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ABSTRACT
It is challenging to predict a group of individuals’ spatiotemporal
trajectories in continuous time and space, due to various environ-
mental and intrinsic factors. Especially, social dynamics such as
driving or crowding behaviors could be hard to predict due to het-
erogeneous and complex mapping from high-dimensional inputs to
an output driven by the decision-making processes of other agents.
To tackle this challenge, neural ordinary differential equations (neu-
ral ODEs) have been developed to predict continuous-time long-
term dynamics with constant memory cost and high computational
efficiency. Furthermore, scientific communities have developed a
rich set of physics models to describe how individuals interac-
tively make decisions. With a rapidly growing trend of employing
physics-informed deep learning (PIDL) for dynamical systems in
science and engineering, its application to social dynamics is un-
derstudied. This paper aims to develop an integrated framework,
named “PI-NeuGODE,” that encodes physics models, complemented
by symbolic regression, into neural ODEs. In the proposed model,
physics informs the training of neural ODEs, while neural ODEs
guide knowledge discovery. Symbolic regression is used to uncover
physics knowledge from complex data. We further use graph neural
networks to learn the topological interaction of individuals. The
proposed method is tested on two applications, human driving and
platooning, as well as crowding, which demonstrate the algorithmic
accuracy and efficiency against baselines including existing social
deep learning models.
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Figure 1: Physics-informed graph neural ordinary differen-
tial equations (PI-NeuGODE). The multi-agent dynamics are
captured by graph neural networks (for spatial interaction)
and neural ordinary equations (for temporal evolution). The
symbolic regression is used to infer the underlying physics
that informs the training of the data-driven counterpart.
1 INTRODUCTION
Prediction of a group of interacting individuals’ dynamic trajecto-
ries has various applications, such as autonomous fleet management
[12, 19], crowdmanagement[44], traffic signal control [26] and ramp
metering [22, 23]. Challenges involved in such a prediction lie in the
multi-agent nonlinear interaction for a long-term prediction hori-
zon, because human behaviors could suffer from stochasticity and
instability [10] arising from the multi-agent interaction. For exam-
ple, in a social environment, individuals’ spatiotemporal trajectories
are governed not only by their own underlying decision-making
processes, but also by various external factors such as surrounding
actors’ constantly changing behaviors and stochastic environmen-
tal features. Nevertheless, individuals interact in a nonlinear fashion
that complicates the learning of a mapping from environmental fea-
tures to an individual output. Furthermore, social dynamics could
be non-stationary or non-Markovian, especially in a multi-agent
system when one’s action is affected by surrounding agents, which
makes long-term (or n-step ahead) predictions challenging.

Many methods have been introduced to tackle the aforemen-
tioned non-linearity and long-term prediction challenges, which
broadly bifurcate into two branches. The physics-based method
makes assumptions about the underlying physics that governs ob-
servations, e.g. partial differential equations (PDE), and uses math-
ematical equations to formulate the pedestrian interactions and
intentions. For example, the Social Force Model (SFM) [16] assumes
pedestrians navigate through their surroundings by responding to
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a “social force”, which is a combination of external and internal
forces. These forces include factors like social interactions, repul-
sion from obstacles, and attraction towards a destination. Apart
from the social force assumption, another widely used assumption
is that pedestrians make decisions mainly by following neighbour-
ing velocities and avoiding collision, such as the velocity obstacle
model [41].

In contrast to the physics-basedmethod, the data-drivenmethod
does not assume any prior knowledge of the underlying process
governing the pedestrian dynamics. Instead, it utilizes machine
learning methods to uncover the underlying patterns directly from
the observed data. For example, graph neural networks, such as
message passing networks [5], are widely used to capture spatial
interactions. For temporal dynamics, Long Short-Term Memory
(LSTM) [1] networks and attention mechanisms [14, 42] are broadly
employed. Notably, neural ordinary differential equations (Neural
ODE) [6] has demonstrated its proficiency in capturing dynamic
system patterns, particularly in its ability to extrapolate and address
the long-term prediction challenge.

Both the physics-based and data-driven methods have their pros
and cons. The former is data-efficient and interpretable but may
struggle with generalizing to unobserved data. The latter is gener-
alizable but may be incapable of offering deductive insights. Also,
its performance relies on huge amounts of training samples, which
is sometimes inaccessible for real-world data. The fusion of these
two method categories, known as physics-informed deep learn-
ing (PIDL) [11, 32], combines the merits of both the physics-based
and data-driven methods and supplements their respective limi-
tations. PIDL has been applied to multiple applications, such as
car-following modeling [24, 27], crowd simulation [44], and traffic
state estimation [17, 25, 35–37]. While promising, the performance
of PIDL requires the assumption of the underlying physics, which is
usually not available in the real-world scenario. The problem of un-
known underlying physics prior knowledge is worse formulti-agent
systems [13]. A potential remedy is symbolic regression, which is
capable of inferring the mathematical equations that govern the
dynamics. Symbolic regression has demonstrated its efficacy across
diverse domains, such as materials science [3, 4] and astronomy[8].

