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ABSTRACT
The increasing availability of real-time crowd observation data
enables the development of agent-based crowd simulations that
incorporate real-time data feeds, i.e. live crowd simulations, which
achieve accurate crowd forecasting for real-time interventions for
improved and safer mobility. Various approaches for live crowd
simulations have recently been proposed. However, existing meth-
ods cannot offer long forecasting lead times, which are crucial for
planning and implementing timely interventions. To address this
issue, we develop a Bayesian behavioural model estimation for
live crowd simulations that sequentially estimates the underlying
behavioural model assumed behind the observed crowd flows. In
real crowds, although apparent behaviours change over time, an
invariable rule that determines behaviour often exists behind the
crowd. The developed method estimates the underlying invariable
behavioural model and provides reliable long-term crowd flow fore-
casting. The experimental results show that the developed method
can accurately forecast long-term crowd flows using aggregate ob-
servations, whereas the state-of-the-art forecasting method fails
to provide reliable forecasting when the apparent behavioural ten-
dency changes. We also demonstrate that the developed method
can provide forecasting results that are sufficient to consider inter-
ventions, even in the presence of a data-model mismatch.
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1 INTRODUCTION
Rapid global urbanisation has led to population concentration in
recent years, with over half of the world’s population living in
urban areas [2].When the crowd density exceeds a certain threshold
in these built environments, the crowd itself may cause injuries
or fatalities without any external hazards [16], resulting in crowd
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Figure 1: Schematic view of Bayesian behavioural model es-
timation for crowd flow forecasting.

disasters. Although Itaewon crowd crush in 2022 is a recent example
of a major crowd disaster, a number of crowd disasters has been
continuously reported worldwide for decades [11]. Due to the trend
of rapid urbanisation and increasing population density, there has
been a considerable rise in crowd disaster risks. This has facilitated
the need for methodological development to establish effective
crowd management strategies in urban environments.

Agent-based crowd simulation is a powerful tool for simulat-
ing crowd movements and has been used to study fundamental
crowd dynamics and design environments for improved crowd mo-
bility [18]. However, conventional agent-based simulations have
been rarely combined with real-time observation data and have
been limited to what-if analyses. Since real crowds often exhibit sig-
nificantly different movements compared to the predefined model
in what-if analyses, the conventional crowd simulations have the
difficulty in providing useful information for ongoing events. Less
accurate forecasting can lead to inappropriate decision-making or
interventions by policy makers, which may worsen the situation.

Live simulation is the recently proposed concept that repre-
sents large-scale agent-based simulations coupled with real-time
data [35]. By integrating real-time data feeds, live simulations pro-
vide short-term forecasting of an ongoing event, which is vital
information for real-time interventions. In recent years, real-time
crowd observation data have become readily available from var-
ious observation channels, such as cameras [33], GPS [3], Wi-Fi,
and Bluetooth [32]. The number of observation channels for crowd
monitoring has increased, particularly in smart cities [29]. Thus, the
available data are becoming rich. Live crowd simulations based on
such rich crowd observations are expected to be effective tools for
preventing future crowd disasters and improving mobility in urban
environments. However, despite such advanced concepts, there
is a lack of effective methodological development to achieve this.
Specifically, live crowd simulations that can forecast large-scale
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microscopic crowd flows with long forecasting lead times remain
a challenge. A long lead time is essential for real applications in
order to consider and implement appropriate interventions in a
timely manner. Such methodological developments help not only
to achieve better real-time crowd management, but also to build a
digital twin of cities [39], where an accurate crowd simulation is
vital for evaluating urban planning and policymaking.

In this paper, we develop a Bayesian behavioural model estima-
tion (BBME) for live crowd simulations, enabling accurate crowd
forecasting with long forecasting lead times. As shown in Fig. 1,
by using real-time aggregate crowd observations, the developed
method can sequentially estimate the behavioural model behind the
observed crowd flow,which enables highly reliable long-term crowd
forecasting. Through numerical experiments, we demonstrate that
the developed method can provide accurate crowd forecasting with
a long lead time, which is sufficient to consider interventions to
achieve improved mobility, whereas a state-of-the-art assimilation
method fails to provide reliable long-term crowd forecasting.

Our contributions: (i) Present the concept and implementation
of a Bayesian behavioural model estimation for live crowd sim-
ulations. (ii) Clarify the limitations of the state-of-the-art crowd
forecasting method in a realistic experimental setting, wherein
people’s apparent behavioural tendencies change over time. (iii)
Verify the performance of the developed method to provide ac-
curate crowd forecasting with sufficient forecasting lead time in
various experimental settings, including a practical scenario, i.e. a
data-model mismatch scenario.

