
TaxAI: A Dynamic Economic Simulator and Benchmark for
Multi-Agent Reinforcement Learning

Qirui Mi
Institute of Automation, CAS

School of Artificial Intelligence, UCAS

Beijing, China

miqirui2021@ia.ac.cn

Siyu Xia
Institute of Automation, CAS

School of Artificial Intelligence, UCAS

Beijing, China

xiasiyu2023@ia.ac.cn

Yan Song
Institute of Automation, CAS

Beijing, China

yan.song@ia.ac.cn

Haifeng Zhang*
Institute of Automation, CAS

School of Artificial Intelligence, UCAS

Nanjing Artificial Intelligence

Research of IA

Beijing, China

haifeng.zhang@ia.ac.cn

Shenghao Zhu
University of International

Business and Economics

Beijing, China

zhushenghao@yahoo.com

Jun Wang
University College London

London, United Kingdom

jun.wang@cs.ucl.ac.uk

ABSTRACT

Taxation and government spending are crucial tools for govern-

ments to promote economic growth and maintain social equity.

However, the difficulty in accurately predicting the dynamic strate-

gies of diverse self-interested households presents a challenge for

governments to implement effective tax policies. Given its profi-

ciency in modeling other agents in partially observable environ-

ments and adaptively learning to find optimal policies, Multi-Agent

Reinforcement Learning (MARL) is highly suitable for solving dy-

namic games between the government and numerous households.

Although MARL shows more potential than traditional methods

such as the genetic algorithm and dynamic programming, there is

a lack of large-scale multi-agent reinforcement learning economic

simulators. Therefore, we propose a MARL environment, named

TaxAI, for dynamic games involving 𝑁 households, government,

firms, and financial intermediaries based on the Bewley-Aiyagari

economic model. Our study benchmarks 2 traditional economic

methods with 7 MARL methods on TaxAI, demonstrating the effec-

tiveness and superiority of MARL algorithms. Moreover, TaxAI’s

scalability in simulating dynamic interactions between the govern-

ment and 10,000 households, coupled with real-data calibration,

grants it a substantial improvement in scale and reality over ex-

isting simulators. Therefore, TaxAI is the most realistic economic

simulator for optimal tax policy, which aims to generate feasible

recommendations for governments and individuals.
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1 INTRODUCTION

The invisible hand [69, 70] of the market is not omnipotent, and in

reality, all countries rely on government intervention to promote

economic development and maintain social fairness. The extent

of government intervention varies from country to country, such

as a free market economy [8, 73], planned economies [57, 61] or

mixed economies [44, 45, 58]. However, determining the optimal

government intervention degree is challenging for several reasons.

Firstly, extracting relevant and actionable information from the

complex society is arduous. Secondly, governments face difficul-

ties in effectively modeling a vast and heterogeneous population

with diverse preferences and characteristics. Lastly, the behavioral

response of individuals to incentives remains highly unpredictable.

In this intricate matter of government intervention, we opt to

investigate a crucial and efficacious tool, tax policy, which is

commonly studied using agent-based modeling (ABM) [13, 23]

in economics. ABM is an effective approach to simulate individ-

ual behaviors and show the relationship between micro-level de-

cisions and macro-level phenomena. However, traditional ABM

suffers from simplicity and subjectivity in setting model param-

eters and behavior rules, making it difficult to simulate realistic

scenarios [13, 37, 51]. While Multi-Agent Reinforcement Learning

(MARL) surpasses traditional ABM settings by offering optimal ac-

tions based on evolving state information. Some MARL algorithms

perform well in partially observable environments and adaptively

learn to reach equilibrium solutions [33, 59, 72]. Hence, MARL is

well-suited for addressing dynamic game problems involving the

government and a large population. However, despite the significant

advantages of MARL, there is currently a shortage of large-scale

MARL economic simulators designed specifically for the study of

tax policies. In the existing literature, the AI Economist [84] and
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Table 1: A comparison of MARL simulators for optimal taxa-

tion problems.

Simulator AI RBC TaxAI

Economist Model (ours)

Households’ 10 100 10000

Maximum Number

Tax Schedule Non-linear Linear Non-linear

Tax Type Income Income Income&

Wealth&

Consumption

Social Roles’ Types 2 3 4

Saving Strategy × � �
Heterogenous Agent � � �
Real-data Calibration × × �
Open source � × �
MARL Benchmark × × �

the RBC model [21] emerge as the most closely related simulators

to TaxAI. However, these models exhibit certain limitations, no-

tably a partial grounding in economic theory, limited scalability

in simulating a significant number of agents, and the absence of

calibration using real-world data (as detailed in Table 1). Therefore,

proposing a more realistic MARL environment to study optimal tax

policies and solve dynamic games between the government and the

population holds significant research and practical value.

