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ABSTRACT
Contact tracing can be thought of as a race between two processes:

an infection process and a tracing process. In this paper, we study

a simple model of infection spreading on a tree, and a tracer who

stabilizes one node at a time. We focus on the question, how should

the tracer choose nodes to stabilize so as to prevent the infection

from spreading further? We study simple policies, which prioritize

nodes based on time, infectiousness, or probability of generating

new contacts.
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1 INTRODUCTION
Mathematical models have played an important role in epidemiol-

ogy, providing tools and frameworks complementing empirical and

public health research. One key example are branching processes,

which lead to the development of the 𝑅0 metric for measuring the

spread of disease [19]. While there are many mathematical models

of the spread of disease, far fewer models exist for contact tracing.

Here we present an initial mathematical model of contact tracing

which we use to explore algorithmic questions in designing contact

tracing interventions.

Contact tracing is the iterative process of identifying individuals

(the contacts) exposed to an infected case [3, 25, 31]. These contacts

may then be tested for infection, treated, or quarantined, depending

on the nature of the disease, to limit the spread of further infections.

This can be thought of as a race between two processes: an infec-

tion process and a tracing process. The goal of the tracing process

is to identify infected cases faster than the disease spreads, so that

eventually no new infections occur, ie the infection is contained.
Contact tracing is often implemented by teams of human tracers,

and as a result, the tracing process is limited by the number of

human tracers available. A key strategic decision is how to maxi-

mize the effectiveness of this limited tracing capacity [16, 23, 29].

To simplify things, we model the tracing process as a single tracer
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who is given a list of contacts exposed to infection. We focus on the

question, given a list of contacts exposed to infection, which contact

should the tracer investigate or query next? In particular, how does

the tracer’s policy for querying contacts affect the probability that

the infection is contained?

One of the challenges in studying these questions is the lack

of simple models that manage to articulate trade-offs between the

infection and tracing processes. In the contact tracing literature,

there are few models which simultaneously capture the dynamics

of an infection process and a resource-constrained tracing process.

Recent surveys on the contact tracing literature specifically note

that “few models take the limited capacity of the public health

system into account” [23] or “consider...the practical constraints that

resources for contact tracing and follow-up control measures might

not be available at full throttle” [16]. Meanwhile, the literature on

probabilistic models provides many epidemic models on trees, but

these models do not consider the effect of a tracing process. Thus it

seems as if a model describing the interaction between an infection

process and a tracing process has been absent from these two fields.

This provides an opportunity to apply AI to automate decision-

making in a complex environment involving multiple agents.

Related work. A few other papers analyze contact tracing un-

der resource constraints, however in somewhat different settings.

In [20], Meister and Kleinberg develop a model of contact tracing

in which the infection and tracing processes operate in two disjoint

phases. In the first phase the infection spreads throughout the pop-

ulation; in the second phase the population is in “lockdown” and

no new infections occur. Tracing proceeds in the second phase, and

the tracer’s objective is to identify infected nodes efficiently so as to

maximize a total “benefit”. In contrast, this paper studies concurrent

infection and tracing processes, where the tracer’s objective is to

contain the spread of the infection.

Armbruster and Brandeau also study contact tracing under re-

source constraints in [1, 2]. In their model there are fixed resources

to allocate across the two interventions, contact tracing and surveil-

lance testing. The primary goal is to find the optimal allocation of

resources so as to provide the best health outcomes for the popula-

tion. They evaluate a few simple policies for prioritizing contacts

in [2], and choose the policy that results in the lowest prevalence of

infection for their main analysis in [1]. However, their main focus

is on determining the best allocation of resources across these two

systems. In comparison, our work focuses on analyzing and measur-

ing the performance of different prioritization policies across a wide

range of infection parameters. Li and collaborators study contact

tracing when there is a limit on the number of individuals that can

be quarantined in [17]. In [28], Guni and collaborators study the

problem of inferring which individuals in a populatin are infected

based on testing results for a subset of individuals and a contact

graph. Finally, in a somewhat different context, Ben-Eliezer, Mossel,
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and Sudan study a mathematical model of information spreading

on a network with errors in communication and investigate ap-

proaches for error correction [4].

The model. To address our questions, we need to be able to define
trade-offs between the tracer’s policy for querying individuals and

factors such as an individual’s rate of meeting new contacts and

the probability that they transmit the infection to a contact. To do

this, we develop a simple model of contact tracing on a tree, which

involves concurrent infection and tracing processes.

First we describe the infection process uninhibited by any trac-

ing. Each individual is represented as a node with a binary infection

status. A node 𝑣 is governed by two parameters: the probability 𝑞𝑣
that it meets a new contact and the probability 𝑝𝑣 that it transmits

the infection to a contact. These parameters are sampled indepen-

dently for each node, with 𝑝𝑣 ∼ 𝐷𝑝 and 𝑞𝑣 ∼ 𝐷𝑞 . We will discuss

more about these distributions later on, but the problem is still

interesting even when both distributions take just a single fixed

value. Initially all nodes are uninfected. In round 𝑡 = 0 a node 𝑟

becomes infected with a probability drawn from 𝐷𝑝 . In each round

𝑡 > 0, each node 𝑣 meets a new contact 𝑢 with probability 𝑞𝑣 . If 𝑣 is

infected, it infects 𝑢 with probability 𝑝𝑣 . This process generates a

tree, where 𝑟 is the root, the nodes in the first layer are 𝑟 ’s contacts,

the nodes in the second layer are contacts of those contacts, and so

on. If a node 𝑣 joins the tree in round 𝑡 , its time-of-arrival is 𝜏𝑣 = 𝑡 .

