a meta-belief function 𝐵𝑀

𝜙
and a replay buffer (Lines

1 − 3). There are three key differences in the training process com-

pared to the standard implementation of deep Q-learning. First, the

starting history and state distribution are defined by the original

policy (Line 5). This is because during deployment we are required

to compute VoI or IoI starting from different history under the

original policy. Second, the Collect_Transition function takes in-

put a start state, history, and the feature set that will have perfect

information and generate transitions for training. The important

detail is that with 𝜆 probability at each step, the simulation will

stop giving information about 𝐹𝑖 for𝐺𝐸 strategy. For 𝐾𝑆 it will stop

after 𝐾 steps. Also, there should not be any transition that goes

from the original world to the mirror world in 𝐷 . Finally, we train

the Q-function using the standard Deep-Q learning loss function:

L(𝜃, 𝜙) = 1

𝑁

𝑁∑︁
𝑖=1

(𝑟𝑡 + 𝛾𝑄𝑀𝜃 (𝐵
𝑀
𝜙
(ℎ𝑡+1), 𝑎𝑚𝑎𝑥 ) −𝑄𝑀𝜃 (𝐵

𝑀
𝜙
(ℎ𝑡 ), 𝑎𝑡 ))2

(9)

Here, N is the batch size and 𝑎𝑚𝑎𝑥 is the action associated with

the max Q-value. Importantly, we introduce 3 regularization to

enforce 𝑄𝑀
𝜃
, 𝐵𝑀
𝜙

to emulate 𝑄
𝜃
, 𝐵
𝜙
when 𝐹𝑖 = ∅. This is desirable

for several reasons including speeding up training, faithfulness to

the original policy, and necessary for the 𝑀𝑌 strategy. First, we

want the difference between Q-estimates to be low when 𝐹𝑖 = ∅
L𝑄𝐷 (𝜃, 𝜙) = (𝑄𝑀

𝜃
(𝐵𝑀
𝜙
(ℎ), 𝑎) −𝑄

𝜃
(𝐵
𝜙
(ℎ), 𝑎))2 (10)

Second, we want the representation to be similar when 𝐹𝑖 = ∅.
L𝑅𝐷 (𝜙) = (𝐵𝑀

𝜙
(ℎ) − 𝐵

𝜙
(ℎ))2 (11)

Finally, we alsowant the two belief representations to induce similar

Q value in the original policy 𝑄
𝜃
when 𝐹𝑖 = ∅.

L𝑅𝐷2 (𝜃, 𝜙) = (𝑄
𝜃
(𝐵𝑀
𝜙
(ℎ), 𝑎) −𝑄

𝜃
(𝐵
𝜙
(ℎ), 𝑎))2 (12)

All the loss functions can be jointly optimized as:

L (𝜃, 𝜙) + 𝛽1L𝑄𝐷 (𝜃, 𝜙) + 𝛽2L𝑅𝐷 (𝜃 ) + 𝛽3L𝑅𝐷2 (𝜃, 𝜙) (13)

Once 𝑄𝑀
𝜃

and 𝐵𝑀
𝜙

are learned we can calculate 𝑉 𝜋
𝐹𝑖
(𝑏) as:

E𝑠∼G(ℎ)

[
max

𝑎∈𝐴
𝑄𝑀
𝜃
(𝐵𝑀
𝜙
(ℎ𝐹𝑖 ,𝑠 ), 𝑎) − max

𝑎∈𝐴
𝑄
𝜃
(𝐵
𝜙
(ℎ, 𝑎))

]
(14)

Here, G(ℎ) is a generator model that captures the distribution over

states given history.

6 EVALUATION
In this section, we experimentally analyze SIP, dividing our discus-

sion into two subsections. First, we conduct a quantitative analysis

of different variants of SIP, rigorously examining its computational

performance of pre-compute step, consistency, similarity, predic-

tive power, and faithfulness. Note that consistency is an important

measurement because the explanations are generated by solving

a set of surrogate POMDP models. Therefore, depending on the

solution the generated explanations might be different which is

undesirable. In the following subsection, we illustrate a case study,

of deploying SIP to enhance the decision-making transparency of

an actual autonomous vehicle.