Therefore, we introduce a dynamic economic simulator, TaxAI,

based on the Bewley-Aiyagari economic model [1, 2], which is

widely used to study capital market frictions, wealth distribution,

economic growth issues. By incorporating the Bewley-Aiyagari

model, TaxAI benefits from robust theoretical foundations in eco-

nomics and models a broader range of social roles (shown in Fig-

ure 1). Based on TaxAI, we benchmark 2 economic methods and

7 MARL algorithms, optimizing fiscal policy for the government,

working and saving strategies for heterogeneous households. In our

experiments, we compared 9 baselines across four distinct tasks,

evaluating them from both macroeconomic and microeconomic per-

spectives. Our results reveal the tax-avoidance behavior of MARL-

based households and the varying saving and working strategies

among households with different levels of wealth. Finally, we test

the TaxAI environment using 9 baselines with households’ number

ranging from 10, 100, 1000, and even up to 10,000, demonstrating

its capability to simulate large-scale agents. In summary, our work

encompasses the following three contributions:

1. A dynamic economic simulator TaxAI. The simulator

incorporates multiple roles and main economic activities, employs

real-data calibration, and facilitates simulations of up to 10,000

agents. These features provide a more comprehensive and realistic

simulation than existing simulators.

2. Validation of MARL feasibility in optimizing tax poli-

cies. We implemented 2 traditional economic approaches and 7

MARL methods to solve optimal taxation for the social planner,

and optimal saving and working strategies for households. The

results obtained through MARL methods surpass those achieved

by traditional methods.

3. Economic analysis of different policies. We conducted

assessments from both macroeconomic and microeconomic per-

spectives, uncovering tax-avoidance behaviors among MARL-based

households in their pursuit of maximum utility. Furthermore, we

observed distinct strategies among households with differing levels

of wealth.

Codes for the TaxAI simulator and algorithms are shown in the

GitHub repository https://github.com/jidiai/TaxAI.

2 RELATEDWORKS

Classic Tax Models. Economic models provide powerful tools for

modeling economic activities and explaining economic phenom-

ena. In microeconomics, the Supply and Demand model [35, 68]

reveals the mechanism behind market price formation, while the

marginal utility theory [46] underscores the significance of con-

sumption decisions. In macroeconomics, the Keynesian Aggre-

gate Demand-Aggregate Supply Model [6, 31] addresses short-

term fluctuations and policy effects [30]. The Comparative Advan-

tage Theory [20, 43] in international trade explains collaborations

across nations. The Quantity Theory of Money [34, 55] investigates

the relationship between money supply and price levels. Regard-

ing the optimal tax problem, the Ramsey-Cass-Koopmans (RCK)

model [16, 48] studies the consumption and savings decisions of

representative agents but ignoring individual heterogeneity. The

Diamond-Mirrlees model [26, 27] considers the role of taxes and

labor supply in social welfare but overlooks income and asset taxes.

The Overlapping Generations (OLG) model [64] emphasizes inter-

generational inheritance and resource transfers [25, 36]. In contrast,

the Bewley-Aiyagari model [3, 11] can assess the impact of taxation

on growth, wealth distribution and welfare while simulating real-

world income disparities and risk-bearing capacity of individuals.

This makes the Bewley-Aiyagari model an ideal choice for studying

optimal taxation and household strategies.

Traditional Economic Methods. The optimal tax policy and wealth

distribution [10] have been extensively studied in economics. Ex-

isted works [3, 18] have utilized mathematical programming meth-

ods to address decision-making processes related to governments

and households [5, 12]. However, these approaches oversimplify

decision-makers rationality and fail to consider autonomous learn-

ing abilities and environmental uncertainties. In contrast, dynamic

programming-based approaches [28, 32] consider long-term conse-

quences and environmental dynamics but struggle to model non-

rational behaviors [15]. Alternative approaches, such as empirical

rules [40, 53] and Agent-Based Modeling (ABM) [71, 77], have

emerged to address these limitations. ABM enables the exploration

of micro-level behaviors and their impact on macro-level phenom-

ena, showing in the ASPEN model [7], income distribution [29] and

transaction development [47]. Despite the abundance of research

in economics based on ABM, this approach often involves rela-

tively simplistic and subjective specifications of individual behavior,

making it challenging to investigate the dynamic optimization of

individual strategies.

MARL and Simulators for Economy. MARL aims to address is-

sues of cooperation [14] and competition [83] among multiple

decision-makers [74]. The simplest MARL method Independent

Learning [56, 76], including IPPO [24], and IDDPG [52], involves
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each agent learning and making decisions independently, disregard-

ing the presence of other agents [75]. In the Centralized Training

Decentralized Execution (CTDE) algorithms, like MADDPG [54],

QMIX [62], and MAPPO [81], agents share information during

training but make decentralized decisions during execution to en-

hance collaborative performance. To address significant computa-

tional and communication overhead posed by a growing number

of agents [80], Mean-Field Multi-Agent Reinforcement Learning

(MF-MARL) [86] simplifies the problem by treating homogeneous

agents as distributed particles [38]. On the other hand, Heteroge-

neous Agent Reinforcement Learning (HARL) [85], HAPPO and

HATRPO, is designed to achieve effective cooperation in a general

setting involving heterogeneous agents.