If root 𝑟 is not infected at 𝑡 = 0, the infection is trivially contained.

In order to define the tracing process, we assign each node a

second binary status, indicating whether it is active or stable. A
node that is active probabilistically generates new contacts at each

round, as defined by the infection process. A node that is stable no
longer generates new contacts and therefore cannot further spread

the infection. Initially, every node is active.
Contact tracing starts once the infection is already underway, at

time 𝑡 = 𝑘 , when the tracer identifies a root 𝑟 as an index case. From

then on the tracer selects one node to query at each step. Note that,

while the tracer only queries one node at each step, we can change

the rate of tracing relative to the infection process by changing the

contact probability 𝑞. Increasing 𝑞 causes the infection to spread

more quickly thereby decreasing the relative rate of tracing, and

decreasing 𝑞 causes the infection to spread more slowly, thereby

increasing the relative rate of tracing. Querying a node reveals

its infection status, and if a node is infected, two events occur:

(1) the node is stabilized and (2) the node’s children (ie contacts)

are revealed. Thus querying an infected node has two benefits:

it prevents further infections and reveals individuals exposed to

infection.
1
At step 𝑡 = 𝑘 the only node the tracer may query is the

root 𝑟 . From then on the tracer may only query a node if its parent

is an infected node queried on an earlier step.

We now describe the concurrent infection and tracing processes.

We say that an instance of the contact tracing problem is defined

by the three parameters 𝐷𝑝 , 𝐷𝑞 , and 𝑘 . The process begins at step

𝑡 = 0 when the root 𝑟 becomes infected with a probability drawn

from𝐷𝑝 . The infection process runs uninhibited for steps 0 ≤ 𝑡 < 𝑘 .

During each step 𝑡 ≥ 𝑘 , first the tracer queries a node and then

a single round of the infection process runs. During the infection

1
If an individual is found to be uninfected, they do not need to be stabilized, since they

cannot infect any contacts.

round only active nodes generate new contacts. The infection is

contained if the tracer stabilizes all infected nodes.

Policies for querying nodes. We can think of the tracing process

as maintaining a subtree where each node in the subtree has an

infected parent. The frontier is the set of all leaves in the subtree

which have not yet been queried. We assume that the tracer ob-

serves the triple (𝑝𝑢 , 𝑞𝑢 , 𝜏𝑢 ) for each node in the subtree and that,

for the purposes of querying, any two nodes in the frontier with the

same triple of parameters are indistinguishable. A policy is any rule

that dictates which node from the frontier is queried next. Note that

if the frontier is empty, then all infected nodes have been stabilized,

and therefore the infection is contained.

We say that a policy is non-trivial if it only queries the children

of infected nodes. (Since the children of uninfected nodes are guar-

anteed to be uninfected, there is no reason to query them.) The

remainder of the paper considers only non-trivial policies.

1.1 Summary and Overview of Results
We analyze the effectiveness of different tracing policies, with a

primary focus on the following question.

Question 1. How does the tracer’s policy for querying nodes affect
the probability that the infection is contained?

We study this question via both theoretical analysis and com-

putational experiments. To begin, we establish basic theoretical

bounds in section 2, which characterize the performance of any

non-trivial policy under certain conditions. In particular, we show

that if either the infection probability 𝑝𝑣 or the contact probability

𝑞𝑣 is sufficiently small for all nodes, then any non-trivial policy

contains the infection with high probability. On the other hand, we

show that if both contagion parameters are sufficiently large, then

every policy fails with high probability.

Thus the results in this first section focus on settings in which

policy choice is inconsequential; either any non-trivial policy is

likely to contain the infection, or no non-trivial policy is likely to

contain the infection. This motivates the question of whether there

exists an instance in which the choice of policy is significant.

Question 2. Is there an instance and a pair of policies A1 and A2

so that the probability of containment under A1 is greater than the
probability of containment under A2?

This question is the primary focus of the remainder of the paper.

To begin, we start with the simplest setting possible, where 𝐷𝑝

and 𝐷𝑞 are point mass distributions, that is, where all nodes have

the same values of 𝑝 and 𝑞. In such a setting, one might think

that the probability of containment ought to be agnostic to the

policy chosen by the tracer. However, two nodes with the same

infection and contact parameters 𝑝 and 𝑞 may still differ in their

time-of-arrival 𝜏 .

