
Rethinking Out-of-Distribution Detection for Reinforcement
Learning: Advancing Methods for Evaluation and Detection

Linas Nasvytis

Harvard University

Cambridge, MA, United States

linasnasvytis@fas.harvard.edu

Kai Sandbrink

University of Oxford

Oxford, United Kingdom

kai.sandbrink@lmh.ox.ac.uk

Jakob Foerster

University of Oxford

Oxford, United Kingdom

jakob.foerster@engs.ox.ac.uk

Tim Franzmeyer
†

University of Oxford

Oxford, United Kingdom

frtim@robots.ox.ac.uk

Christian Schroeder de Witt
†

University of Oxford

Oxford, United Kingdom

cs@robots.ox.ac.uk

ABSTRACT
While reinforcement learning (RL) algorithms have been success-

fully applied across numerous sequential decision-making prob-

lems, their generalization to unforeseen testing environments re-

mains a significant concern. In this paper, we study the problem of

out-of-distribution (OOD) detection in RL, which focuses on identi-

fying situations at test time that RL agents have not encountered

in their training environments. We first propose a clarification of

terminology for OOD detection in RL, which aligns it with the liter-

ature from other machine learning domains. We then present new

benchmark scenarios for OOD detection, which introduce anom-

alies with temporal autocorrelation into different components of

the agent-environment loop. We argue that such scenarios have

been understudied in the current literature, despite their relevance

to real-world situations. Confirming our theoretical predictions, our

experimental results suggest that state-of-the-art OOD detectors

are not able to identify such anomalies. To address this problem,

we propose a novel method for OOD detection, which we call DEX-

TER (Detection via Extraction of Time Series Representations). By

treating environment observations as time series data, DEXTER

extracts salient time series features, and then leverages an ensemble

of isolation forest algorithms to detect anomalies. We find that DEX-

TER can reliably identify anomalies across benchmark scenarios,

exhibiting superior performance compared to both state-of-the-

art OOD detectors and high-dimensional changepoint detectors

adopted from statistics.

KEYWORDS
Reinforcement Learning; Out-of-Distribution Detection; Anomaly

Detection; Robust RL; AI Safety

ACM Reference Format:
Linas Nasvytis, Kai Sandbrink, Jakob Foerster, Tim Franzmeyer

†
, and Chris-

tian Schroeder de Witt
†
. 2024. Rethinking Out-of-Distribution Detection

for Reinforcement Learning: Advancing Methods for Evaluation and De-

tection. In Proc. of the 23rd International Conference on Autonomous Agents

This work is licensed under a Creative Commons Attribution

International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and

Multiagent Systems (www.ifaamas.org).

and Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May 6 – 10,
2024, IFAAMAS, 9 pages.

1 INTRODUCTION
Deep reinforcement learning (RL) algorithms [15, 22, 27] have been

applied to numerous sequential decision-making problems, ranging

from robotics [1, 31] and nuclear fusion [11] to solar geoengineer-

ing [10]. However, their low reliability in situations that are not well

represented in the training environment hinders the deployment

of RL agents in safety-critical scenarios [6, 25]. Such discrepant

deployment situations are often referred to as out-of-distribution

scenarios. The task of identifying whether a given environment

differs from the train-time environment is hence referred to as out-

of-distribution (OOD) detection [16]. OOD detection constitutes

an important desiderata for the deployment of RL agents in the

real world, as reliable OOD detection would increase the safety of

deployed AI agents by allowing contingency actions to be taken in

unfamiliar or dangerous situations. Examples of such contingency

options include the automatic parking of an autonomous car on the

side of the road, or raising security escalations in cyber systems.

The OOD detection framework assumes that the agent has access

to data from the training process, which must be used to develop

a mechanism for detecting OOD scenarios in the unknown de-

ployment environment within a minimal amount of interactions.

Such OOD deployment environments are often simulated by adding

anomalies (e.g. sensor or process noise) to the train-time environ-

ments [9, 16, 23]. In prior work, benchmark environments consider

either injecting independent and identically distributed (i.i.d.) anom-

alies, such as Gaussian noise, or time-independent anomalies, such

as changing gravity [9, 16, 23]. We argue that these scenarios fail to

capture the temporally dependent nature of many real-world anom-

alies. For example, in the case of an autonomous robot, any dust

or smudge appearing on its camera lens would lead to a series of

readings that contain systematic errors, instead of causing random

misreadings of environmental data. Further, previous works [9, 16]

employ decision rules based on per-step anomaly scores. While

such methods may prove empirically effective in some cases, we

propose an information-theoretically grounded approach based on

sequential hypothesis testing [32], which results in a decision rule

based on accumulated anomaly scores over multiple timesteps.