Currently, there are not many efforts employing MARL meth-

ods to determine optimal tax policies and individual strategies.

The closest works to our paper include AI economist [84] and

the RBC model [21]. While they both account for fundamental

economic activities, they lack large-scale agent simulation, real-

data calibration, and MARL benchmarks. These limitations make

practical implementation challenging, which is why we introduce

TaxAI. Besides, prior research has already explored reinforcement

learning-based approaches in some subproblems. For instance, in

addressing optimal savings and consumption problems, some stud-

ies [4, 63, 67] have utilized single-agent RL to model the represen-

tative agent or a continuum of agents. Meanwhile, others have

employed MARL to solve rational expectations equilibrium [41, 50],

optimal asset allocation and savings strategies [60]. Regarding opti-

mal government intervention problems, research has explored the

application of RL in investigating optimal monetary policy [19, 42],

market prices [22, 66], international trade [65], redistribution sys-

tems [49, 79], and the cooperative relationship between central and

local governments under COVID-19 [78].

3 BEWLEY-AIYAGARI MODEL

In comparison to classical economic models in Section 2, we con-

tend that the Bewley-Aiyagari model serves as the most suitable

theoretical foundation for investigating optimal tax policy for the

government and optimal savings and labor strategies for house-

holds. In this section, we provide a brief overview of the Bewley-

Aiyagari model. This model encompasses four key societal roles:

N households, a representative firm, a financial intermediary, and

the government. The interactions among them are illustrated in

Figure 1. All model variables and their corresponding symbols are

organized in Appendix Table 8. More details on model assumptions

and dynamics are shown in Appendix A.3, A.4.

3.1 𝑁 Households

To avoid differences in age, gender, and personality, individuals are

modeled as households, whose main activities include production,

consumption, saving, and tax payments. At timestep 𝑡 , households’
income 𝑖𝑡 is derived from two sources. Theywork in the technology

firm for the labor income𝑊𝑡𝑒𝑡ℎ𝑡 , which depends on the wage rate

𝑊𝑡 , the individual labor productivity levels 𝑒𝑡 and the working

hoursℎ𝑡 . On the other hand, households can only engage in savings
and are assumed not to borrow (𝑎𝑡 ≥ 0). They earn interest income

𝑟𝑡−1𝑎𝑡 from savings, which depends on household asset 𝑎𝑡 and the

return to savings 𝑟𝑡−1.

𝑖𝑡 =𝑊𝑡𝑒𝑡ℎ𝑡 + 𝑟𝑡−1𝑎𝑡 (1)

In this model, 𝑁 households are heterogeneous in terms of labor

productivity levels 𝑒𝑡 and initial asset 𝑎0, and we model 𝑒𝑡 as either
being in a super-star ability or a normal state. In the normal state, it

follows anAR(1) process [12], amodel commonly used for analyzing

and forecasting time series data.

log 𝑒𝑡 = 𝜌𝑒 log 𝑒𝑡−1 + 𝜎𝑒𝑢𝑡 (2)

where 𝜌𝑒 is the persistence and 𝜎𝑒 is the volatility of the standard

normal shocks 𝑢𝑡 . In the super-star state, the labor market ability

is 𝑒 times higher than the average. The transition of households

from the normal state to the super-star state occurs with a constant

probability 𝑝 while remaining in the super-star state has a constant

probability 𝑞.
In addition, each household seeks to maximize lifetime utility (3)

depends on consumption 𝑐𝑡 and working hours ℎ𝑡 , subject to
budget constraint, where 𝛽 is the discount factor, 𝜃 is the coefficient

of relative risk aversion (CRRA), and 𝛾 represents the inverse Frisch

elasticity. 𝑇𝑁 denotes the maximum steps.

max E0

𝑇𝑁∑
𝑡=0

𝛽𝑡

(
𝑐1−𝜃𝑡

1 − 𝜃
−
ℎ
1+𝛾
𝑡

1 + 𝛾

)

s.t. (1 + 𝜏𝑠 )𝑐𝑡 + 𝑎𝑡+1 = 𝑖𝑡 −𝑇 (𝑖𝑡 ) + 𝑎𝑡 −𝑇
𝑎 (𝑎𝑡 )

(3)

The households are required to pay taxes to the government,

including consumption taxes 𝜏𝑠 , income taxes𝑇 (𝑖𝑡 ), and asset taxes
𝑇𝑎 (𝑎𝑡 ), the last two are expressed by a nonlinear HSV tax func-

tion [9, 40],

𝑇 (𝑖𝑡 ) = 𝑖𝑡 − (1 − 𝜏)
𝑖
1−𝜉
𝑡

1 − 𝜉
, 𝑇𝑎 (𝑎𝑡 ) = 𝑎𝑡 −

1 − 𝜏𝑎
1 − 𝜉𝑎

𝑎
1−𝜉𝑎
𝑡 (4)

where 𝜏, 𝜏𝑎 determine the average level of the marginal income

and asset tax, and 𝜉, 𝜉𝑎 determine the slope of the marginal income

and asset tax schedule. It presents a free market economy when all

taxes are equal to 0.