2 RELATEDWORK
2.1 Crowd Simulation
Microscopic agent-based models that can consider individual-level
behaviour are becoming common in simulating crowd flows. To
date, various simulation models such as the force-based models [17],
cellular automata-based models [4], discrete choice-based mod-
els [1] and velocity-based models [37] have been proposed. These
models can simulate basic individual interactions (e.g. avoidance)
and the resulting collective crowd movement [9]. Accordingly,
crowd simulations have been actively used in various applications,
such as evacuation safety evaluation [41] and layout design [12].

2.2 Model Calibration
For realistic simulations, crowd simulation models and parameters
can be calibrated against real-world observations. By using crowd
observations such as individual trajectories and aggregate densities,
crowd simulation model parameters can be calibrated to better fit
the target observations [19, 20, 40]. In addition to the simulation
model parameters, behavioural models for realistic simulations
can be estimated based on the observations or questionnaire sur-
veys [10, 15, 30]. Such calibrated crowd simulations can perform
well for the target crowd; however, their applicability to different
crowd flows is unclear due to the variations inherent in human
behaviour. Such uncertainty in human behaviour in different cases
has conventionally limited the use of crowd simulations, mostly to
what-if analyses. However, this has motivated the methodological
development of live crowd simulations.

2.3 Live Simulation
Although this field remains largely unexplored, some studies have
attempted to develop methods for live crowd simulations, and a
majority are based on data assimilation techniques that have been
actively developed and used in atmospheric science for weather
forecasting [21]. Data assimilation for macroscopic crowds or mo-
bility flows has been studied [6, 24, 31, 34], wherein the microscopic
interactions among agents were simplified using network-based
models. Such simplified simulations can involve a relatively large
number of agents, but cannot consider two-dimensional micro-
scopic crowd interactions, which is essential for providing useful
information for crowd management. Some studies have attempted
to apply data assimilation techniques to two-dimensional micro-
scopic crowds [7, 8, 27, 38]. However, their results showed that
crowd forecasting for large microscopic crowds is difficult due to
the increased complexity associated with a large number of inter-
acting agents. As a result, the number of agents considered in these
studies was limited (e.g. tens of agents), which is insufficient for real-
world problems. Recently, sequential latent parameter estimation
(SLPE), which enables data assimilation for large but microscopic
crowd flows, was proposed [26]. With this method, microscopic
crowd flow forecasting involving thousands of agents has been
presented. However, their results indicated that the method pro-
vides reliable forecasting when the behavioural tendency of the
observing crowd is stationary, suggesting that the forecasting qual-
ity decreases with a long lead time, during which the observed
behavioural tendency of real crowds often changes. Consequently,
microscopic large-crowd forecasting with a long forecasting lead
time for interventions remains challenging.

3 METHODS
3.1 Crowd Simulation Model
We employed a simplified force-based crowd simulation model [25]
to simulate crowd movement. The movements of the agents are
described according to the social force model [17] as follows:

dv8
dC

=
E0
8
e0
8
− v8

gU
+
∑
8≠9

F8 9 , (1)

where v8 is the current velocity, E0
8
e0
8
is the desired velocity, gU

is the constant relaxation time, and F8 9 is the interaction force
between the agents. In this simplified model, the effect of obstacles
is modelled by no-entry rules, referencing 1 × 1<2 grids, rather
than calculating the force from obstacles. The interaction force F8 9
is calculated as follows [22]:

F8 9 = −∇r8 9 (:g−24−g/g0 ), (2)

where g is the projected time to collision, which is calculated using
linear extrapolation based on the relative velocity v8 9 = v8 − v9
and the relative displacements r8 9 = r8 − r9 , and : and g0 are the
constants. We employed this model because it was validated against
various fundamental diagrams [25]; however, other models simu-
lating realistic crowd movements, such as velocity-based models,
can be used as alternatives to estimate crowd flows.
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3.2 Behavioural Modelling
An agent’s behaviour is modelled as a choice behaviour based on
random utility theory [36]. We assume that the utility function of
individual 8 for alternative = has the following form:

*8= = +8= (X8= ;) ) + n8=, (3)

where+8= is the non-stochastic component of utility, which is func-
tion of the explanatory variables X8= and the parameters ) to be
estimated, and n8= is a random term representing the unobserved
components. If we assume that n8= is independently and identi-
cally Gumbel distributed, the probability that individual 8 chooses
alternative = can be expressed as follows [28]:

c8= =
exp(+8=)∑

<∈" exp(+8<) , (4)

where " denotes the choice set. The estimation procedure for the
behavioural model is described in the following sub-section.