†
Equal supervision

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1445

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

We start by introducing novel benchmark environments, which

include temporally dependent anomalies, and find that state-of-

the-art OOD detection methods fail in such scenarios. To detect

such anomalies, we introduce a novel detection mechanism called

Detection via Extraction of Time Series Representations (DEX-
TER). This mechanism first extracts time-series features, which are

then used with a random-forest algorithm to compute anomaly

scores. We leverage information-theoretically optimal sequential

hypothesis testing techniques to derive a cumulative sum (CUSUM)

detector using the full history of DEXTER’s anomaly scores, which

we refer to as DEXTER+C. Lastly, we evaluate DEXTER and DEX-

TER+C on a range of novel and standard benchmark environments

and compare their performance to relevant baselines. We find that

DEXTER significantly outperforms state-of-the-art detectors across

various metrics, including Area under the Receiver Operator Char-

acteristic (AUROC) scores. Importantly, DEXTER+C significantly

decreases the number of timesteps needed to detect OOD scenarios.

Our work makes the following contributions:

• We propose a clarification of the terminology of OOD detec-

tion in reinforcement learning.

• We introduce new testing scenarios for OOD detection in

reinforcement learning, which consider a broad class of dis-

turbances focused on temporally-correlated noise.

• We propose a new detector, which we refer to as DEXTER

(Detection via Extraction of Time Series Representations),
as well as a new decision rule, DEXTER+C, and show that

these outperform state-of-the-art methods across relevant

scenarios.

2 RELATEDWORK
2.0.1 Algorithms for OOD Detection. The research on out-of-distri-

bution (OOD) detection in reinforcement learning [16, 24] is more

limited compared to supervised and unsupervised learning. How-

ever, interest in the field has grown more recently. To our knowl-

edge, Sedlmeier et al. [29] outline the first practical method for OOD

detection in reinforcement learning. The authors use epistemic un-

certainty of the agent’s actions to quantify the anomaly scores of

different states, reasoning that epistemic uncertainty tends to be

higher in areas of low data density. Mohammed and Valdenegro-

Toro [23] introduce a benchmark to evaluate generalized OOD

detection methods in reinforcement learning on three environ-

ments. In Cartpole and Pendulum, gravity is varied, while in Pong,

noise is added to state observations. Danesh and Fern [9] propose

a more extensive benchmark to test OOD detection, implementing

different types of observational noise across seven classic RL envi-

ronments. Additionally, they introduce a new OOD detector called

the Recurrent Implicit Quantile Network (RIQN). At each time step,

RIQN uses the current and prior states in the environment, 𝑠1:𝑡 , to

generate auto-regressive predictions for the next 𝛿 states, 𝑠𝑡+1:𝑡+𝛿 ,
then computes the difference between its predictions and the real-

ized environment states, and uses this difference as the anomaly

score for a given transition (𝑠𝑡 , 𝑠𝑡+1). The authors demonstrate that

RIQN outperforms several baseline detectors across several of the

proposed anomalous environments.

The state-of-the-art OOD detection method, Probabilistic En-

semble Dynamics Model (PEDM), was proposed by Haider et al.

[16], and consists of two components. First, a 1-step forward dy-
namics model 𝑓𝜃 is learned, modeling the transition dynamics of the

training environment, implemented as a Probabilistic Deep Neural

Network Ensemble model [18]. For a given state and action pair

(𝑠𝑡 , 𝑎𝑡), this model predicts the next state in the environment as

𝑠′
𝑡+1 = 𝑓𝜃 (𝑠𝑡 , 𝑎𝑡). Second, an anomaly score generator is applied,

which compares the predictions of the world dynamics model to

outcomes in the test-time deployment environment, and generates

an anomaly score for each transition.

To measure performance in detecting anomalies applied to the

observation space, Haider et al. [16] use the environments from

Danesh and Fern [9]. For the detection of anomalies applied to the

transition dynamics of the RL environment, the authors propose

four additional benchmark environments. They modify the clas-

sical Cartpole, HalfCheetah, Pusher, and Reacher environments

by adding semantic anomalies, such as changing the gravity or

multiplying the velocity applied to all body parts of the agent by

a constant factor. The performance of PEDM is measured against

the RIQN algorithm [9], as well as several other benchmark mod-

els. For each algorithm, the performance is measured according to

AUROC. Based on the results, PEDM outperforms the other detec-

tion algorithms across almost all newly-proposed environments

with anomalous transition dynamics. Moreover, within the envi-

ronments from Danesh and Fern [9], PEDM is tied with the RIQN

model for the best performance (with RIQN exhibiting significantly

worse performance on the new benchmarks).