There are two natural policies for ordering nodes by time-of-

arrival. The ascending-time policy orders nodes by ascending time-

of-arrival, and the descending-time policy orders nodes by descend-

ing time-of-arrival. In section 3 we prove that for a specific choice

of 𝑝 and 𝑞, descending-time has a strictly higher probability of

containment than ascending-time. Given this result, one might

wonder whether descending-time is the better strategy in all in-

stances. In section 4 we compare the performance of ascending-time
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Figure 1: This example illustrates concurrent infection and tracing processes. The infection process begins at 𝑡 = 0 and runs
uninhibited for three steps. Tracing begins at 𝑡 = 3. At the start of step 𝑡 = 3, 𝑎 is the only node in the frontier. The tracer
queries 𝑎, and since 𝑎 is infected, its children 𝑏 and 𝑐 join the frontier. Then another round of the infection process runs, in
which every node that has not yet been queried probabilistically generates a new contact. In this case, 𝑐 generates child 𝑒. At
𝑡 = 4, the tracer queries 𝑐, which is infected, so 𝑒 joins the frontier. Another round of the infection process runs, where 𝑏

generates child 𝑓 and 𝑒 generates child ℎ. At 𝑡 = 6, the tracer queries 𝑏, the sole node in the frontier. Node 𝑏 is uninfected, so
the frontier is empty, and thus the infection is contained.

and descending-time for a large range of contagion parameters via

computational experiments and find numerous instances in which

we observe a significantly higher probability of containment for

ascending-time. From these computational experiments, we find

that each of the two policies commands a region of the parameter

space of non-trivial size where it enjoys signficantly better per-

formance, and we find that descending-time has the larger region.

In section 5 we explore instances in which different nodes may

have different contagion parameters. For these settings we study

policies that prioritize nodes by descreasing infection probability

𝑝𝑣 or by decreasing contact probability 𝑞𝑣 .

Paper organization. Webeginwith a summary of relatedwork. Sec-

tion 2 establishes basic theoretical bounds. Section 3 shows a spe-

cific instance where policy choice provably affects probability of

containment. Section 4 studies this question further, by compar-

ing the performance of the ascending-time and descending-time

policies via computational experiments. Section 5 compares the

performance of other policies for prioritizing nodes beyond time-

based methods. Finally, section 6 presents future work and open

questions.

Further Related Work. Tian et al. study Tuberculosis contact trac-

ing on a simulated network based on the population of Saskatchewan,

Canada, and compare different prioritization policies for tracing in-

dividuals, with a particular focus on prioritizations based on patient

demographics [30]. Prior work by Fraser et al. and Klinkenberg

studies when an outbreak of a disease may be contained by tracing

and isolation interventions, with a focus on HIV, smallpox, and

influenza, among other diseases [7, 14]. Hellewell et al. study this

question for COVID-19 specifically [8]. Kretzschmar et al. study the

effect of time delays on contact tracing for COVID-19 via computa-

tional simulations [15]. Kwok et al. reviewmodels of contact tracing

and call for more models to account for resource constraints in trac-

ing [16]. Kaplan et al. model a tracing and vaccination response to

a bioterrorism attack in [12, 13].

Muller et al. study contact tracing as a branching process [24].

Eames et al. study different contact tracing strategies for a com-

partmental model of infection [5, 9]. Eames and Keeling study the

relationship between the fraction of contacts which are traced and

the rate at which the disease spreads in the context of sexually

transmitted diseases [6].

2 BASIC THEORETICAL BOUNDS
Recall that a non-trivial policy is one which only queries the chil-

dren of infected nodes. Our basic theoretical bounds define condi-

tions under which any non-trivial policy succeeds and under which

any non-trivial policy fails. We focus on the following question.

Question 3. Fix a non-trivial policy 𝑃 . Under what conditions, with
high probability, does 𝑃 contain the infection? Under what conditions,
with high probability, does 𝑃 fail to contain the infection?

Figure 2 outlines our results in this section. First we establish

that, if either the infection probability 𝑝𝑣 or contact probability 𝑞𝑣 is

sufficiently small for all nodes, then any non-trivial policy contains

the infection with high probability, which is shown in theorems 1

and 2. On the other hand, if both the infection probability and

contact probability are sufficiently large for all nodes, theorem 3

shows that for any fixed non-trivial policy 𝑃 , with high probablity

𝑃 does not contain the infection.

2.1 Conditions Under Which Containment is
Likely

We present two theorems, which together show that if either the

infection probability or contact probability is below a certain thresh-

old for all nodes, then any non-trivial policy contains the infection

with high probability.
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Figure 2: Our basic theoretical bounds describe parameter
regimes in which the choice of policy is inconsequential. If
the infection or contact probability is very low for all nodes,
then any non-trivial policy contains the infection with high
probability, as shown in theorems 1 and 2. However, if the
infection and contact probabilities are both very high for
all nodes, then containment is highly unlikely, regardless
of the non-trivial policy chosen, as shown in theorem 3.

Defining a transcript. For the following two theorems it will be

helpful to analyze the tracing process through the lens of deferred

decisions. This analysis changes nothing about how the contact

tracing process is defined, but simply makes it easier for us to

analyze. First we will generate a transcript 𝑇 ′
0
,𝑇 ′

1
, . . . of a tree with

the given contagion parameters growing uninhibited by any tracing.

During the tracing process, we construct infection tree 𝑇0,𝑇1, . . .

by “replaying” the transcript. For example, when a new round of

infection occurs at time 𝑡 , we refer to 𝑇 ′
𝑡 to determine the nodes to

add to𝑇𝑡 and their infection statuses. The benefit of this framework

is that we can prove claims about the transcript 𝑇 ′
0
,𝑇 ′

1
, . . . , which

is often much easier to analyze, and show that these claims hold

for the infection tree 𝑇0,𝑇1, . . . as well.