6.1 Quantitative Evaluation
Environments. Our quantitative analysis is conducted across four

POMDP environments, each of which encapsulates interactions of

an autonomous vehicle (AV) under distinct scenarios:

(1) LEFT: A model where the AV makes decisions about an

unprotected left turn.

(2) CROSS: A scenario in which the AV is situated at the inter-

section of two crossroads, as depicted in the introduction.

(3) TL: A controlled intersection where the interaction between

the AV and an oncoming vehicle is mediated by a traffic light.

(4) PED: A model representing the interaction between the AV

and a pedestrian near an intersection.

The models encompass 12, 12, 24, and 36 states, respectively. Gen-

erally, each model assigns a substantial penalty for placing the AV

in hazardous situations, such as collisions or near-collisions. More-

over, agents are incentivized to attain their objective—typically

traversing the intersection—as promptly as possible.

Evaluation Metrics. We evaluate our method on several quan-

titative dimensions. First, we examine the computational perfor-

mance of 𝐾𝑆 , and𝐺𝐸 during the pre-computation steps using aver-

age time in milliseconds over 30 different runs. Subsequently, we

evaluate the consistency of the explanation generation method by

conducting the pre-computation step 30 times, generating expla-

nations for a single scenario from the 30 different pre-computed

values/policies. We repeated this for𝑀 scenarios. The measure of

consistency is derived from the average distance from the mean, as
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LEFT CROSS TL PED

KS 0.88 0.48 0.78 0.53

GE 0.89 0.53 0.85 0.69
MY 0.81 0.42 0.77 0.50

Table 1: Correlation between
VoI and IoI

LEFT CROSS TL PED

VoI IoI VoI IoI VoI IoI VoI IoI

KS 4.0 14.0 2.9 3.7 8.2 2.9 8.2 6.5

GE 35.5 35.5 35.4 35.4 7.3 3.0 4.6 5.4

MY 2.2 ∞ 1.1 ∞ 2.1 ∞ 2.0 ∞

Table 2:Consistency score of different SIPmethod
(higher score means higher consistency)

LEFT CROSS TL PED

VoI IoI VoI IoI VoI IoI VoI IoI

KS vs. GE 0.86 0.91 0.80 0.95 0.81 0.77 0.31 0.61

KS vs. MY 0.82 0.91 0.60 0.96 0.73 0.79 0.19 0.59

GE vs. MY 0.89 0.98 0.64 0.97 0.80 0.97 0.61 0.90

Table 3: Similarity of explanations using different
SIP methods (higher means more similar)

LEFT CROSS TL PED
Environments
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Figure 2: Computational load for different SIP methods

LEFT CROSS TL PED

VoI IoI VoI IoI VoI IoI VoI IoI

KS 2.4 2.6 1.2 1.1 1.3 1.4 1.1 1.2

GE 2.6 2.7 1.3 1.3 1.5 1.7 1.1 1.3

MY 1.8 ∞ 1.1 ∞ 1.8 ∞ 1.7 ∞

Table 4: Consistency score of different SIP method using Meta-
CDQL (higher score means more consistent)

LEFT CROSS TL PED

𝐿𝑄𝐷 ��𝐿𝑄𝐷 𝐿𝑄𝐷 ��𝐿𝑄𝐷 𝐿𝑄𝐷 ��𝐿𝑄𝐷 𝐿𝑄𝐷 ��𝐿𝑄𝐷

KS 97.2 95.2 94.5 91.3 91.3 88.4 93.8 88.0

GE 98.7 96.5 98.9 96.3 94.7 90.4 95.1 92.1

Table 5: Faithfulness to Policy induced by𝑄 ¯𝜃

expressed below:

Consistency = − log


1

𝑀

𝑀∑︁
𝑖=1

1

𝑁

𝑁∑︁
𝑗=1

(
𝐸
𝑗
𝑖
− 𝐸

)
2

 (15)

Here,𝐸
𝑗
𝑖
is the explanation computed for scenario 𝑖 using the pre-

computed value from run 𝑗 , This metric discerns the disparity

among different generated explanations. Additionally, to explore the

similarities and differences among different SIPmethods, we employ

Kendall’s rank correlation [21]. The reasoning behind utilizing rank

correlation for similarity stems from the fact that both VoI and IoI

rank features from the most to the least valuable/impactful, and

hence a metric that assesses the alignment between two rankings

is apt. Kendall’s rank correlation, denoted as 𝐾𝜏 , is a commonly

employedmetric with𝐾𝜏 ∈ [−1, 1]. A𝐾𝜏 greater than zero indicates
a positive correlation, and vice versa.