3.3 Bayesian Behavioural Model Estimation
Based on crowd observations, we aim to sequentially estimate a
behavioural model that enables accurate long-term crowd forecast-
ing. For this purpose, we model the transition of crowd flows and
observations as a nonlinear, non-Gaussian state-space model [26]:

x: = 5 (x:−1, u: ), (5)

y: = ℎ(x: , n: ), (6)

where x: and y: are the state vector and the observation at time: , 5
is the agent-based crowd simulation, ℎ is the function to transform
a state x: to be consistent with an observation, and u: and n:
are the system and observation noise, respectively. Here, the state
vector includes not only the agent status, such as their positions and
velocities, but also the parameters ) for their behavioural model.
The stochastic factors in simulations can be considered as system
noise. The observation noise was not considered in this study.

We can then sequentially estimate the crowd state, including
behavioural model parameters, using a particle filter [14, 23] as
we obtain the crowd observations (Algorithm 1). In this study, the
weights of the particles were calculated based on the sum of the
errors between the observed and simulated population maps, i.e.
_
(;)
:

∝ exp(−∑ |y: − ℎ(x̂: ) |/f2), where we set f = 60. Residual
systematic resampling [5] was employed as resampling algorithm.
Similar to roughening [14], Gaussian noise n\ ∼ N(0, 0.05) was
added to the parameters ) at each assimilation step to explore
the various possible crowd states and maintain the diversity of
the ensembles. The number of particles # = 500 was consistently
employed in this study.This estimation procedurewas run every 500
simulation time steps, which is equivalent to 5 B in real-time. After
successive estimations, forward simulations with the estimated
crowd state and behavioural model provide crowd flow forecasting.

4 EXPERIMENTAL SETUP
4.1 Simulation Environment
We conducted various numerical experiments to verify crowd fore-
casting methods. Figure 2 shows the simulation environment and
the experimental setup. The environment has a 10-m-wide entrance
and two exits that have 1 m bottleneck width. A total of 5,500 agents

Algorithm 1 Bayesian Behavioural Model Estimation

1: Generating initial distribution {x(;)
0 |0}

#
;=1 with initial agent states

and behavioural model parameters ) .
2: for : = 1, · · · ,) do
3: Obtaining predictive distribution: {x(;)

: |:−1}
#
;=1 by x(;)

: |:−1 =

5 (x(;)
:−1 |:−1, u: ) for ; = 1, · · · , #

4: Calculating weights of particles: _ (;)
:

= ? (y: |x
(;)
: |:−1) for

; = 1, · · · , #
5: Normalising theweights of the particles: V (;)

:
= _

(;)
:

/∑! _
(!)
:

for ; = 1, · · · , #
6: Resampling to obtain particles {x(;)

: |: }
#
;=1, approximating fil-

tering distribution ? (x: |y1:: )'1/#
∑
; X (x: − x(;)

: |: )
7: end for

Figure 2: Simulation setup for numerical experiments.
Agents enter environment based on given flow rate and
choose either Exits 1 or 2. Orange and purple particles rep-
resent agents who chose Exits 1 and 2, respectively.

entered the environment from the entrance and exited through ei-
ther Exits 1 or 2. The agent entry flow rate changed from one to
five people/s over the simulation time, which resulted in various
crowding conditions. Similar to an existing study [8], the flow rate
is assumed to be known in the experiment because such objective
information can be obtained from various observations, such as
those from cameras installed in connecting aisles.

Although the flow rate is known, it is still difficult to accurately
forecast the crowd because we must predict the decision-making of
the people, i.e. the tendency of the exit choice in this case, which is
a psychological process and thus cannot be directly observed. In
this environment, Exit 1 was located closer to the entrance than
Exit 2, and people usually preferred Exit 1. However, some people
may prefer Exit 2 to Exit 1 if Exit 1 becomes overcrowded. Such
decision-making certainly exists in our daily lives, but it cannot
be directly observed. For accurate forecasting, we must infer these
internal decision-making rules. We aim to estimate this tendency
of subjective decision-making solely from objective crowd observa-
tions. As the available observations, only crowd population maps
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with the resolution of 10 × 10<2 were considered in this study. To
verify the forecasting lead time, the available observation period
was consistently set to C ≤ 500 B , which is only the first quarter
of the total simulation time. The simulated environment and be-
haviours are simplified; however, similar situations can often be
observed in the real world, such as at train stations.