To start, we show that if the contact probability 𝑞𝑣 is sufficiently

small for all nodes, then any non-trivial policy contains the infection

with high probability.

Theorem 1. Fix a failure probability 𝛿 ∈ (0, 1) and an arrival time
𝑘 ∈ N. Suppose that each node 𝑣 has infection probability 𝑝𝑣 ≤
1. There is a 𝑞(𝛿, 𝑘) ∈ (0, 1] such that, if each node 𝑣 has contact
probability 𝑞𝑣 < 𝑞(𝛿, 𝑘), then any non-trival policy contains the
infection with probability at least 1 − 𝛿 .

Proof Sketch. Recall that in each step, either the frontier is

empty and therefore the infection is contained, or the tracer stabi-

lizes one node from the frontier. Therefore, at any step 𝑡 > 𝑘 , either

the infection is already contained, or the tracer has stabilized at

least 𝑡 − 𝑘 nodes.

Let𝑇 ′
0
,𝑇 ′

1
, . . . be the transcript of a tree with the given contagion

parameters. The proof idea is to show that there is a time𝑚 > 𝑘 at

which point with probability at least 1 − 𝛿 , 𝑇 ′
𝑚 has at most𝑚 − 𝑘

nodes. By definition, 𝑇𝑚 has at most the number of nodes in 𝑇 ′
𝑚 .

Therefore, with probability at least 1−𝛿 , the tracer has contained the

infection by time 𝑡 =𝑚. We use Markov’s Inequality to bound the

number of nodes in𝑇 ′
𝑚 . ?? provides the full proof of theorem 1. □

Similarly, the following theorem demonstrates that if for all

nodes the probability of infection is below a certain threshold, then

any non-trivial policy contains the infection with high probability.

Theorem 2. Fix a failure probability 𝛿 ∈ (0, 1) and an arrival time
𝑘 ∈ N. Suppose that each node 𝑣 has contact probability 𝑞𝑣 ≤ 1. There
is a 𝑝 (𝛿, 𝑘) ∈ (0, 1] such that, if each node 𝑣 has infection probability
𝑝𝑣 < 𝑝 (𝛿, 𝑘), then any non-trival policy contains the infection with
probability at least 1 − 𝛿 .

Proof Sketch. Recall that only nodes with infected parents

ever enter the frontier. Additionally, recall that at each step either

the frontier is empty (and thus the infection is contained) or the

tracer stabilizes one node from the frontier. Therefore, by time

𝑡 > 𝑘 , either the infection is contained or the tracer has stabilized

at least 𝑡 − 𝑘 nodes with infected parents.

Let𝑇 ′
0
,𝑇 ′

1
, . . . be the transcript of a tree with the given contagion

parameters. The proof idea is to show that there is a time𝑚 > 𝑘 at

which point with probability at least 1−𝛿 ,𝑇 ′
𝑚 has fewer than𝑚 −𝑘

nodes with infected parents. Since 𝑇𝑚 has at most as many nodes

with infected parents as𝑇 ′
𝑚 , and since the tracer will have stabilized

at least𝑚 − 𝑘 nodes with infected parents by time 𝑡 =𝑚, it follows

that with probability at least 1−𝛿 the infection is contained by step

𝑚. ?? provides the full proof of theorem 2. □

With the above two theorems, we have established that if either

the infection probability or the contact probability is below a certain

threshold, any policy contains the infection with high probability.

2.2 Conditions Under Which Containment is
Unlikely

Here we show that if both the infection probability and contact

probability are above a certain threshold for all nodes, then the

infection is unlikely to ever be contained.

Theorem 3. Fix a policy 𝑃 . Fix 𝛿 ∈ (0, 1) and 𝑘 ≥ 3. There exist
𝑝, 𝑞 < 1 such that, if for all nodes 𝑣 𝑝𝑣 ≥ 𝑝 and 𝑞𝑣 ≥ 𝑞, with
probability at least 1 − 𝛿 , 𝑃 does not contain the infection.

Proof Sketch. The proof idea is to first show that, if at any

point in time the number of active infections reaches a certain con-

stant 𝐵, then with high probability the number of active infections

continues to grow exponentially regardless of the tracer’s actions.

Second, we show that for 𝑝 and 𝑞 large enough, with high proba-

bility the first 𝐵 nodes generated through the infection process are

infected nodes. We take a union bound over these two events to

prove the theorem. ?? provides the full proof of theorem 3. □

Thus, we’ve shown that there are settings in which any non-

trivial policy is likely to contain the infection, as well as settings

in which no non-trivial policy is likely to contain the infection.

However, does it matter which non-trivial policy we employ? The

remainder of the paper studies the following question in a variety

of different settings.
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Question 2. Is there an instance and a pair of policies A1 and A2

so that the probability of containment under A1 is greater than the
probability of containment under A2?

The following section proves that yes, there are settings in which

different policies result in different probabilities of containment.