This paper proposes, physics-informed graph neural ordi-
nary differential equations (PI-NeuGODE), for simultaneous
prediction of multi-agent spatiotemporal trajectories accounting
for the topological interaction over a long-term horizon. Under
this framework, neural ODEs are trained to make long-term pre-
diction of individual trajectories interacting over graphs, of which
the derivatives are substituted by physics-informed deep neural
networks (DNN) complemented by symbolic regression.

2 BACKGROUND AND RELATEDWORK
2.1 Long-term prediction using neural ODEs
Neural ordinary differential equations (neural ODEs) are devel-
oped to predict continuous-time long-term dynamics, with con-
stant memory cost and high computational efficiency [6]. Since
its inception, neural ODEs have become a powerful tool to model
complex dynamical systems. The underlying idea is to parameterize
the derivative of a system’s state with a neural network (NN).

A neural ODE consists of an ordinary differential equation (ODE)
of the form:

𝑑𝑥

𝑑𝑡
= 𝑓𝜃 (𝑥 (𝑡), 𝑡, 𝜃 ), (1)

where 𝑥 (𝑡) is the system state at time 𝑡 , 𝑑𝑥
𝑑𝑡

is the time derivative,
𝑓𝜃 (𝑥 (𝑡), 𝑡, 𝜃 ) is parameterized by an NN with parameters 𝜃 . The
loss function to train the NN is defined as:

𝐿(𝑥 (𝑡)) = 𝐿(𝑥 (𝑡0)) +
∫ 𝑡

𝑡0

𝑓𝜃 (𝑥 (𝑡), 𝑡, 𝜃 )𝑑𝑡

= 𝐿(𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒 (𝑥 (𝑡0), 𝑓𝜃 , 𝑡0, 𝑡, 𝜃 )). (2)

A numerical integration method, such as the Euler method or the
Runge-Kutta method, is used to solve the differential equation and
produce a prediction.

2.1.1 Message passing neural networks (MPNNs). MPNNs are a
class of graph neural networks (GNNs) that leverage the principles
of message passing algorithms to perform graph-based tasks. In
MPNNs, each node passes messages to its neighbours, and these
messages are used to update the node representations and aggregate
information from the surrounding nodes.

Mathematically, MPNNs are modeled as functions that operate
on a graph 𝐺 = (𝑉 , 𝐸), where 𝑉 is the set of nodes and 𝐸 is the
set of edges. Each node is initialized with states 𝑥𝑖 (𝑡0), where 𝑖 ∈
{1, . . . , 𝑁 } and 𝑁 is the totoal number of agents. At iteration 𝑡 , the
node state 𝑥𝑖 (𝑡 + 1) is updated as follows:

𝑥𝑖 (𝑡 + 1) = 𝑓𝑢 (𝑥𝑖 (𝑡),
∑︁

𝑗∈{1,...,𝑁 }
(𝑖, 𝑗 ) ∈𝐸

𝑚𝑖 𝑗 (𝑡)), (3)

where 𝑓𝑢 (·) is the node update function, and𝑚𝑖 𝑗 (𝑡) is the message
passed from node 𝑗 to node 𝑖 at iteration 𝑡 . The messages𝑚𝑖 𝑗 (𝑡)
are computed as follows:

𝑚𝑖 𝑗 (𝑡) = 𝑓𝑚 (𝑥𝑖 (𝑡), 𝑥 𝑗 (𝑡), 𝑒𝑖 𝑗 ), (4)

where 𝑒𝑖 𝑗 is the edge information between nodes 𝑖 and 𝑗 and 𝑓𝑚 (·)
is the message passing function. The process continues until a
stopping criterion is met, such as a maximum number of iterations
or convergence.

2.1.2 Graph neural ODE (GODE). GODE leverages the strengths of
graph neural networks (GNNs) and neural ODEs to model the com-
plex interactions in dynamic systems. MPNN captures the spatial
correlation between nodes, while the neural ODE captures the tem-
poral evolution of the system. These two components are coupled
by replacing 𝑓 in Eq. 1 with the message passing process defined
in Eq. 4:

¤𝑥𝑖 (𝑡) = 𝑓𝜃 (𝑥𝑖 (𝑡), 𝑓𝑚 (𝑥𝑖 (𝑡), 𝑥 𝑗 (𝑡), 𝑒𝑖 𝑗 (𝑡)), 𝑡, 𝜃 ). (5)
Further details on the implementation of this approach will be

discussed in Sec. 3.

2.2 Physics-informed deep learning (PIDL)
PIDL [32] leverages the pros of both physics-based and data-driven
approaches while compensating for the cons of each. Physics-based
approach refers to scientific hypotheses of what underlying physics
governs observations, like the first principle, which is data-efficient
and interpretable but may not well capture complex data patterns.
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In contrast, the data-driven approach does not bear any prior knowl-
edge of how things work and how different quantities are correlated.
Instead, they rely on machine learning techniques such as deep neu-
ral networks (DNN) to learn and infer patterns from huge amounts
of training samples, but require inductive bias for unseen data. Re-
cent years have seen a rapidly growing trend of applying PIDL to
dynamical systems in science and engineering, for its power in
robust prediction [2, 9, 20].

To incorporate PIDL into neural ODE, the derivative of a dynam-
ical system contains both the known (represented by physics) and
unknown information (represented by PUNN). [28, 38] further in-
corporates stochasticity into the prediction. These studies, however,
are not focused on social dynamics but more on physical processes.