3.2 Technology Firm

As the representative of all firms and industries, the firm converts

capital and labor into goods and services. We assume it produces a

homogeneous good with technology, which can meet the consump-

tion need of households, following the Cobb–Douglas production

function,

𝑌𝑡 = 𝐾𝛼
𝑡 𝐿

1−𝛼
𝑡 (5)

where 𝐾𝑡 and 𝐿𝑡 are capital and labor used for production, 𝛼 is

capital elasticity, and we normalize the output price to 1. The firm

rent capital at a rental rate 𝑅𝑡 and hires labor at a wage rate𝑊𝑡 .

The produced output is used for all households’ gross consumption

𝐶𝑡 , government spending 𝐺𝑡 , and physical capital investment 𝑋𝑡 =
𝐾𝑡+1 − (1 − 𝛿)𝐾𝑡 , with the depreciation rate 𝛿 , so the aggregate

resource constraint is

𝑌𝑡 = 𝐶𝑡 + 𝑋𝑡 +𝐺𝑡 (6)

Suppose the firm takes the marginal income from labor as house-

holds’ wage rate𝑊𝑡 and the marginal income from capital as the
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Household’ lifetime utility:

saving consumption

working hours

no change

current utility

current wealth 

no change
current utility

current wealth 

Government (nonlinear tax)

300

700
700

300

15
35

10
40

wealth tax

wealth tax post-tax wealth

Wealth Gini = 0.45 Wealth Gini = 0.39

A B C

Figure 1: Model Dynamics in the Bewley-Aiyagari Model. A: Economic activities among the government, the firm, the financial

intermediary, and households. B: The influence of households’ saving and labor strategies on current utility and wealth.

Households must strike a balance between consumption and savings, as well as work and leisure, to optimize lifetime utility.

Increasing consumption enhances current utility but reduces current wealth, affecting future utility. Longer working hours

yield higher labor income, thereby increasing wealth, but simultaneously result in disutility. C: The effect of government

taxation on households’ wealth. The social planner employs a nonlinear taxation, applying varying tax rates based on different

assets. As tax rates rise, the taxes paid by households increase, with wealthier household contributing more. This narrows the

gap in households’ post-tax wealth, leading to a reduction in the Gini coefficient for wealth distribution.

rental rate 𝑅𝑡 .

𝑊𝑡 =
𝜕𝑌𝑡
𝜕𝐿𝑡

= (1 − 𝛼) (
𝐾𝑡
𝐿𝑡

)𝛼 , 𝑅𝑡 =
𝜕𝑌𝑡
𝜕𝐾𝑡

= 𝛼 (
𝐾𝑡
𝐿𝑡

)𝛼−1 (7)

Market clearing on labor and goods is an important assumption

for simplification, which means there is an equilibrium between

supply and demand. The goods market clears by Walras’ Law, and

the labor market clearing condition is 𝐿𝑡 =
∑𝑁
𝑖 𝑒𝑖𝑡ℎ

𝑖
𝑡 .

3.3 Government

The government has multiple goals, such as promoting economic

growth, maintaining social fairness and stability, and maximiz-

ing social welfare. To optimize these objectives, the government

typically employs three tools, including government spending 𝐺𝑡 ,

taxation 𝑇𝑡 , and debt 𝐵𝑡 with the interest rate 𝑟𝑡−1. For instance,
when maximizing economic growth, the government’s objective

and the budget constraint are as follows:

max 𝐽 = E0

𝑇𝑁∑
𝑡=0

𝛽𝑡
(
𝑌𝑡 − 𝑌𝑡−1
𝑌𝑡−1

)

s.t. (1 + 𝑟𝑡−1) 𝐵𝑡 +𝐺𝑡 = 𝐵𝑡+1 +𝑇𝑡

(8)

where taxes 𝑇𝑡 are derived from personal income taxes, wealth

taxes, and consumption taxes.

𝑇𝑡 =
𝑁∑
𝑖

(
𝑇 (𝑖𝑖𝑡 ) +𝑇 (𝑎

𝑖
𝑡 ) + 𝜏𝑠𝑐

𝑖
𝑡

)
(9)

In addition to the task of maximizing social welfare, the government

also has the objectives of maximizing economic growth, optimizing

social equity, and multi-objective optimization. The corresponding

mathematical objective functions are shown in the Appendix A.2.