2.0.2 Limitations of current OOD detection approaches. We argue

that current approaches to OOD detection suffer from three weak-

nesses. First, most of the literature of OOD detection in RL makes

the simplifying assumption of injecting independent and identically

distributed (i.i.d.) noise across different timesteps in the environ-

ment [9, 16, 23], which can hence be reliably detected with one-step

detection approaches. However, relevant real-world scenarios will

likely feature more complex disturbances, which have temporally

correlated anomalies. Second, these approaches rely on anomaly

detection via prediction error, computing anomaly scores based

on the prediction error from a forward-dynamics model trained

on training samples. Such prediction models are unlikely to detect

temporally-correlated anomalies which may only have a minor ef-

fect on the transition dynamics. Third, the decision rules for online

out-of-distribution detection rely only on the individual anomaly

scores observed at each time step, instead of taking into account

the full history of anomaly scores. While such approaches may

prove empirically effective, they neglect information that would be

used in information-theoretically grounded sequential hypothesis

testing [32].

2.0.3 Sequential Hypothesis Testing. Beyond machine learning, the

task of online detection of whether a sample of time series data

differs from a predefined distribution has also been analyzed in

statistics, primarily in the field of changepoint detection (CPD).

Sequential hypothesis testing, as pioneered by Wald in his sequen-

tial probability ratio test (SPRT) [32], aims to discern between two

hypotheses in an online manner, using as few samples as possible.

CUSUM methods, a popular technique in CPD, are designed to

detect shifts in the mean or variance of a process [26]. CUSUM

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1446

Figure 1: Illustration of temporally autocorrelated anomalies.
Left: at injection time (t = 48), noise applied to the observation
changes from no correlation to 1-step autocorrelation. Right:
at injection time (t = 56), noise changes from no correlation
to 2-step autocorrelation.

methods focus on capturing cumulative information over time,

providing a mechanism to identify time-dependent anomalies.

3 BACKGROUND AND NOTATION
A Markov Decision Process (MDP) is defined by a tuple (𝑆,𝐴, 𝑃, 𝑅).
Here, 𝑆 is a finite set of states, 𝐴 is a finite set of actions, 𝑃 : 𝑆 ×
𝐴 × 𝑆 → [0, 1] defines the state transition probabilities, and 𝑅 :

𝑆 × 𝐴 → R is the reward function. The goal of the agent at each

time step is to maximize the cumulative sum of discounted future

rewards

∑𝑡→∞
𝑡 𝛾𝑡𝑅(𝑠𝑡 , 𝑎𝑡), where 𝛾 ∈ [0, 1] is the discount rate.

In the general machine learning literature – which includes su-

pervised learning, unsupervised learning, and reinforcement learn-

ing – there are several terms used to describe the task of detecting

if a new sample of data differs from a specified training set. The

terms can include out-of-distribution (OOD) detection, anomaly

detection, novelty detection, and outlier detection. To clarify the

terminology, Yang et al. [33] provide an in-depth literature review

of this topic, focusing primarily on supervised learning, where each

data point contains an input-label pair (𝑥 ,𝑦) ∈ 𝑋 × 𝑌 , where 𝑋 is

the input (sensory) space, and 𝑌 the label (semantic) space. A data

distribution is defined as a joint distribution 𝑃 (𝑋,𝑌) over 𝑋 × 𝑌 . A
distribution shift can occur in either the marginal distribution 𝑃 (𝑋),
or both 𝑃 (𝑌) and 𝑃 (𝑋). As noted by Yang et al. [33], a shift in 𝑃 (𝑌)
naturally triggers shift in 𝑃 (𝑋). Denote the distributions of normal

and anomalous data points by 𝑃 and 𝑃 ′, respectively. Covariate
shift (sensory) anomalies occur when the inputs of normal data

points are drawn from an in-distribution 𝑃 (𝑋), whereas inputs
of anomalies are drawn from out-of-distribution 𝑃 ′ (𝑋), such that

𝑃 (𝑋) ≠ 𝑃 ′ (𝑋). However, no distribution shift occurs in the label

space: 𝑃 (𝑌) = 𝑃 ′ (𝑌). Semantic shift anomalies occur when a dis-

tributional shift occurs in the label space, such that 𝑃 (𝑌) ≠ 𝑃 ′ (𝑌).
Following this distinction, the authors define:

(1) Sensory anomaly detection as the task of detecting co-

variate shift anomalies, i.e. samples from 𝑃 ′ (𝑋).
(2) Semantic anomaly detection as the task of detecting se-

mantic shift anomalies, i.e. samples from 𝑃 ′ (𝑌).
(3) Out-of-distribution (OOD) detection as the sub-domain

within semantic anomaly detection, where in-distribution

samples are drawn from multiple classes (i.e. label space 𝑌

is not binary).