2.3 Symbolic regression
Symbolic regression aims to discover mathematical expressions to
match a given dataset [34]. When combined with DNNs informed
by physics, symbolic regression demonstrates its robustness in
discovering part of physics equations [30, 33, 40, 44].

The mathematical functions are usually represented as a general
expression with variables and operators. The task of symbolic re-
gression is to find the optimal values of the coefficients that result
in the best fit of the function to the observed data. To perform
symbolic regression, some optimization algorithm is applied to the
function and the coefficients are iteratively adjusted until the best
fit is obtained. Metrics, such as mean squared error or correlation
coefficient, are used to determine the goodness of fit of the function
to the observed data.

2.4 Related work and contributions
In a nutshell, there are studies that have integrated PIDL into sym-
bolic regression [30, 33, 40, 44, 44], PIDL into neural ODEs [28, 38],
or GNN into neural ODEs [7, 18, 31, 45]. However, none has bridged
all three methodologies into one unified framework, which is the
focus of this paper. The closely related studies are [18, 43, 44]. [18]
combined two neural ODEs, one for temporal processing and the
other for spatial processing, for spatiotemporal traffic forecasting.
However, the existing domain knowledge that uses ODEs/PDEs for
traffic evolution is not accounted for. [44] applied PIDL, symbolic
regression, and GNN to crowd modeling, and a student-teacher co-
training algorithm was developed for multiple-step rollout, which
helps generalize the original single-step prediction. The same issue
exists in [43], where the one-step prediction is repeatedly con-
ducted to achieve the long-term prediction. In contrast, our paper
employs neural ODE for multiple-step prediction, which is more
computationally efficient and scalable.

Ourmain contributions are: (1) we develop a unified frame-
work of integrating PIDL and symbolic regression into graph neural
ODEs, which can capture multi-agent, long-term prediction of so-
cial dynamics. (2) we develop an algorithm to train the data-driven
component (i.e., GODE) and the physics-informed components (i.e.,
PIDL) simultaneously, rather than calibrate the physics models
prior to the model training, and (3) the efficiency of the proposed
algorithms is demonstrated on two types of dynamics, platooning
and crowding, using both hypothetical and real-world datasets.

The rest of this paper is organized as follows: Sec. 3 introduces
the integrated methodology framework and presents the algorithm.
Secs. 4-5 demonstrate the performance of our algorithms on two
scenarios, human driving and platooning (via a neighbouring in-
teraction), and crowding (via a graph interaction). Sec. 6 concludes
and points out future directions.

3 METHODOLOGY
3.1 Problem statement
Denote the system state as 𝑋 (𝑡) = {𝑥𝑖 (𝑡)}𝑁𝑖=1, which contains the
states of all agents. The movement of an agent at each time step
𝑡 is assumed to be governed by some underlying control signal.
Thus, the spatiotemporal trajectory is the result of the consecutive
control signals or decision-making processes. Consider the multi-
agent scenario, this process can be depicted as:

𝑋 (𝑡) = 𝑋 (𝑡0) +
∫ 𝑡

𝑡0
𝑓 (𝑋 (𝑡), 𝑡, 𝜃 )𝑑𝑡, (6)

where 𝑓 (·) is the underlying decision-making model that is inac-
cessible. The trajectory prediction problem is to find a surrogate
decision-making model 𝑓𝜃 such that the predicted state error is
minimized:

min𝜃
∫ 𝑡

𝑡0
(𝑋 (𝑡) − 𝑋 (𝑡))2

𝑠 .𝑡 . 𝑋 (𝑡) = 𝑋 (𝑡0) +
∫ 𝑡

𝑡0
𝑓𝜃 (𝑋 (𝑡), 𝑡, 𝜃 )𝑑𝑡 .

(7)

We focus on two problems of the spatiotemporal trajectory pre-
dictions, i.e., the initial value problem (IVP) and the sequence-to-
sequence (seq2seq) learning problem. Each problem is detailed
below.

(1) IVP involves making predictions based on only the initial
states of the system, represented by 𝑋 (𝑡0), and the boundary
conditions. This approach can be viewed as a trajectory
prediction problem with limited data, as it only takes into
account the initial states but not the historical information
of the system.

(2) Seq2seq prediction utilizes historical observations of the sys-
tem to make predictions about future states. In this approach,
the observed trajectory is divided into segments, with the
goal of using the previous segments to predict the next ones.

The IVP and seq2seq problems will be demonstrated using the
platoon modeling and pedestrian trajectory prediction experiments,
respectively. Both numerical and real-world datasets will be used
in both experiments.

3.2 Model architecture
The proposed method, as depicted in Fig. 2, consists of two compo-
nents. The first component is the data-driven component, which
incorporates a neural ODE model, encoded with a message-passing
type graph neural network. The second component is the physics-
informed component, which includes a partially learned physics
equation obtained through symbolic regression. The integration of
these two components allows for a well-balanced solution between
data-driven and physics-based approaches.

3.2.1 Graph neural ODEs (GODE). The GODE structure is illus-
trated in Fig. 2. To simplify the notation, we utilize the symbols
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Figure 2: Architecture of our proposed method.