3.4 Financial Intermediary

We posit a financial intermediary where households can deposit

their savings and the intermediary uses these funds to purchase

capital and government bonds. Its budget constraint is defined as:

𝐾𝑡+1 + 𝐵𝑡+1 −𝐴𝑡+1 = (𝑅𝑡 + 1 − 𝛿) 𝐾𝑡 + (1 + 𝑟𝑡−1) (𝐵𝑡 −𝐴𝑡 ) (10)

where 𝐴𝑡 are the gross deposits from the households. No-arbitrage

implies that 𝑅𝑡+1 = 𝑟𝑡 + 𝛿 .

4 TAXAI SIMULATOR

In this section, we model the above problem of optimizing tax poli-

cies for the government and developing saving and working strate-

gies for households as multiplayer general-sum Partially Observ-

able Markov Games (POMGs). In the POMGs 〈N ,S,O,A, 𝑃,R, 𝛾〉.
N = {2, ..., 𝑁 } denotes the set of all agents, S represents the

state space, O𝑖 denotes the observation space for agent 𝑖 , and
O := O1 × ... × ON. A𝑖 signifies the action space for agent 𝑖 , and
A := A1 × ... × AN. 𝑃 : S × A → Ω(S) denotes the transition

probability from state 𝑠 ∈ S to next state 𝑠′ ∈ S for any joint

action 𝑎 ∈ A over the state space Ω(S). The reward function

R := {𝑅𝑖 }𝑖∈N , here 𝑅𝑖 : S × A × S → R denotes the reward func-

tion of the agent 𝑖 for a transition from (𝑠, 𝑎) to 𝑠′. The discount
factor 𝛾 ∈ [0, 1) keeps constant across time. The specific details of

POMGs is shown in the Figure 2 and following paragraphs.

Observation Space O. In the real world, households can observe

their own asset 𝑎𝑡 and productivity ability 𝑒𝑡 , and acquire statistical
data about the population from the news.While the government can

collect data from all households and access currentmarket prices𝑊𝑡 .

However, the presence of a large number of heterogeneous house-

holds results in a considerably high-dimensional state space. To mit-

igate the dimensionality challenge, TaxAI categorizes households

based on their wealth into two groups [17]: the top 10% richest and
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Figure 2: The Markov game between the government and household agents. In the center of the figure, we display the Lorenz

curves of households’ wealth distribution. The global observation consists of the average assets 𝑎𝑡 , income 𝑖𝑡 , and productivity

level 𝑒𝑡 of the 50% poorest households and 10% richest households, along with the wage rate𝑊𝑡 . For the government agent, it

observes the global observation and takes tax and spending actions {𝜏𝑡 , 𝜉𝑡 , 𝜏𝑎,𝑡 , 𝜉𝑎,𝑡 , 𝑟
𝐺
𝑡 } through the actor-network. For household

agents, they observe both global and private observation, including personal assets {𝑎𝑖𝑡 } and productivity level {𝑒𝑖𝑡 }, and generate

savings and workings actions {𝑝𝑖𝑡 , ℎ
𝑖
𝑡 } through the actor-network. The actor-network structure in the figure is just an example.

the bottom 50% poorest households. The average wealth {𝑎𝑟𝑡 , 𝑎
𝑝
𝑡 },

income {𝑖𝑟𝑡 , 𝑖
𝑝
𝑡 }, and labor productivity levels {𝑒𝑟𝑡 , 𝑒

𝑝
𝑡 } of these two

groups are incorporated into the global observation. Therefore,

the government’s observation space O𝑔 = {𝑊𝑡 , 𝑎
𝑟
𝑡 , 𝑖

𝑟
𝑡 , 𝑒

𝑟
𝑡 , 𝑎

𝑝
𝑡 , 𝑖

𝑝
𝑡 , 𝑒

𝑝
𝑡 },

while the household agent 𝑖 can observe the global and its pri-

vate information O𝑖
ℎ
= {𝑊𝑡 , 𝑎

𝑟
𝑡 , 𝑖

𝑟
𝑡 , 𝑒

𝑟
𝑡 , 𝑎

𝑝
𝑡 , 𝑖

𝑝
𝑡 , 𝑒

𝑝
𝑡 , 𝑎

𝑖
𝑡 , 𝑒

𝑖
𝑡 }, 𝑖 ∈ {1, ..., 𝑁 }.

Moreover, the initialization of state information is calibrated by

statistical data from the 2022 Survey of Consumer Finances (SCF) 1.