3 POLICY CHOICE AFFECTS PROBABILITY
OF CONTAINMENT

In this section we show that policy choice affects the probability

of containment by providing an instance in which two non-trivial

policies have different probabilities of containment. Recall the two

policies presented in section 1, ascending-time and descending-time.

Ascending-time prioritizes nodes in order of increasing time-of-

arrival and descending-time prioritizes nodes in order of decreasing

time-of-arrival, as illustrated in ?? . In this section we demonstrate

an instance in which descending-time has a strictly higher proba-

bility of containment than ascending-time.

In theorem 4 we prove that, for a certain setting of infection

parameters, descending-time has a strictly higher probability of

containment than ascending-time. Our analysis in this proof is

centered around the different choices the two policies make for a

particular setting of parameters, illustrated in fig. 3.

Theorem 4. There is an instance in which two policies have different
probabilities of containment.

Proof. We provide an instance in which ascending-time and

descending-time have different probabilities of containment. Let

𝑝 = 0.9999985, let 𝑞 = 1, and let 𝑘 = 3. Consider the instance where

for all nodes 𝑣 , 𝑝𝑣 = 𝑝 and 𝑞𝑣 = 𝑞. For this instance, let P𝐴 be the

probability of containment for ascending-time, and let P𝐷 be the

probability of containment for descending-time. By analyzing the

first few nodes each policy queries, we will show that P𝐷 > P𝐴 .

The infection process is detailed in fig. 3. The intuition for the

proof rests on the fact that the left subtree (rooted at 𝑏) is initi-

ated one step before the right subtree (rooted at 𝑐). If 𝑏 is infected,

containing the infection in the left subtree is nearly hopeless, due

to this headstart. However, if 𝑐 is infected, we may still be able to

chase down the infection in the right subtree. An algorithm that

queries 𝑐 first (descending-time) has a shot at containing the infec-

tion in 𝑐’s subtree and, if 𝑏 is uninfected, successfully contains the

infection. An algorithm that queries 𝑏 first (ascending-time) allows

the infection to continue spreading in 𝑐 , at which point it may be

hopeless to contain the infection in the right subtree.

The proof analyzes five different infection status outcomes for

the nodes 𝑎, 𝑏, and 𝑐 , which partition the space of all outcomes,

as summarized in fig. 4. The full analysis is provided in ??. We

define a failure parameter 𝛿 = .001. For a node 𝑣 , 𝐸𝑣 is the event

that 𝑣 is infected. For each outcome 𝑢, we bound the probability

of containment for both policies conditional on outcome 𝑢, where

P𝐴 (𝑢) is the probability of containment for ascending-time and

P𝐷 (𝑢) is the probability of containment for descending-time. We

then upper bound P𝐴 and lower bound P𝐷 by computing the

average probability of containment over the outcomes 𝑢, weighted

by the probability Pr(𝑢) that the outcome 𝑢 occurs.

Using the bounds in fig. 4, we can lower bound P𝐷 and upper

bound P𝐴 .

P𝐷 ≥ (1 − 𝑝) + 𝑝 (1 − 𝑝)2 + 𝑝2 (1 − 𝑝)
P𝐴 ≤ (1 − 𝑝) + 𝑝 (1 − 𝑝)2 + 2𝛿𝑝2 (1 − 𝑝) + 𝛿2𝑝3

Therefore,

P𝐷 − P𝐴 ≥ 𝑝2 (1 − 𝑝) − 2𝛿𝑝2 (1 − 𝑝) − 𝛿2𝑝3

> 4.97 × 10
−7

Thus there is an instance for which descending-time has a strictly

higher probability of containment than ascending-time. □

4 TIME-OF-ARRIVAL HEURISTICS
As introduced in the previous section, there are two obvious policies

for prioritizing nodes by time-of-arrival. The descending-time policy
prioritizes nodes in order of descending time-of-arrival, and the

ascending-time policy prioritizes nodes based on ascending time-of-

arrival. The main question is, which policy has a higher probability

of containment?

The previous section provided a single setting of contagion pa-

rameters 𝑝 and 𝑞 in which descending-time provably has a higher

probability of containment than ascending-time. In this section we

explore the performance of both policies across a wide range of

contagion parameters via computational experiments. Our main

finding is that each of the two policies commands a substantial re-

gion of the parameter space in which it enjoys a higher probability

of containment than the other. These computational experiments

extend the conclusions of the previous section by demonstrating

numerous instances in which policy choice affects the probability

of containment. Moreover, since neither policy has the higher prob-

ability of containment in all instances, any comparison between

these two policies must take into account the contagion parameters.

Finally, our results qualitatively suggest that a trade-off between

𝑝 and 𝑞 may define the boundaries of these regions of dominance.

Further characterizing these regions is an intriguing direction for

future work.

Simulation overview. Our computational experiments focus on

the simple setting where every node is governed by the same in-

fection parameters 𝑝, 𝑞 ∈ [0, 1]. As a result, nodes differ only by

time-of-arrival. Our simulation implements the model described

in section 1, where 𝑘 = 3, 𝐷𝑝 is the constant distribution on 𝑝 , and

𝐷𝑞 is the constant distribution on 𝑞. Therefore an instance is de-

fined by the pair (𝑝, 𝑞). As defined in the model from section 1, the

infection is not contained if an infinite number of nodes become in-

fected. Since checking this condition is intractable, for the purposes

of our simulation we redefine containment in terms of a constant

𝑍𝐶 = 10; the infection is not contained if more than 𝑍𝐶 nodes are

active and infected.
2
If the tracer stabilizes every infected node

before this threshold is reached, then the infection is contained.