1, . . . , 𝑡 to represent the time index 𝑡0, . . . , 𝑡 . The GODE model con-
sists of three main components: an encoder, a neural ODE model,
and a decoder. In this framework, the encoder replaces the message
passing function in Eq. 4 by transforming the historical states seg-
ment 𝑥 (1 : 𝑡) into a latent variable 𝑧𝑢 (𝑡) of the ego-agent, while
taking into account the states of its neighbours. This latent vari-
able is then used as the initial condition for the neural ODE model,
which calculates the future latent solution 𝑧𝑢 (𝑡 + 1 : 𝑡 +𝑇 ). Finally,
the decoder converts the latent solution back to the data space.
The encoder and decoder can be implemented as either multi-layer
perceptrons or recurrent networks like GRUs. The implementa-
tion details of these components for IVP and seq2seq problems are
described in Secs. 4 and 5, respectively. The estimated trajectory
𝑋 (𝑡 +1 : 𝑡 +𝑇 ) is compared to the ground truth, and the observation
loss is calculated accordingly:

𝐿𝑜 (𝜃 ) =
1
𝑇

𝑡+𝑇∑︁
𝑡=𝑡+1

((𝑋 (𝑡)) − 𝑋 (𝑡))2𝑑𝑡 . (8)

3.2.2 Physics-informed deep learning.

Definition 3.1. Physics-informed deep learning (PIDL).
Denote the (labeled) observation O and the (unlabeled) collocation
points C below:{
O = {𝑋 (𝑡); 𝑡 ∈ T𝑜 } : within-domain observation,

C = {𝑋 (𝑡) = 𝑂𝐷𝐸𝑆𝑜𝑙𝑣𝑒 (𝑋 (𝑡0), 𝑓𝜆, 𝑡0, 𝑡, 𝜆); 𝑡 ∈ T𝑐 } : collocation points,
(9)

where, T𝑜 is a set of time steps at which the state 𝑋 (𝑡) is observed;
T𝑐 is a set of time steps at which a physics-informed computational
graph (PICG) 𝑓𝜆 (·) has a solution; 𝜆 is the parameter of 𝑓𝜆 (·).

We design two neural networks: (1) a physics-uninformed neural
network (PUNN), denoted as 𝑓𝜃 (𝑋 (𝑡), 𝑡 |𝜃 ), to predict the time derive
of 𝑋 (𝑡), denoted as ¤𝑋 (𝑡), and (2) a physics-informed computational

graph (PICG), denoted as 𝑓𝜆 (𝑋 (𝑡), 𝑡 |𝜆), for computing the time
derive of �̃� (𝑡), denoted as ¤̃𝑋 (𝑡).

In summary, a PIDL model, denoted as 𝑓𝜃,𝜆 (𝑋 (𝑡), 𝑡 |𝜃, 𝜆), is com-
monly represented by a hybrid of two graphs, namely, the PUNN
and the PICG. It aims to train an optimal parameter set 𝜃∗ for
PUNN and an optimal parameter set 𝜆∗ for PICG. For simplic-
ity, we let observation and collocation time steps be the same, i.e.
T𝑜 = T𝑐 = [𝑡 + 1, . . . , 𝑡 +𝑇 ].

In our framework, the PUNN is the GODE model introduced
above. The PICG is spanned by physics knowledge, in which nodes
are mathematical quantities, edges are operators connecting two
quantities, and a path represents a relation from a starting quantity
to a target one [27]. PICG could be represented by a graph with
known physics equations, or partial knowledge complemented
by additional mathematical operators to be learned via symbolic
regression [44].

In summary, the PUNN is replaced by GODE that represents a se-
quential decision-making process on graphs. The PICG is expanded
with symbolic regression to learn unknown physics knowledge
that could dominate the partial information from observational
data. PICG can be generally represented by 𝑓𝜆 (𝑥) = 𝑓𝑝ℎ𝑦 (𝑥) +𝑤𝑇 𝑥 ,
where 𝑓𝑝ℎ𝑦 (·) is the known physics from prior knowledge; 𝑥 is a
vector of input variables and𝑤 is a vector of coefficients together
with numerical operators such as “+”, “-”, “×”, and“/” to be learned
by symbolic regression. Mathematically, the PICG takes colloca-
tion points as input and produces augmented solutions, i.e., 𝑋 (𝑡) =
𝑋 (𝑡0) +

∫ 𝑡

𝑡0
𝑓𝜆 (𝑋 (𝑡), 𝑡, 𝜆)𝑑𝑡 . These collocation points are also fed

into the PUNN for the solution �̃� (𝑡) = 𝑋 (𝑡0) +
∫ 𝑡

𝑡0
𝑓𝜃 (𝑋 (𝑡), 𝑡, 𝜃 )𝑑𝑡 .

Based on these two solutions, the physics loss is defined as:

𝐿𝑐 (𝜃, 𝜆) =
1
𝑇

𝑡+𝑇∑︁
𝑡=𝑡+1

((�̃� (𝑡)) − 𝑋 (𝑡))2 . (10)
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3.3 Training Algorithm
The final loss function is defined as

𝐿𝑜𝑠𝑠𝜃,𝜆 = 𝛼 · 𝐿𝑜 (𝜃 ) + 𝛽 · 𝐿𝑐 (𝜃, 𝜆), (11)

where 𝛼, 𝛽 are weights of the observation loss and the physics loss,
respectively. The detailed training algorithm is shown in Alg. 1.