(4) Generalized out-of-distribution detection as the general

task of detecting all anomalies, i.e. both sensory and semantic

anomalies.

The main issue is that the training and testing data in reinforce-

ment learning does not contain a label space 𝑌 . As a result, the

terms out-of-distribution detection and anomaly detection are often

used interchangeably [16], and some of their definitions seem to

conflict with each other. A detailed overview of such terminological

discussions on OOD detection in reinforcement learning can be

found in the Appendix.

4 TERMINOLOGY OF OOD DETECTION IN
REINFORCEMENT LEARNING

Given terminological discussions on how to label different types of

anomalies for OOD detection in reinforcement learning, we pro-

pose terminology adapted from the framework introduced by Yang

et al. [33], while incorporating insights from existing literature from

Danesh and Fern [9] and Haider et al. [16]. We first differentiate

between two kinds of anomalies based on their effects on the MDP:

First, sensory anomalies change the observation that the agent

receives (e.g. adding observational noise), while leaving the under-

lying environment dynamics unchanged. Hence, these are closely

related to covariate shift anomalies defined in Yang et al. [33]. In

contrast, semantic anomalies change the underlying environment

dynamics (e.g. changing the gravity in the environment). Hence,

these are very similar to semantic shift anomalies defined in Yang

et al. [33]. We further define Generalized Out-of-Distribution
Detection as the task of detecting either of the two.

Definition 1. Sensory anomaly detection in reinforcement
learning refers to the task of identifying sensory anomalies. A sensory
anomaly is a perturbation to the reinforcement learning environment,
which changes the observations 𝑂 that the agent receives, but leaves
the underlying environment dynamics unchanged. If the change in
observation leads the environment to become partially observable,
such an anomaly changes the underlying Markov Decision Process
(MDP) to a Partially Observable Markov Decision Process (POMDP).

Definition 2. Semantic anomaly detection in reinforcement
learning refers to the task of identifying semantic anomalies. Semantic
anomalies are perturbations to the reinforcement learning environ-
ment, which change the transition function of a Markov Decision
Process 𝑃 (𝑆 ′ |𝑆,𝐴) by changing the environment dynamics.

Definition 3. Generalized out-of-distribution detection in
reinforcement learning refers to the task of identifying any type of
anomaly in the environment, hence including sensory anomaly detec-
tion and semantic anomaly detection.

The proposed terminology unites the task of detecting all types of

anomalies in reinforcement learning environments under the single

term of generalized out-of-distribution detection, while drawing a

meaningful distinction between the two major types of anomalies

that could exist in an environment. This is especially relevant as

some recent works have been inaccurate about the changes to the

MDP that the anomalies introduce (see Appendix for a discussion).

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1447

Figure 2: Illustrations of Autoregressive (AR) model with
parameters for no correlation (top), 1-step autocorrela-
tion (bottom-left), and 2-step autocorrelation (bottom-right),
which is used to create three different types of noise in new
testing scenarios.

5 NOVEL TESTING SCENARIOS FOR OOD
DETECTION

We now propose new benchmark environments for generalized

OOD detection that contain both sensory and semantic anomalies.

In contrast to the benchmark environments used in previous works,

these environments contain temporally correlated anomalies, which

is achieved by generating and adding noise using the autoregressive

(AR) model [3].

5.0.1 Autocorrelated noise patterns. To create custom benchmark

environments with different types of noise correlations, we use an

AR model of order 𝑝 , denoted by AR(p), where the noise value 𝑌𝑡
of a series at any point in time is linearly dependent on its own 𝑝

past values:

𝑌𝑡 = 𝜇 + 𝜙1𝑌𝑡−1 + 𝜙2𝑌𝑡−2 + · · · + 𝜙𝑝𝑌𝑡−𝑝 + 𝜀𝑡

Using this AR model, we implement noise with three different

types of autocorrelations:

(1) No correlation, in which case the noise is not correlated

across time, i.e., containing white noise, given as 𝑌𝑡 = 𝜖𝑡 .