Action Space A. The decision-making of household and govern-

ment agents needs to adhere to budget constraints at every step;

however, the abundance of constraints often renders many MARL

algorithms ineffective. Therefore, we have introduced proportional

actions to alleviate these constraints. For household agents, the

optimization of savings 𝑎𝑡+1 and consumption 𝑐𝑡 has been trans-

formed into optimizing savings ratio 𝑝𝑡 ∈ (0, 1) and working time

ℎ𝑡 ∈ [0, 1] · ℎ𝑚𝑎𝑥 , where ℎ𝑚𝑎𝑥 is calibrated by the real wealth-to-

income ratio data.

𝑝𝑡 =
𝑎𝑡+1

𝑖𝑡 −𝑇 (𝑖𝑡 ) + 𝑎𝑡 −𝑇𝑎 (𝑎𝑡 )
(11)

For the government agent, the fiscal policy tools include optimizing

tax parameters {𝜏𝑡 , 𝜉𝑡 , 𝜏𝑎,𝑡 , 𝜉𝑎,𝑡 }, and the ratio of government spend-

ing to GDP 𝑟𝐺𝑡 = 𝐺𝑡/𝑌𝑡 . Thus, the action space of the government

A𝑔 is {𝜏𝑡 , 𝜉𝑡 , 𝜏𝑎,𝑡 , 𝜉𝑎,𝑡 , 𝑟
𝐺
𝑡 }, while the action space of each household

A𝑖
ℎ
is {𝑝𝑖𝑡 , ℎ

𝑖
𝑡 }.

1https://www.federalreserve.gov/econres/scfindex.htm

Reward function R. The reward function for each household is

denoted as:

𝑟ℎ,𝑡 (𝑠𝑡 , 𝑎
𝑖
ℎ,𝑡 ) =

𝑐𝑖𝑡
1−𝜃

1 − 𝜃
−
ℎ𝑖𝑡

1+𝛾

1 + 𝛾
(12)

On the other hand, the government’s objectives are more diverse,

and we have defined four distinct experimental tasks within TaxAI:

(1) Maximizing GDP growth rate. (2) Minimizing social inequality.

(3) Maximizing social welfare. (4) Optimizing multiple tasks. For

more details about reward function see Appendix A.2. For example,

the government’s reward function when maximizing GDP growth

rate is denoted as:

𝑟𝑔,𝑡 (𝑠𝑡 , 𝑎𝑔,𝑡 ) =
𝑌𝑡 − 𝑌𝑡−1
𝑌𝑡−1

(13)

In summary, we outline three key improvements made in con-

structing the TaxAI simulator: (1) To bridge the gap between eco-

nomic models and the real world, we opt to calibrate TaxAI using

2022 SCF data. (2) To mitigate the curse of dimensionality associ-

ated with high-dimensional state information, we draw inspiration

from the World Inequality Report 2022 [17] and employ grouped

statistical averages for households as a representation of this high-

dimensional state information. (3) In response to the abundance

of constraints, we introduce the concept of proportional actions,

facilitating control over the range of actions to adhere to these

constraints. More details about environment setting are shown in

Appendix A, including model assumptions, terminal conditions,

parameters setting, and timing tests in Appendix B.

5 EXPERIMENTS

This section will begin by introducing 9 baseline algorithms 5.1, fol-

lowed by conducting the following three sub-experiments: Firstly 5.2,
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we aim to illustrate the superior performance of MARL algorithms

over traditional methods from both macroeconomic and microeco-

nomic perspectives. In the second part 5.3, we conduct an economic

analysis of the optimization process for government and hetero-

geneous household strategies. Lastly 5.4, we assess the scalability

of TaxAI by comparing the simulation results for different num-

bers of households, specifically N=10, 100, 1000, and even 10000.

Additional results on full training curves, economic evolution, and

hyperparameters, are shown in Appendix E.

5.1 Baselines

We compare 9 different baselines, including traditional economic

methods and 4 distinct MARL algorithms, providing a comprehen-

sive MARL benchmark for large-scale heterogeneous multi-agent

dynamic games in a tax revenue context. Additional experimental

settings are shown in the Appendix E.1.

(1) Traditional Economic Methods: Free Market Policy, Genetic

Algorithm (GA) [32].

(2) Independent Learning: Independent PPO [84].

(3) Centralized Training Distributed Execution: MADDPG [54],

MAPPO [82], both with parameter sharing.

(4) Heterogeneous-Agent Reinforcement Learning: HAPPO, HA-

TRPO, HAA2C [85].

(5) Mean Field Multi-Agent Reinforcement Learning: Bi-level

Mean Field Actor-Critic (BMFAC), shown in Appendix D.

5.2 Comparative Analysis of Multiple Baselines

We benchmark 9 baselines on 4 distinct tasks, with the training

curves of macroeconomic indicators in 3 tasks shown in Figure 3

and test results shown in Table 2 (Figure 8 in Appendix E presents

the training curves for 6 macro-indicators in 4 tasks). In Figure 3,

each row represents a task, including maximizing GDP, minimizing

inequality, and maximizing social welfare. Each column represents

a macroeconomic indicator, where longer years indicate longer eco-

nomic stability, higher GDP represents a higher level of economic

development, and a lower wealth Gini coefficient indicates fairer

wealth distribution. The X-axis of each subplot represents training

steps.