Computational Performance. The computational proficiency

during the pre-computation phase for various SIP transportation ap-

proaches is illustrated in Figure 2. The models were solved utilizing

the Julia implementation of thewidely-used SARSOP algorithm [24].

Anticipatedly, 𝐾𝑆 (Figure 2(a)) demands the lengthiest computation

time relative to 𝐺𝐸. Furthermore, as observed from Figure 2(b),

increasing 𝐾 for 𝐾𝑆 results in a non-linear escalation in computa-

tion time, indicating 𝐾𝑆 may be less apt for long horizon probing

under computational budget constraints. Nonetheless, given that it

is part of the pre-computation step, time restrictions may not pose

a significant challenge in numerous practical contexts. During the

explanation computation phase, 𝐾𝑆 and𝐺𝐸 showcase comparable

performance, whereas𝑀𝑌 (only for VoI), necessitating sampling,

requires a longer time. This may bear implications, particularly in

the settings that require real-time explanation generation; making

𝐾𝑆 and 𝐺𝐸 more desirable in such settings.

Consistency Analysis. The summarized results of the consis-

tency of the explanations, generated utilizing SARSOP and Meta-

CDQL, are presented in Tables 3 and 4. The emergence of the pattern

𝐼𝑜𝐼 ≤ 𝑉𝑜𝐼 is attributed to the fact that VoI is only calculated with

initial belief whereas IoI is calculated with a trajectory of belief. No-

tice that for𝑀𝑌 it is a little bit different. For IoI, we do not calculate

any new policy and get infinitely consistence explanations
3
. For

VoI, the inconsistency comes from sampling error. Finally, Meta-

CDQL displays less consistency in comparison to SARSOP, which

can be attributed to the intrinsic instability of deep reinforcement

learning algorithms and the stochastic nature of neural network

training. Although a more stable RL algorithm could improve the

results, it was not explored in our experiments. Overall, we found

the level of consistency in the tabular case for all SIP approaches

to be highly reliable. Our suggestion for continuous state space

would be to use an ensemble of a learned Meta Q-function instead

of one to mitigate the consistency issue. As Meta Q-function will be

pre-computed for most applications; the additional computational

load can be reasonable.

Exploring the Predictive Capability of VoI.Next, we examine

the relationship between VoI and IoI. Given a behavior 𝜏 , the VoI is

calculated at the initial belief of 𝜏 , while the IoI is determined for the

entirety of the behavior 𝜏 . We then compare the ranking induced by

VoI with the absolute value of IoI—given its potential to be either

positive or negative. VoI ranks features with respect to their future

3
Note that we only train𝑄𝑀

𝜃
.

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1352



(a) Waiting at a controlled intersection (b) Sudden change in traffic light

Figure 3: Deployment of VoI on real-world AV system

performance from the initial belief, whereas IoI identifies which

feature indeed influenced the behavior. It can be hypothesized that

features deemed most valuable are likely to exert an impact on

future behavior, essentially positioning VoI as a predictor for IoI

prior to the behavior’s instantiation. Observations from Table 1

reveal a persistent positive correlation between these two metrics,

and in numerous instances, the correlation is notably strong. The

variances observed in the results can be ascribed to differing degrees

of stochasticity in the observation function 𝑂 and transition 𝑇 in

different environments.