Algorithm 1 Training Algorithm for PI-NeuGODE.
Required: Training iterations 𝐼𝑡𝑒𝑟 ; Learning rate 𝑙𝑟 ; Loss function

weights 𝛼 , 𝛽 .
Input: The observation data {(𝑋 (𝑡), 𝑡 ∈ T𝑜 } and collocation points

{(𝑋 (𝑡), 𝑡 ∈ T𝑐 }.
1: for 𝑘 ∈ {0, ..., 𝐼𝑡𝑒𝑟 } do
2: Sample the sequence states 𝑋 (1 : 𝑡, 𝑡 + 1 : 𝑡 +𝑇 ), from the

batch.
// generate PUNN solutions

3: 𝑧 (𝑡) = 𝐸𝑛𝑐𝑜𝑑𝑒𝑟 (𝑋 (𝑡))
4: 𝑧 (𝑡 +𝑇 ) = 𝑧 (𝑡) +

∫ 𝑡

𝑡+𝑇 𝑓𝜃 (𝑧 (𝑡), 𝑡, 𝜃 )𝑑𝑡
5: 𝑋 (𝑡 +𝑇 ) = 𝐷𝑒𝑐𝑜𝑑𝑒𝑟 (𝑧 (𝑡 +𝑇 ))
6: Generate �̃� (𝑡 + 1 : 𝑇 ) similarly using the collocation data

// generate PICG solutions

7: 𝑋 (𝑡 +𝑇 ) = 𝑋 (𝑡) +
∫ 𝑡

𝑡+𝑇 𝑓𝜆 (𝑋 (𝑡), 𝑡, 𝜆)𝑑𝑡
// update the PUNN

8: Calculate 𝐿𝜃 by Eq. 8, 𝐿𝑐 by Eq. 10
9: 𝜃𝑘+1 ← 𝜃𝑘 − 𝑙𝑟 · Adam(𝜃𝑘 ,∇𝜃 (𝛼𝐿𝑜 + 𝛽𝐿𝑐 ))

// update the PICG

10: Conduct symbolic regression by minimizing 𝐿𝑐
11: end for

In the subsequent sections, we present a comprehensive evalua-
tion of the proposed model through two experiments. Firstly, we
assess its performance in solving the IVP problem in the context of
vehicle platoon modeling, utilizing both numerical and real-world
data. The numerical experiment is designed to verify the ability of
the proposed model to accurately identify the ground-truth equa-
tion in a controlled environment. This is followed by a validation
experiment, which uses real-world data to demonstrate the model’s
efficacy in capturing real-world dynamics. Finally, we demonstrate
the proposed model’s ability to solve the seq2seq problem by apply-
ing it to the pedestrian trajectory prediction problem, using both
numerical and real-world data. We will also present the specific
architectures employed for each problem.

4 EXPERIMENTS: PLATOON MODELING
We first briefly introduce the problem formulation as follows: In
a Platoon Modeling (PM) problem, a platoon of vehicles forms a
multi-agent system, where each vehicle decides to accelerate, brake
or cruise depending on its relation with its leader. Denote the state
of the 𝑖th vehicle at time step 𝑡 as 𝑥𝑖 (𝑡) = [𝑝𝑖 (𝑡), 𝑣𝑖 (𝑡)], where 𝑝𝑖 (𝑡)
is the longitudinal position and 𝑣𝑖 (𝑡) is the velocity. The dynamic
of the followers can be depicted as :{

¤𝑝𝑖 (𝑡) =
𝑑𝑝𝑖 (𝑡 )
𝑑𝑡

= 𝑣𝑖 (𝑡)
¤𝑣𝑖 (𝑡) =

𝑑𝑣𝑖 (𝑡 )
𝑑𝑡

= 𝑓𝑢,𝑖 (𝑥𝑖−1, 𝑥𝑖 )
, 𝑖 ∈ {1, ..., 𝑁 }. (12)

where 𝑓𝑢,𝑖 is the control strategy of the 𝑖th agent given the states
of its leader and itself. Given the trajectory of the first leading

Figure 3: Structure of GODE for platoon modeling as an IVP.

vehicle 𝑥0 (1 : 𝑡 +𝑇 ), the task of the PM is to predict the trajectory
of all its followers. Thus, the state of the PM system at time 𝑡 is
𝑋 (𝑡) = {𝑥𝑖 (𝑡)}𝑁𝑖=1 ∈ R

𝑁×2.
The PM is an example of IVP, where only the initial state 𝑋 (1)

and the platoon leader’s trajectory 𝑥0 (1 : 𝑡 + 𝑇 ) are known. A
platoon can be represented as a chain-like graph, where each vehicle
only has one neighbouring vehicle, which is its immediate leader.