4.2 Experimental Scenario
We assume the following utility function for Exits 1 and 2 to explain
crowd movements:

+8= = \8=,0 + \8=,1-8=, (7)

where \8=,0 is the alternative-specific constant only valid for Exit
1 owing to normalisation (\82,0 = 0), and \8=,1 is the coefficient for
the perceived density -8= , which is calculated in the counting area
visualised in Fig. 2. Because the estimation of a large number of
heterogeneous parameters is intractable, we assumed homogeneous
parameters in the estimation (\81,0 = \0 and \8=,1 = \1). To prevent
biased estimations, the initial behavioural model parameters were
drawn from uniform distributions, i.e. \0 ∼ U(−5, 5) and \1 ∼
U(−5, 0). Although a simple behavioural model, such as a linear
utility function, is often specified in discrete choice modelling as
employed in this study, in principle, a more complex behavioural
model can be employed in the developed framework.

To verify the forecasting methods, we considered the following
scenarios with different decision-making rules:
Identical Twin Scenario. To verify the performance of the devel-
oped method, an identical twin approach [7, 8, 27, 38] was con-
sidered as the first scenario, wherein the observation data were
generated from the same system used for estimation. To synthe-
sise observation data, we ran a single forward simulation with
Gaussian-distributed individual heterogeneity with a 10% standard
deviation, i.e. \0 ∼ N(4.5, 0.45) and \1 ∼ N(−2.5, 0.25). Since this
simulation for generating data includes heterogeneous parameters
for different individuals and probabilistic choices, the model used
for the estimation, which assumes homogeneous parameters, does
not exactly match the synthetic data. Nevertheless, the system used
in the estimation is capable of representing the behavioural tenden-
cies of the observed data.
Data-Model Mismatch Scenario. In real applications, we can-
not determine the true form of the utility function to represent
observed behavioural patterns. As a result, a gap exists between
real behaviours and the model used for an estimation, i.e. data-
model mismatch [13]. Assuming such challenging situations in real
applications, we synthesised another observation dataset using a
different decision-making system, wherein agents have their own
tolerance parameter W8 , representing the acceptable degree of con-
gestion at Exit 1. If the number of people in the counting area at
Exit 1 exceeds W8 when agent 8 enters the environment, the agent
chooses Exit 2. Here, W8 is drawn from a mixed distribution of two
Gaussian, i.e. N(200, 50) and N(350, 50), resulting in a complex
multimodal distribution that is difficult to be estimated. In this sce-
nario, the choice of Exit 2 is caused only by the congestion at Exit
1, and the congestion at Exit 2 does not affect the choice, whereas
the model assumes that the density at the exits affects the utility
equally through \1; therefore, there is a clear data-model mismatch,
in addition to the complex parameter distribution.

5 RESULTS
5.1 Identical Twin Scenario
The forecasting results with the ground truth data in the identical
twin scenario is visualised in Fig. 3. Here, we also ran SLPE [26]
with the same observation data and assimilation window as the
state-of-the-art method for a detailed comparison. For the SLPE,
we followed the implementation in the original study [26], which
considered an estimation of the single exit preference parameter
\ . Within the assimilation period (C ≤ 500 B), both the SLPE and
BBME successfully estimated the crowd flows. Even with the coarse
observation having the resolution of 10 × 10 <2, both the SLPE
and BBME reproduced the crowd state, which was equivalent to
the ground truth density map (Fig. 3 (b)). However, the SLPE failed
to provide accurate crowd flow forecasting, showing less crowd
density at Exit 1 and largely overestimating the crowd extent at
Exit 2 (Fig. 3 (d)). In contrast, the BBME provided reliable long-term
crowd flow forecasting, which was equivalent to the ground truth
density map (Fig. 3 (e)).