Similarity. As alluded to in the introduction, the duration of

information probing exerts an impact on agent behavior, as does the

assurance regarding the duration of the information probing. For

instance, 𝐺𝐸, even with an expected probing surpassing 6, cannot

induce the {𝑀,𝑀} behavior in the agent discussed in the intro-

duction (i.e., the 𝐶𝑅𝑂𝑆𝑆 environment). This sets the stage for an

exploration of the similarity between the methods. Insights from

Table 3 indicate that 𝐺𝐸 and 𝑀𝑌 bear more resemblance to each

other than to 𝐾𝑆 . In the context of 𝐺𝐸, the agent remains unaware

of the duration for which the information will be probed, whereas,

in 𝑀𝑌 , the agent is oblivious to the probing of information alto-

gether. Both scenarios deprive the agent of a long-term guarantee

of accurate information, leading to the adoption of different

Impact of Regularization. Finally, we examine the influence

of employing 𝐿𝐷𝑄 regularization within the Meta-CDQL in terms

of how faithfully it predicts actions of the original POMDP policy.

Table 5 reveals that 𝐿𝐷𝑄 is effective in improving faithfulness. Addi-

tionally, we observed an expedited convergence of the Meta-CDQL

as a beneficial side effect of its application.

Overall, our experiments demonstrate that SIP can be made to

generate very consistent explanations and differences in compu-

tational requirements of different SIP methods. Furthermore, the

similarities across various SIP methods, and between IoI and VoI,

offer insight into the nuance of the different methods we present.

6.2 Application of SIP in a Real AV System
We implemented SIP within a real autonomous vehicle (AV) sys-

tem, specifically within a decision-making module, which is tasked

with executing decisions such as initiating motion (go), halting

(stop), edging, and turning. The decision-making mechanismwithin

the AV system is modeled using POMDPs. Typical vehicular inter-

actions during navigation (e.g., with a pedestrian, other vehicle,

traffic control, lane change, etc.) are represented through sepa-

rate POMDPs. These decision models work together continually

throughout the AV’s operation to navigate it safely toward the goal.

We employ Value of Information (VoI) to identify how different

features are influencing the AV’s behavior at each decision point.

Subsequently, the VoI is visualized on the AV’s developer interface.

For visualization of the VoI, a "?" symbol is superimposed atop each

feature modeled in the set of POMDPmodels. The opacity of this "?"

symbol is modulated by the corresponding VoI value. An example of

this is presented in Figure 4, which illustrates a real-world scenario

wherein the AV halts at a regulated intersection during a test drive

with a safety driver in an urban environment, awaiting the traffic

light to transition to green (Figure 4a). While stationary, the AV

maintains an accurate estimation of the light’s status therefore

we do not see any "?" symbol. After the light transitions to green,

the AV remains stopped even though it could start moving. This

delay is attributed to the agent’s existing uncertainty regarding

the light’s status after a recent change. During this interval, a "?"

symbol illuminates atop the traffic light (Figure 4b), indicative of

its high VoI. Lesser bright "?" symbols are also observed on an

oncoming vehicle as after the car crosses the traffic light they will

become important for navigation. Note that the scene is complex

and includes multiple other cars, pedestrians, and traffic control

elements. We focus on the simple traffic light interaction for ease

of illustration.

Leveraging the efficient pre-computation method presented in

this paper, we are able to generate explanations from approximately

20 POMDPs at a rate of 10 explanations per second per POMDP.

Within this system, VoI assists developers in exploring potential

rationales behind various observed behaviors in real-time. More-

over, it facilitates developers in debugging the system by revealing

situations where features that should have had a significant impact,

were not highlighted by the VoI, and vice versa.

7 CONCLUSIONS AND FUTUREWORK
We presented SIP, a new framework for analyzing POMDP-based

agent behaviors by sequentially probing counterfactual perfect

information and observing behavioral changes. Metrics like the

change in the value function (VoI) or change in the likelihood of

observing a given behavior (IoI) were proposed to quantify the

impact of the given information, while Shapley values help isolate

individual features’ contributions. Three SIP variants and meth-

ods for calculating VoI and IoI were explored, suitable for both

discrete and continuous states, with a thorough examination of

their theoretical and computational properties. Finally. SIP’s practi-

cal application was demonstrated in an autonomous vehicle (AV),

showcasing its role in enhancing transparency. Future work will fo-

cus on improving SIP’s pre-computation efficiency and consistency

in deep learning systems and conducting extensive user studies.
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