4.1 GODE Structure
Fig. 3 illustrates the GODE structure that is modified for the PM.
The initial states of a vehicle and its leader are used as input to
update the state of the follower. This GODE framework for IVP
does not require an encoder or decoder as only one-time-step state
information is used. The direct output of the network 𝑓𝜃 already
contains meaningful information, as it represents the derivatives of
the vehicle states. In the neural ODESolver, a neural network 𝑓𝜃 is
trained to learn the mapping from the features of two consecutive
vehicles to estimated acceleration 𝑎 of the follower. The estimated
acceleration 𝑎 is used to update the state of the platoon by the Euler
method.

4.2 Dataset
Numerical Dateset: In our numerical experiment, the platoon
data is generated by the intelligent driving model (IDM) [39], a
well-known model in the transportation domain. The IDM models
the longitudinal motion of vehicles on a highway, considering their
acceleration and deceleration behavior based on their speed and the
gap to the leading vehicle. We assume each vehicle in the platoon
follows the IDM equation. The complete form of the IDM equation
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is shown below:{ ¤𝑥𝑖 (𝑡) = 𝑣𝑖 (𝑡)

¤𝑣𝑖 (𝑡) = 𝑎max

[
1 −

(
𝑣𝑖 (𝑡 )
𝑣des

)4
−
(
𝑠0+𝑣𝑖 (𝑡 )𝑇0+𝑣𝑖 (𝑡 )Δ𝑣𝑖 (𝑡 )/2

√
𝑎max𝑏

𝑠𝑖 (𝑡 )

)2]
𝑖 ∈ {1, ..., 𝑁 },

(13)
where, 𝑥𝑖 (𝑡) is the position of the 𝑖th vehicle at time step 𝑡 , 𝑣𝑖 (𝑡)
is the velocity, 𝑠𝑖 = 𝑥𝑖−1 − 𝑥𝑖 is the gap to the leading vehicle, and
Δ𝑣𝑖 = 𝑣𝑖−1−𝑣𝑖 is the velocity difference. This equation has 5 param-
eters: 𝑣des is the desired velocity, 𝑇0 is the desired time headway, 𝑠0
is the minimum spacing in congested traffic, 𝑎max is the maximum
acceleration allowed, and 𝑏 is the comfortable deceleration, respec-
tively. All vehicles are assumed to share the same set of parameters,
i.e., [𝑣des,𝑇0, 𝑠0, 𝑎max, 𝑏] = [30 𝑚/𝑠, 0.75 𝑠, 2.15 𝑚, 2 𝑚/𝑠2, 4 𝑚/𝑠2].
More numerical dataset details are included in the supplementary
material.
Real-world Dataset: The real-world data is from the Next Gener-
ation SIMulation (NGSIM) dataset1, which is an open dataset that
collects vehicle trajectories every 0.1 seconds. We focus on the US
Highway 101. More dataset details are shown in the supplementary
material.

4.3 Setting
Baselines: In this study, we compare the performance of our pro-
posed model with several baseline models including SocialGAN
[15] and SocialLSTM [1]. The SocialGAN model is a generative
adversarial network (GAN) based approach for modeling the inter-
actions between pedestrians in a crowd. The SocialLSTMmodel is a
long short-term memory (LSTM) network that is trained to predict
the future trajectories of individuals in a crowd by incorporating
the interactions between individuals. Furthermore, we also consider
the simple baseline of independent decision-making, which is IDM,
where each vehicle acts as an independent agent following its own
trajectory computed by Eq. 13.
Evaluation Metrics: In this study, we evaluated the performance
of our proposed model using mean squared error (MSE) and mean
absolute error (MAE). Detailed settings are included in the supple-
mentary material.

4.4 Results
Performance Comparison: In Tab. 1, we make a comparison of
four models: PI-NeurODE, SocialGAN, SocialLSTM, and IDM by
looking into MSE and MAE. We leverage noise-free and noisy data
to evaluate all models. It is shown that our proposed PI-NeuGODE
outperforms other models on both data sets. The results show that
among all four models, PI-NeuGODE has the lowest MSE and MAE
(marked in bold), while IDM has the highest MSE and MAE for the
NGSIM data.
Effect of Varying Training Size: To demonstrate the general-
izability of our model with limited labeled data, we visualize the
performance of PI-NeuGODE and SocialGAN when varying train-
ing size of the car-following dataset in Fig. 4. We can see that the
results of PI-NeuGODE do not deteriorate as drastically as those
of socialGAN as we reduce the training size. This is because PI-
NeuGODE uses both labeled and unlabeled instances in training,
1www.fhwa.dot.gov/publications/research/operations/07030/index.cfm

Table 1: Evaluation of different models for the platoon mod-
eling problem

Model Noise-free Noisy NGSIM

MSE MAE MSE MAE MSE MAE

SocialGAN 1.45 1.27 2.45 1.60 3.38 2.12
SocialLSTM 2.56 1.78 4.56 2.39 3.51 2.69

IDM 1.28 1.31 1.89 1.50 4.64 2.93

PI-NeuGODE 1.23 1.16 1.34 1.18 2.62 1.46

Figure 4: Effect of the training size.