For a quantitative evaluation, the time series of the number of
people near the exits (people inside the counting area visualised in
Fig. 2) are compared in Fig. 4. In this figure, the mean values and 90%
credible interval (CI) of the forecasting are presented along with
ground truth observations (every 5 s). As seen in the snapshots, the
quality of forecastingwith the SLPE started to degrade as soon as the
assimilation procedure ended. As a result, congestion forecasting
with the SLPE was largely diverged as the forecasting lead time
increased. In forecasting with the SLPE, the relative errors of the
peak population in the second crowd wave were 25.1% and 51.9%
for Exits 1 and 2, respectively. With the BBME, we obtained more
reliable crowd forecasting, even for long lead times. Even after
the assimilation period (C > 500 B), the method provided accurate
estimates of actual crowd flows with a narrow CI. While ensuring
sufficient lead time for interventions, the second congestion peak
at the exits was accurately forecasted with the relative errors of
1.3% and 14.6% for Exits 1 and 2, respectively. These results verify
that the BBME can provide reliable long-term crowd forecasting,
which is sufficient for timely interventions to manage congestion.

To understand how BBME achieved these successful long-term
crowd forecasts, the time series of the estimated parameters \0 and
\1 were investigated with the snapshots of the ground truth (Fig. 5).
Here, the mean values of the behavioural model parameters and
their 90% CI are visualised as estimates. In the early phase of the
assimilation period (C ≤ 50 B), \0 increased constantly, whereas \1
remains stable. From the crowd flow concentrated at Exit 1, the
BBME estimated that Exit 1 has a higher utility than Exit 2. Since
people rarely head to Exit 2, even when Exit 1 is crowded, the BBME
estimated a higher \1, indicating a lower weight for crowd density
(C ≤ 100 B). When Exit 1 became overcrowded and the number of
people choosing Exit 2 increased, a lower \1 was estimated to repro-
duce the crowd flow towards Exit 2. In successive periods, although
there were apparent behavioural changes, additional information to
determine behavioural model was not included in the observations.
Consequently, the estimated behavioural parameters were stable.
The BBME achieved successful long-term crowd flow forecasting
by estimating the invariable behavioural model behind the crowd
solely from coarse observations.
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Figure 3: Forecasting results (C = 100, 500, 1000, 1500 and 1800 B) in the identical twin scenario. (a) Ground truth (simulation view).
(b) Ground truth (density). (c) Observation (density). (d) Forecasting results with SLPE. (e) Forecasting results with BBME.

Figure 4: Forecasted exit congestion in the identical twin sce-
nario. Coloured range represents 90% CI of the forecasting.

Figure 5: Estimated behavioural model parameters (red line)
and the 90% CI (grey range) in the idential twin scenario.
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Figure 6: Forecasting results (C = 100, 500, 1000, 1500 and 1800 B) in the data-model mismatch scenario. (a) Ground truth (simula-
tion view). (b) Ground truth (density). (c) Observation (density). (d) Forecasting results with BBME.

5.2 Data-Model Mismatch Scenario
Figure 6 shows the forecasting results with ground truth data in the
data-model mismatch scenario. As observed in the identical twin
scenario, the BBME reproduced the densitymap that is equivalent to
the ground truth from coarse observations within the assimilation
period (C ≤ 500 B) in the data-model mismatch scenario. Even
in the presence of the data-model mismatch, the BBME provided
a good prediction of the timing of crowd flow moving towards
Exit 2 (C ∼ 1500 B) after the assimilation period. The resulting
extent of the congestion of the second peak of the crowd flow
forecasted by the BBME also agreed well with the ground truth data
(C = 1800 B). Overall, the BBME could provide qualitatively sufficient
information to consider timely interventions for managing the
forecasted congestion.

Figure 7 shows the forecasted exit congestion in the data-model
mismatch scenario. Similar to the results in the identical twin sce-
nario, the BBME followed the observations and successfully repro-
duced the time series of congestion during the assimilation periods
(C ≤ 500 B). However, some discrepancies between the ground
truth and forecasting were observed in successive periods in the
data-model mismatch scenario. Although the BBME provided good
estimates of the congestion at Exit 2 for the entire simulation time,

it failed to provide an accurate forecast of the exit congestion, es-
pecially for Exit 1. After the assimilation period (C > 500 B), the gap
between the ground truth and forecasting for Exit 1 became appar-
ent, and the second congestion peak at Exit 1 was underestimated.
The observed errors for Exit 1 indicate a limitation of the developed
method.