Even with such a constraint, the infection tree may grow quite

large before either of the above two terminating conditions is

reached. To manage the size of the tree, our implementation only

includes nodes in the tree that could at some point enter the frontier,

which are exactly the infected nodes and their children. Even so,

2
The process for choosing 𝑍𝐶 is described in ??.
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(a) At 𝑡 = 4, ascending-time queries 𝑏. (b) At 𝑡 = 4, descending-time queries 𝑐.

Figure 3: The example shows ascending-time and descending-time operating on the same transcript in a setting where all
nodes have the same infection probability 𝑝 = .9999985 and contact probability 𝑞 = 1. The infection process begins at 𝑡 = 0

and runs uninhibited for three steps. At 𝑡 = 3, both policies query 𝑎, and since 𝑎 is infected its children 𝑏 and 𝑐 both join the
frontier. Node 𝑏 has time-of-arrival 𝜏𝑏 = 1 while node 𝑐 has time-of-arrival 𝜏𝑐 = 2. Therefore at 𝑡 = 4 ascending-time queries
𝑏 while descending-time queries 𝑐. We analyze these two choices in theorem 4 to prove that, for this setting of parameters 𝑝
and 𝑞, descending-time has a strictly higher probability of containment.

𝑢 Pr(𝑢) P𝐴 (𝑢) P𝐷 (𝑢)
¬𝐸𝑎 1 − 𝑝 1 1

𝐸𝑎 ∧ ¬𝐸𝑏 ∧ ¬𝐸𝑐 𝑝 (1 − 𝑝)2 1 1

𝐸𝑎 ∧ ¬𝐸𝑏 ∧ 𝐸𝑐 𝑝2 (1 − 𝑝) ≤ 𝛿 1

𝐸𝑎 ∧ 𝐸𝑏 ∧ ¬𝐸𝑐 𝑝2 (1 − 𝑝) ≤ 𝛿 ≤ 𝛿

𝐸𝑎 ∧ 𝐸𝑏 ∧ 𝐸𝑐 𝑝3 ≤ 𝛿2 ≤ 𝛿

Figure 4: By considering the infection status outcomes for
the first few nodes in the tree, we can bound the proba-
bilities of containment for ascending-time and descending-
time. Here 𝑢 is an outcome describing the infection status
of nodes 𝑎, 𝑏, 𝑐 and Pr(𝑢) is the probability that outcome 𝑢

occurs. Given the outcome 𝑢, P𝐴 (𝑢) is the probability that
ascending-time contains the infection, and P𝐷 (𝑢) is the
probability that descending-time contains the infection.

there are still instances in which this tree could grow very large.
3

Therefore, we limit the size of the tree to 𝑍𝑇 = 1000 nodes. We will

argue below that this has only negligible effects on the computa-

tional results.

A trial is a single run of the simulation and terminates in one of

the following three states:

(i) The infection is contained: All infected nodes are stabilized.

(ii) The infection is not contained: The number of active infec-

tions exceeds 𝑍𝐶 .

(iii) The trial did not converge: The number of nodes in the tree

exceeds 𝑍𝑇 before either (𝑖) or (𝑖𝑖) occur.
Nearly all trials terminate in states (𝑖) or (𝑖𝑖); out of the ap-

proximately 2.88 × 10
11

trials run in total for all the computational

experiments we present, only 87 trials terminated in state (𝑖𝑖𝑖).
Given the miniscule fraction of trials that terminated in state (𝑖𝑖𝑖),
it seems unlikely that increasing 𝑍𝑇 would affect our results.

For a fixed instance (𝑝, 𝑞), we define a policy’s probability of

containment to be the probability that a trial terminates in state (𝑖).
3
See ??.

A policy’s observed probability of containment for a given instance

over a series of trials is the fraction of trials which terminate in

state (𝑖). Our goal in the computational experiments that follow is

to determine, for a given instance, which policy has the higher prob-

ability of containment based on each policy’s observed probability

of containment over a series of trials.

Computational experiments, part 1. Our computational experi-

ments
4
compare the probabilities of containment for descending-

time and ascending-time as the infection probability 𝑝 and the

contact probability 𝑞 range from .01 to 1 in increments of .01. Since

there are 100 possible values each of 𝑝 and 𝑞, this makes for 10
4

instances in total. For each instance (𝑝, 𝑞), we run 𝑁 = 7.5 × 10
6

trials for each policy. The observed probabilities of containment

across the entire parameter space are displayed in plots (a) and (b)

in fig. 5.

Results, part 1. Plots in (a) and (b) in fig. 5 summarize the re-

sults of our experiments. Intuitively, as 𝑝 and 𝑞 increase, the ob-

served probability of containment decreases for both policies. For

example, when at least one of 𝑝 or 𝑞 is at most 0.4, the smallest

observed probability of containment for ascending-time is 0.875

and for descending-time is 0.902. The observed probability of con-

tainment drops off quickly when both 𝑝 and 𝑞 are large. When

𝑝 = 𝑞 = .9, the observed probability of containment for ascending-

time is 0.231 and for descending-time is 0.293; when 𝑝 = 𝑞 = .95,

the observed probability of containment for descending-time is

0.108 and for descending-time is 0.148.