Macroeconomic Perspectives. From Figure 3, it can be observed

that in each macro-indicator, most MARL algorithms outperform

traditional economic methods. In the GDP optimization task, HA-

TRPO achieves the highest per capita GDP, while BMFAC performs

best in the tasks of minimizing inequality and maximizing social

welfare. Different algorithms also differ in terms of convergence

solutions. MADDPG excels in optimizing GDP but at the cost of

reducing social welfare for higher GDP. The BMFAC algorithm

excels in optimizing social welfare and the Gini coefficient. HARL

algorithms, including HAPPO, HATRPO, and HAA2C, can simul-

taneously optimize all four macroeconomic indicators, but while

achieving the highest GDP, social welfare is not maximized. On the

other hand, MAPPO excels in optimizing social welfare.

Microeconomic Perspectives. During the testing phase, we con-

duct experiments on households following random, GA, and MAD-

DPG policies within the same environment at each step. We utilize

10 distinct random seeds to simulate an economic society spanning

300 timesteps. In Figure 4, these subplots present various microeco-

nomic indicators, including the average tax revenue, average utility,

average labor supply, and average consumption for all households

at each time step. The random policy represents a strategy unaf-

fected by government tax policies, while the GA policy represents

a conventional economics approach. We observe that households

under the MADDPG strategy pay the lowest taxes, indicating tax

evasion behavior, while simultaneously achieving utility levels

significantly surpassing those of the GA and random policies. La-

bor supply and consumption are statistical measures of household

microbehavior. We find that MADDPG-based households tend to

opt for low consumption and reduced labor supply strategies.

Table 2: Test results for 9 baselines on 5 economic indicators

under maximizing social welfare task (𝑁 = 100 households).

Baselines Years Average Per Capita Wealth Income

Social Welfare GDP Gini Gini

Free market 1.0 2.9 4.3𝑒6 0.79 0.39
GA 200.0 6.9 1.2𝑒7 0.54 0.52
IPPO 162.7 1035.5 8.4𝑒6 0.62 0.44

MADDPG 204.2 1344.6 1.0𝑒6 0.61 0.58
MAPPO 274.5 3334.7 7.3𝑒6 0.61 0.65
HAPPO 298.7 1986.0 1.6𝑒7 0.52 0.54
HATRPO 300.0 1945.0 1.7e7 0.52 0.54
HAA2C 300.0 2113.3 1.4𝑒7 0.51 0.53
BMFAC 292.8 3722.2 2.8𝑒6 0.48 0.50

5.3 Economic Analysis of MARL Policy

Figure 5 illustrates the training curves of the MADDPG algorithm,

aiming to maximize GDP on TaxAI. We utilize the experimental

results to analyze the coordination of government actions (tax) and

households’ actions (labor and consumption) and their impact on

economic indicators. The X-axis represents steps, while the Y-axis

represents various economic indicators. In the subplots for income

tax, wealth tax, total tax, labor, consumption, and households’ utility,

we categorize households into three groups based on wealth: the

wealthy (top 10% richest), the middle class (top 10-50% richest), and

the poor (50-100% top richest). We display the average indicators

for these three groups as well as the average for all households

(purple line), other subplots represent macroeconomic indicators

(blue line). In each subplot, the solid line represents the mean of

experimental results under different seeds, and the shaded area

represents the standard deviation. The results of the testing phase

are presented in Table 3. The following are two intriguing findings:

1. MADDPG converges towards the highest GDP while compromis-

ing social welfare under maximizing GDP task. As observed from

Figure 5, during the initial 2𝑒5 steps, the government increases

income and wealth tax, leading to a reduction in the income and

wealth Gini, making the wealth distribution more equitable. Social

equity is a prerequisite for increasing the duration of the economic

system (measured by years). Simultaneously, households choose

to increase labor and reduce consumption, leading to a decrease

in their utility. As the total savings of households increase, finan-

cial intermediaries can provide more production capital to firms.
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Figure 3: The training curves for 9 baselines on 4 macro-economic indicators under 3 different tasks (𝑁 = 100).

Figure 4: The micro-level behaviors of Random, GA, and MADDPG households while facing identical observations in an episode

(300 steps). The subfigure illustrates the average values of labor provided, consumption, taxes paid, and utility for all households

at each step. The results reveal that MADDPG households exhibit tax evasion behavior and attain the highest utility.

Table 3: The per capita economic indicators of the MADDPG algorithm during the testing phase at 𝑁 = 100 for 3 household

groups and the average level across all households.