leading to the learning of more generalizable solutions compared
to socialGAN that only uses labeled instances.
Recovered Physics: For the numerical data, the discovered physics
is of the same form of Eq. 13, and the estimated coefficients are:
[𝑣des,𝑇0, 𝑠0, 𝑎max, 𝑏] = [28.45𝑚/𝑠, 0.70 𝑠, 4.25𝑚, 2.14𝑚/𝑠2, 3.24𝑚/𝑠2]

For the symbolic regression of the NGSIM platooning trajectory,
the operator set is [+,−, ∗, /,

√︁
(), ()2, ()3, ()4]. To control the com-

plexity of the learned equation, we add a constraint that the power
operator, i.e., ()2, ()3, ()4, can only be used once and cannot be used
with each other. The discovered equation is:

¤𝑣𝑖 (𝑡) = 0.063(0.042𝑠𝑖 (𝑡) − 0.072𝑣𝑖 (𝑡))2
−0.041𝑣𝑖 (𝑡)2 − 0.083𝑣𝑖 (𝑡)Δ𝑣𝑖 (𝑡) + 0.14, (14)

where the variable shares the samemeaning as in Eq. 13. For compar-
ison, we apply the symbolic regression to the NGSIM data directly,
and the optimal learned equation is a constant ¤𝑣𝑖 (𝑡) = 0.025. This
is because the real-world data is noisy, and exploring high-order
operators tends to cause high empirical risk. From this result, we
can see that the neural network serves as a filter to smooth the
real-world data, allowing subtle patterns to be learned through
symbolic regression.
Visualization: Fig. 5a and 5b plot the trajectories for a platoon of
vehicles predicted by SocialGAN and PI-NeuGODE, respectively.
The red line is the trajectory of the leading car. The solid and
dashed blue lines represent the actual and predicted trajectories
of the following cars, respectively. It is shown that PI-NeuGODE
outperforms SocialGAN when predicting trajectories for the next 5
seconds. The gap between solid blue lines keeps increasing, as the
predicted time progresses, as seen in Fig. 5a. This trend is invisible
in Fig. 5b. Thus, compared to SocialGAN, PI-NeuGODE has a higher
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(a) SocialGAN (b) PI-NeuGODE

Figure 5: Predicted trajectories in vehicle platooning

Figure 6: Structure of GODE for pedestrian modeling as a
sequence-to-sequence prediction problem.

accuracy when predicting the trajectories of each vehicle in the
platoon.

5 EXPERIMENT: PEDESTRIAN TRAJECTORY
PREDICTION

In this section, we further apply PI-NeuGODE to the pedestrian
trajectory prediction problem, which is an example of the seq2seq
problem and is important for awide range of real-world applications
such as crowd management, autonomous navigation, and video
surveillance.

5.1 GODE Structure
Different from IVP which only uses the initial state, seq2seq pre-
diction observes a sequence of states, and predicts the future states
sequentially. Solving the pedestrian trajectory prediction problem
as a seq2seq prediction problem, the structure of neural ODESolver
is illustrated in Fig. 6.

5.2 Dataset
Numerical Dataset: The trajectory of the pedestrian is governed
by the social force model (SFM) [16] below

𝑑2𝑝𝑖
𝑑𝑡2 = 𝐹𝑖𝐷 +

∑︁
𝑗∈{1,...,𝑁 }
(𝑖, 𝑗 ) ∈𝐸

𝐹𝑆𝑗𝑖 +
∑︁
𝑗∈𝑂

𝐹𝑂𝑗𝑖 , (15)

where 𝐸 and𝑂 are the sets of edges and obstacles, respectively; 𝐹𝑖𝐷 ,
𝐹𝑆
𝑗𝑖
and 𝐹𝑂

𝑗𝑖
represents the traction force of destination 𝐷 , the repul-

sive force of pedestrian and obstacle 𝑗 on pedestrian 𝑖 , respectively.

Those three forces can be further depicted as:

𝐹𝑖𝐷 =𝑚𝑖
𝑣𝑖𝑑𝒏𝑖𝐷 − 𝑣𝑖 (𝑡)

𝜏

𝐹 𝑗𝑖 = 𝜆1𝑒
−𝑑 𝑗𝑖 (𝑡 )/𝜆2 · 𝒏 𝑗𝑖

𝐹𝑜𝑖 = 𝜆3𝑒
−𝑑𝑜𝑖 (𝑡 )/𝜆4 · 𝒏𝑜𝑖 ,

(16)

where 𝑣𝑖𝑑 = 0.5𝑚/𝑠 is the desired walking speed. 𝒏𝑖𝐷 is the unit
vector to the target direction.𝑚𝑖 is the mass of pedestrian 𝑖 , and
𝜏 = 0.4𝑠 is the simulation time step. 𝜆1 = and 𝜆2 are tunable param-
eters with a physical meaning of force intensity and force radius,
respectively. More implementation details are shown in the supple-
mentary material.
Real-world Dataset:We apply our method to the UCY [21] and
ETH [29] datasets, which are classic benchmarks for pedestrian
trajectory prediction in computer vision research.

5.3 Setting
Baselines: In addition to SocialGAN and SocialLSTM, we include
the social force model (SFM) as a baseline method in our evalua-
tion. Two attention-based methods, the AgentFormer [42] and the
Transformer TF [14], are included for comparison. Moreover, we
investigate the effectiveness of Graph Neural ODE (GODE) [31]
and the Coupled Graph Neural ODE (CGODE) [18]. To assess the
generalizability of our physics-informed framework, we apply the
physics-informed technique to CGODE and introduce the physics-
informed CGODE (PI-CGODE) as another baseline.