In comparing the two policies, we find that as 𝑝 and 𝑞 both

grow large, descending-time has the higher observed probability of

containment in many instances, and often by large margins. Even

in instances where ascending-time exhibits the higher observed

probability of containment, the margins are too small to make any

claims of statistical significance. It is therefore consistent with this

first round of computational experiments that descending-time

4
All computational experiments were run on a server with 144 Intel Xeon Gold 6254

CPUs and 1.5TB RAM running Ubuntu 20.04.4 LTS (Focal Fossa).
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(a) Observed probability of containment:
ascending-time

(b) Observed probability of containment:
descending-time (c) Regions of dominance

Figure 5: Plots (a) and (b) show the observed probability of containment for ascending-time and descending-time, respectively, from our first
round of computational experiments. Both policies contain the infection with high probability when at least one of 𝑝 or 𝑞 is low. When 𝑝 and
𝑞 are both large, the observed probability of containment decreases. Plot (c) shows regions where the two policies have significantly different
probabilities of containment. In the yellow region, descending-time is significantly better, and in the green region time ascending-time is
significantly better. The purple and blue points indicate instances where we do not have sufficient confidence to state which policy is better.

might always be the better policy. Could there be any instance

where ascending-time has the higher probability of containment?

Computational experiments, part 2. To investigate this further,

we run a second round of computational experiments, in which we

focus solely on instances where the absolute difference between the

observed probabilities of containment for the two policies is above a

fixed threshold. For these instances, we run a second round of trials.

Based solely on the trials run in the second round, we compute the

observed probabilities of containment for the two policies. We say

that a policy dominates an instance if we determine with confidence

at least 1/2 that it has a higher probability of containment than

the other. Instances where ascending-time dominates are colored

green, and instances where descending-time dominates are colored

yellow. All other instances are colored purple. Details of the second

round of computational experiments are described in ??.
Finally, to explore whether it is possible to achieve higher con-

fidence bounds, we run a series of 1.5 × 10
9
trials for each policy

for instance parameters 𝑝 = .19 and 𝑞 = 1, since this emerged from

the first set of computational experiments as a natural candidate

instance where ascending-time might be the better policy.

Results, part 2. Plot (c) in fig. 5 summarizes the results of the

second round of trials. As shown in the plot, descending-time domi-

nates a substantial region of the parameter space where 𝑝 and 𝑞 are

both large, while ascending-time dominates a band directly below.

There are 534 instances where ascending-time dominates and 3129

instances where descending-time dominates. We make no claims

for the remaining 6538 instances. As a note, one can qualitatively

observe these regions of dominance after running far fewer trials,

however a large number of trials is necessary for our confidence

guarantees.

Given the confidence bounds for plot (c), we can make some

further conclusions. First, we know that in any 5 × 5 square of

green instances, with confidence at least 1 − 2
−25

, there is at least

one instance where P𝐴 (𝑝, 𝑞) > P𝐷 (𝑝, 𝑞). Likewise, and with the

same confidence, in any 5 × 5 square of yellow instances there is at

least one instance where P𝐷 (𝑝, 𝑞) > P𝐴 (𝑝, 𝑞). Therefore, with high
probability there is a yellow cresent of instances where descending-

time has the higher probability of containment, as well as a green

crescent of instances directly below where ascending-time has the

higher probability of containment. We discuss some compelling

directions for future work related to characterizing this border

region in section 6.

Finally, while the guarantees for a individual instance in plot

(c) only hold with confidence 1/2, higher confidence guarantees
in these regions are also possible. From our series of 1.5 × 10

9

trials for instance parameters 𝑝 = .19 and 𝑞 = 1 we found that

P𝐴 (.19, 1) > P𝐷 (.19, 1) with confidence at least 1 − 10
−10

.

Comparison to other time-based policies. Ascending-time and

descending-time are two natural policies one might consider in

practice, and we would like to understand how they compare to

other time-based heuristics. Since there are countless ways to pri-

oritize nodes, how can we search the space to see whether these

policies are near-optimal?

We implement a heuristic search over policies that order nodes

by time-of-arrival, which we detail in ??. Our search finds no other

policy which far outperforms both ascending-time and descending-

time. To be clear, this null result does not preclude the existence

of such policies, which perhaps could be identified via more ad-

vanced techniques. Rather, the fact that these two policies perform

on par with policies found via a broad, heuristic search suggests

that ascending-time and descending-time are reasonable policies

to analyze and study.

5 BEYOND TIME-OF-ARRIVAL HEURISTICS
In all the instances we have seen so far, every node is governed

by the same contagion parameters 𝑝 and 𝑞. In this section we ex-

plore instances where different nodes may have different contagion
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parameters. This opens the door to many more potential policies.

Whereas nodes in previous sections were only distinguishable to

the tracer based on their time-of-arrival, now a node’s contagion pa-

rameters may play a factor in its prioritization. The main question

is, how should we prioritize nodes, given these three dimensions

𝑝𝑣 , 𝑞𝑣 , and 𝑡𝑣?