This performance degradation can be explained by the mismatch
between the observation data and the model used for the estimation.
In the behavioural model assumed in the BBME, the crowd density
at Exits 1 and 2 affects the utility of the exits with shared weight
\1. In contrast, the synthesised choice behaivour in the data-model
mismatch scenario is controlled solely by the tolerance parameter
W8 for Exit 1, and the congestion at Exit 2 does not affect the choice
behaviour. Thus, to reproduce the observed behavioural patterns
(both congestion at exits and crowd flow towards Exit 2) with the
assumed behavioural model, the relative exit-specific constant \0
had to be lowered to decrease the utility for Exit 1. To verify this
explanation, behavioural model parameters estimated in the data-
model mismatch scenario were investigated, as shown in Fig. 8. As
discussed, although \0 was stable in the identical twin scenario
(Fig. 5), \0 in the data-model mismatch scenario decreased in the
latter phase of the assimilation period (C = 350 to 500 B) when
Exits 1 and 2 were crowded. This estimated lower \0 led to the
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Figure 7: Forecasted exit congestion in the data-model mis-
match scenario. Coloured range represents 90% CI of the
forecasting.

Figure 8: Estimated behavioural model parameters (red line)
and the 90% CI (grey range) in the data-model mismatch sce-
nario.

observed underestimation of the time series of congestion at Exit 1,
as shown in Fig. 7. The data-model mismatch caused degradation
of the forecasting performance; however, the second peak of the
congestion was forecasted with reasonable errors, i.e. the relative
errors of 13.2% and 6.2% for Exits 1 and 2, respectively, which is
still sufficient for planning effective interventions (e.g. guidance)
to mitigate exit congestions.

6 DISCUSSION
We developed the Bayesian behavioural model estimation for live
crowd simulation, which enables long forecasting lead times for
large crowd flows. We further verified the method in both iden-
tical twin and data-model mismatch scenarios. As a state-of-the-
art method for large crowd forecasting, the performance of the
SLPE [26] was also verified using the same numerical settings for

comparison. Even with coarse observations, both methods could
reproduce fine density maps, which agreed successfully with the
ground truth data. In the successive period without observations,
while the SLPE failed to provide reliable long-term crowd forecast-
ing, the BBME offered good estimates of the future crowd state,
which was sufficient to plan effective timely interventions for better
crowd management.

The behavioural model assumed in the BBME is the key for reli-
able long-term crowd forecasting. In the identical twin scenario, the
SLPE estimated the exit preference parameter to reproduce the ap-
parent distributed crowd flow towards Exits 1 and 2. Consequently,
the forward simulation with the estimated parameter results in the
misestimation of crowd flows towards Exit 2, even when Exit 1
is not crowded. The results demonstrate that forecasting with the
SLPE is effective when the apparent behavioural tendency does
not change, although such a condition would rarely be observed in
real applications. In contrast, the BBME estimated the invariable
underlying behavioural model and successfully provided reliable
long-term forecasting. The combined use of the discrete choice
model and agent-based crowd simulation has been actively studied
in existing studies [10, 15, 30]. However, in previous studies, the
individual behavioural data for the model estimation were obtained
by identifying and tracking individuals, and the estimation of the
model was conducted offline using the individual observation data.
In contrast to these approaches, the BBME effectively estimates
the behavioural model in an online fashion using privacy-aware
coarse observations that do not locate individuals in grids. This
characteristic supports the applicability of the BBME in real-world
applications.

An additional advantage of the BBME is the flexibility in the
design of the utility function, which is assumed in the estimation. A
linear utility function is often assumed in discrete choice modelling
for the convenience of parameter estimation. Although this study
similarly employed a simple form of the utility function because
the primary purpose of this study was to verify the methods, the
BBME can consider a more complex form of the utility function in
principle. In addition, because the BBME does not require individual
observation, it can incorporate various forms of observation to
estimate the utility function. For example, the number of people
passing a certain aisle might be considered as an observation for
estimating route choice models to reproduce and forecast crowd
flows. Future work should investigate the applicability of the BBME
to different data or model settings.

A persisting challenge in real-world applications is the specifi-
cation of the decision-making model assumed for the estimation.
While the potential factors affecting decision-making are clear in
some conditions, such as exit or route choice problems, these factors
are not usually obvious in some real-world applications. The ex-
perimental results showed acceptable forecasting performance for
interventions, even in the data-model mismatch scenario. However,
the results also suggest that the forecasting performance would
be degraded if the assumed behavioural model was severely bi-
ased or mis-specified. Since reliable parameter estimation would
be difficult in the developed framework based on a particle filter
when the number of parameters to be estimated becomes large, it
is important to consider effective explanatory variables affecting
decision-making from many potential variables. The development
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of a less-biased data-driven design for the decision-making model,
which broadens the applicability of the forecasting method, is an
interesting challenge for future studies.
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