Households’ groups Income tax Wealth tax Total tax Labor supply Consumption Wealth Income Per year utility

The wealthy 1.9𝑒6 1.0e7 1.2e7 2.3𝑒6 4.4e7 5.3e7 5.5𝑒6 8.7
The middle class 5.7e6 3.0𝑒6 8.7𝑒6 7.1e6 6.4𝑒5 2.1𝑒7 7.2e6 −24.1

The poor 2.8𝑒6 1.2𝑒6 4.0𝑒6 4.9𝑒6 2.3𝑒5 9.2𝑒6 4.6𝑒6 −25.6
Mean value 3.8𝑒6 2.9𝑒6 6.7𝑒6 5.5𝑒6 4.8𝑒6 1.8𝑒7 5.7𝑒6 −22.7

The additional production labor and capital leads to an increase in

output (GDP). The wage rate tends to decrease with an increase

in labor and increase with a capital increase, exhibiting a trend of

initially decreasing and then increasing.

2. Different wealth groups adopt distinct strategies. From the ex-

perimental curves (Figure 5) and results (Table 3) for the wealthy,

the middle class, and poor households, we find the following pat-

terns: During 0 ∼ 2𝑒5 steps, the wealthy contribute significantly to

taxation. To stabilize their wealth, they increase work hours and

reduce consumption, leading to a decline in utility. In the second

phase (2𝑒5 ∼ 4𝑒5 steps), the wealthy maximize utility by reducing

work hours and significantly increasing consumption, even though

their wealth levels decrease. In the third phase (4𝑒5 ∼ 6𝑒5 steps), the
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Figure 5: Temporal evolution of economic indicators during MADDPG training under maximizing GDP task on TaxAI (𝑁 = 100).

wealthy simultaneously increase labor and consumption, resulting

in increased wealth while maintaining relatively stable utility. On

the other hand, the middle class and the poor slightly increase work

hours and reduce consumption during all three phases, leading to

modest growth in wealth but significantly lower utility compared

to the wealthy.

Table 4: The per capita GDP achieved by 9 baselines for differ-

ent numbers 𝑁 of households under maximizing GDP task.

Algorithm 𝑁=10 𝑁=100 𝑁=1000 𝑁=10000

Free Market 1.3𝑒6 4.3𝑒6 3.9𝑒6 4.0𝑒6
GA 1.7e8 1.5𝑒7 NA NA

IPPO 5.0𝑒6 1.6𝑒7 1.7𝑒7 1.6𝑒7
MADDPG 3.2𝑒6 1.1𝑒7 1.7𝑒7 1.7e7
MAPPO 6.1𝑒6 7.3𝑒6 1.2𝑒7 NA

HAPPO 1.8𝑒7 1.6𝑒7 1.5𝑒7 NA

HATRPO 3.2𝑒7 1.7e7 2.0e7 NA

HAA2C 1.6𝑒7 1.4𝑒7 1.6𝑒7 NA

BMFAC 4.0𝑒6 1.2𝑒7 1.2𝑒7 NA

5.4 Scalability of Environment

To showcase the scalability of TaxAI in simulating large-scale house-

hold agents, we conduct tests with varying numbers of households:

10, 100, 1000, and even 10,000 (as shown in Table 4). The table

presents the average per capita GDP for each baseline. The results

in Table 4 indicate that IPPO and the improved MADDPG algorithm

successfully achieve the maximum GDP when 𝑁 = 10,000, whereas

traditional methods yield NA (not available). HATRPO achieves

optimal strategies at 𝑁 = 100 and 𝑁 = 1000, respectively, while GA
only achieves optimal GDP when 𝑁 is small. The above results in-

dicate that TaxAI is capable of simulating 10,000 household agents,

surpassing other benchmarks by a significant margin. Moreover,

MARL algorithms can successfully solve the optimal tax problem

in large-scale agent scenarios. These two advantages are crucial for

simulating real-world society.

6 CONCLUSION

We introduce TaxAI, a large-scale agent-based dynamic economic

environment, and benchmark 2 traditional economic methods and

7 MARL algorithms on it. TaxAI, in contrast to prior work, excels in

modeling large-scale heterogeneous households, a wider range of

economic activities, and tax types. Moreover, it is calibrated using

real data and comes with open-sourced simulation code and MARL

benchmark. Our results illustrate the feasibility and superiority

of MARL in addressing the optimal taxation problem, while also

revealing MARL households’ tax evasion behavior.

In the future, we aim to expand and enrich the economic the-

ory of TaxAI by incorporating a broader range of social roles and

strategies. Furthermore, we will enhance the scalability of our sim-

ulator to accommodate one billion agents, enabling simulations

that closely resemble real-world scenarios. By doing so, we aim to

attract more researchers to explore complex economic problems

using AI or RL techniques, thereby offering practical and feasible

recommendations for social planners and the population.
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