We explore three simple policies for prioritizing nodes: by de-

screasing infection probability 𝑝𝑣 , by decreasing contact probabil-

ity 𝑞𝑣 , and by decreasing time-of-arrival 𝑡𝑣 , which is exactly the

descending-time policy. We compare the performance of these three

policies across a range of instances via computational experiments.

We say that a policy dominates an instance if, of the three policies,

it has the highest probability of containment. We find that each

policy dominates a large region of the instance space, which further

supports our conclusions from section 4 that the performance of

different policies varies across instances.

Of course, each of the policies we consider prioritizes nodes

based on only a single dimension, and there are clearly numerous

other policies to consider. A compelling direction for future work

is to analyze policies which prioritize nodes based on multiple

dimensions.

Computational experiments. We compare the performance of the

three policies across a range of instances. Recall that we are studying

a mathematical process with a genuine probability of containment

which is different from the average observed over a series of trials.

The goal of our computational experiments is to determine which

policy has the highest probability of containment in each instance,

based on each policy’s observed performance over a series of trials.

A node 𝑣 has infection probability 𝑝𝑣 ∼ 𝐷𝑞 , where𝐷𝑞 is the uniform

distribution on [𝑝min, 1), and contact probability 𝑞𝑣 ∼ 𝐷𝑞 , where

𝐷𝑞 is the uniform distribution on [𝑞min, 1). Otherwise, the trials
follow the same process as in section 4. To generate our space of

instances, we let 𝑝min and 𝑞min range independently from 0 to 1 in

increments of .01. This results in a total of 10, 201 instances.

For each instance, we run 5×10
5
trials for each policy. Via ??, we

compute the confidence that the policy with the highest observed

probability of containment is also the policy with the highest (gen-

uine) probability of containment. If the confidence is at least 1/2,
the instance is marked with the color of the dominating policy.

Results. Figure 6 describes our results. Recall that these computa-

tional experiments involve infection and contact parameters drawn

from uniform distributions on [𝑝min, 1) and [𝑞min, 1), respectively,
while in section 4 all nodes in a given instance are governed by the

same parameters 𝑝 and 𝑞. First, we see that when the infection and

contact probabilities for all nodes are large, which happens when

𝑝min and 𝑞min are both large, descending-time dominates.

We do not yet have a mathematical understanding of these re-

gions or an explanation for when one policy might dominate an-

other, however we do draw one insight from these results. Con-

sider the green region where 𝑝min is small and 𝑞min is large. Since

𝐷𝑞 = Unif [𝑞min, 1), a large value of 𝑞min implies that 𝐷𝑞 has small

variance. Meanwhile, since 𝐷𝑝 = Unif [𝑝min, 1), a small value of

𝑝min implies that 𝐷𝑝 has large variance. As we see in the plot, in

this region the policy which prioritizes by probability of infection

𝑝𝑣 dominates. A similar phenomenon occurs in the yellow region

where𝑞min is small and 𝑝min is large. In this region the policy which

Figure 6: The above figure illustrates results from compu-
tational experiments where 𝑝𝑣 ∼ Unif [𝑝min, 1) and 𝑞𝑣 ∼
Unif [𝑞min, 1). Each pixel corresponds to an instance defined
by (𝑝min, 𝑞min).We compare the probabilities of containment
for three policies: prioritizing by 𝑝𝑣 , prioritizing by 𝑞𝑣 , and
descending-time.We say that a policy dominates if its proba-
bility of containment is signficantly higher than that of the
other two policies. Each pixel is colored to indicate which
of the three policies, prioritizing by 𝑝𝑣 (green), prioritizing
by 𝑞𝑣 (yellow), or descending-time (blue) dominates. Purple
indicates areas of no confidence.

prioritizes by contact probability 𝑞𝑣 dominates. The intuition that

we take away from this plot is that if there are very large differ-

ences in the variances of 𝐷𝑝 and 𝐷𝑞 , it is better to prioritize by the

parameter with the larger variance. There are numerous directions

for future work in this areas, which we outline in section 6.

6 CONCLUSION
In this paper we show, via both theoretical bounds and computa-

tional experiments, that policy choice affects probability of contain-

ment in many different settings and that the best policy to deploy

may depend on the parameters of the contagion.

One interesting avenue for future work would be to prove that

there is an instance where ascending-time has a higher probability

of containment than descending-time, complementing the result for

descending-time in section 3. Characterizing the curve in the 𝑝 − 𝑞

parameter space of fig. 5 plot (c) is another interesting direction, as

is exploring other policies for prioritizing nodes beyond time-based

methods.
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This paper takes a theoretical approach, and we do not con-

sider all the factors that would need to be addressed if one were

to implement such policies in the real world. Were such policies

implemented in the real world, we think it would be important

to ensure that whatever prioritization policy used is implemented

equitably. For example, a policy which prioritizes individuals by

recency of infection may not explore the contacts of individiuals

infected early on in the infection process. A team implementing

this policy would need to ensure that such prioritization would not

result in inequitable access for the given population. This would be

particularly important if traced nodes receive other benefits, such
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