5.4 Results

Table 2: Evaluation of different models for the pedestrian
trajectory prediction problem

Model Numerical Data ETH (Mean) UCY (Mean)

MSE MAE MSE MAE MSE MAE

SFM 0.24 0.42 0.84 1.13 0.74 0.92
SocialGAN 0.38 0.56 0.64 0.86 0.42 0.66
SocialLSTM 0.51 0.73 0.71 0.93 0.51 0.73

Social-STGCNN 0.31 0.54 0.52 0.74 0.41 0. 69
AgentFormer 0.25 0.47 0.42 0.63 0.31 0.49

Transformer TF 0.28 0.51 0.44 0.67 0.35 0.55
GODE 0.26 0.45 0.75 0.85 0.43 0.68
CGODE 0.23 0.42 0.45 0.65 0.34 0.54

PI-CGODE 0.20 0.34 0.36 0.57 0.25 0.43

PI-NeuGODE 0.16 0.32 0.31 0.46 0.22 0.40

Performance Comparison: The experimental results for pedes-
trian trajectory prediction in Tab. 2 demonstrate the superior perfor-
mance of our model compared to baselines. We note that the results
of CGODE and PI-CGODE are not as good as our proposed model.
Upon carefully analyzing the differences between CGODE and our
proposed method, we believe that it is due to the different types
of graph neural networks used. CGODE employs a GCN-based
graph neural network with a binary adjacency matrix to represent
the graph structure, which may not be sufficient to capture the
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(a) SocialGAN (b) PI-NeuGODE

Figure 7: Visualization of the predicted pedestrian trajectory
for the numerical data.

(a) UCY (b) ETH

Figure 8: Visualization of the pedestrian trajectory prediction
for the UCY (a) and (b) ETH datasets.

complexity of pedestrian interaction. In contrast, message-passing
graph neural networks are able to model the rapid change in the
relative distance and direction between two pedestrians.
Visualization: Fig. 7a and 7b plot the trajectories for 4 pedestrians
predicted by SocialGAN and PI-NeuGODE, respectively. In each
figure, 10 seconds of trajectories are used as observation to predict
the next 5 seconds. The ground truth is represented by blue lines
while the predictions of both models are depicted by red dashed
lines. From the figures, it can be seen that PI-NeuGODE outperforms
S-GAN and is closer to the ground truth.

Fig. 8 presents the predicted pedestrian trajectory for the UCY
(left) and ETH (right) datasets. The error is aggregated for all sce-
narios in each dataset. The solid yellow lines, solid green lines,
and dashed red lines represent the input trajectories, ground-truth
output trajectories, and predicted output trajectories, respectively.
The figures show that there is a high level of agreement between
the predicted and ground-truth trajectories in both datasets.
Computational Time: The computational time required for the
proposed model, along with the baseline models, is presented in
Tab 3. SocialGAN, SocialLSTM, and GODE are selected for their
computational efficiency, making them suitable benchmarks for
comparison. As can be observed, PI-NeuGODE has a similar compu-
tation cost as GODE and SocialGAN. SocialLSTM achieves a faster
computation compared to other models, but this fast computation
is at a cost of model accuracy as indicated in Tab. 2. The results
indicate that the computational effort required for our model is
negligible, thus confirming that it is not a limiting factor.

Table 3: The computation time for the trajectory prediction

Model Computation Time
Training (s/epoch) Inference (s)

PI-NeuGODE 28.5 0.26
GODE 23.6 0.23

SocialGAN 20.2 0.18
SocialLSTM 12.6 0.14

Figure 9: Ablation study.

Ablation study: In order to evaluate the contributions of each
component in our proposed model, we conducted an ablation study
as shown in Fig. 9. PI-LSTM” refers to applying PIDL to an LSTM
model. “w/o PI” and “w/o symbolic regression” are the variants
of our proposed PI-NeuGODE without using PIDL and symbolic
regression, respectively. The experiment setting is the same as in
the numerical trajectory prediction task. The results clearly show
that the integration of the physics-informed technique significantly
improves the performance of the model. However, when combining
PIDL and GODE without incorporating symbolic regression, we
observed no noticeable improvement in performance. Specifically,
the outcomes indicate that the combined model achieves perfor-
mance levels similar to that of the PI-LSTM, suggesting that a mere
combination of these two techniques does not offer additional ad-
vantages. This finding underscores the indispensability of symbolic
regression as an essential component within the model architecture.

6 CONCLUSION
We develop a first-of-its-kind methodological framework integrat-
ing PIDL, graph neural ODEs, and symbolic regression, for the pre-
diction of interacting spatiotemporal trajectories. The integrated
framework can not only make long-term prediction using histori-
cal data, but also leverage physics knowledge to learn individuals’
dynamic decision-making processes with symbolic regression. The
effectiveness of the proposed model has been validated on two
tasks, human driving and platooning together with crowding. This
work can be extended by modeling stochasticity and enhancing the
model generalization using transfer learning.
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