(2) 1-step correlation, in which case the noise is autocorrelated
across each step, hence given as 𝑌𝑡 = 𝜙1𝑌𝑡−1 + 𝜖𝑡 .

(3) 2-step correlation, where the noise is autocorrelated only

at every second step (i.e., step 2, step 4), in which case, 𝑌𝑡 =

𝜙2𝑌𝑡−2 + 𝜖𝑡 .
Examples of the three types of noise for correlation coefficients

are displayed for 𝜙 = 0.95 in Figure 2.

Based on the autocorrelated noise patterns introduced above, we

introduce three new benchmark environments.

5.0.2 ARTS: Autoregressive Time Series environments. Autoregres-
sive Time Series (ARTS) serves as our baseline environment. At

the beginning of each episode, we generate a 1-dimensional vector

using the AR process, with the number of elements equal to the

maximum number of episode steps. At each time step 𝑡 , the agent

receives a 1-dimensional observation 𝑜𝑡 that contains the noise gen-
erated by the AR process, while the environment state is treated as

constant.

5.0.3 ARNO: Autoregressive Noised Observation environments. In
the Autoregressive Noised Observation (ARNO) setting, we intro-

duce sensory anomalies. At the beginning of the episode, we

generate a noise matrix, where each row of the matrix is a time

series, independently drawn from the AR Process. The number

of rows in the matrix corresponds to the dimension of a single

observation in the environment.

For each step 𝑡 , the agent takes an action 𝑎𝑡 , which is passed to

the environment’s state transition function to generate the next

state: 𝑠𝑡+1 ∼ 𝑃 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡). After each state transition, the noise

vector sliced from the matrix is added to the state 𝑠𝑡+1, transforming

it into an observation 𝑜𝑡+1. This simulates a scenario where the

environment’s underlying state undergoes a distortion before being

presented to the agent, similar to the effects of a camera glitch or a

sensory failure.

5.0.4 ARNS: Autoregressive Noised State environments. In Autore-

gressive Noised State (ARNS) environments, we introduce seman-
tic anomalies. Similarly to ARNO, we generate the AR noise matrix

at the beginning of each episode, with the same shape. At each step

𝑡 , the agent takes an action 𝑎𝑡 , which is passed to the environment’s

state transition function. However, before the transition, a noise
vector sliced from the matrix is applied to each dimension of the

state vector, effectively changing the transition function. This simu-

lates a scenario where, for example, the underlying physics or rules

of the environment are unpredictably changed due to systematic

issues.

6 DEXTER: DETECTION VIA EXTRACTION OF
TIME SERIES REPRESENTATIONS

We now move on to discuss our proposed algorithm for out-of-

distribution detection in reinforcement learning, which we refer to

as DEXTER (Detection via Extraction of Time-series Representa-

tions). The model is composed of two components: first, a feature
extractor 𝑓 (𝑠1, ...𝑠𝑛) that extracts relevant time series features

from a given time series data; and second, an anomaly detector
ℎ(𝑓 (𝑠1, ...𝑠𝑛), which we implement as an ensemble of isolation for-

est models that takes as an input the extracted features, and outputs

an anomaly score for the time series.

6.0.1 Feature extractor 𝑓 . Given a sample of states 𝑠0, 𝑠1, . . . 𝑠𝑡 ,

DEXTER first extracts the relevant time series features from each

state dimension. The goal behind the proposed detector is to be

anomaly agnostic: Instead of choosing features that could detect

a specific anomaly (e.g. autocorrelations), we aim to extract a di-

versity of features to maximize the number of anomalies DEXTER

could detect. For this purpose, we use the tsfresh feature extrac-
tor [8], which captures features of a diverse set of statistics of

the time series, including fundamental descriptive statistics (e.g.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1448

number of peaks, minimum, maximum, and median values), au-

tocorrelation statistics (e.g. autocorrelation coefficients for 𝑘 lags;

partial autocorrelation function [2] at the given lag 𝑘), advanced

features (e.g. descriptive statistics of the absolute Fourier transform

spectrum [21] and approximate entropy [12]).

6.0.2 Isolation Forest Algorithm ℎ. Next, we fit an ensemble of

isolation forest algorithms, which predicts the probability of an

anomaly based on the extracted features. The isolation forest algo-

rithm is an ensemble-based unsupervised machine learning method

designed for anomaly detection, introduced by Liu et al. [19]. Given

a training set, the algorithm first constructs multiple random trees

to partition data points. For each tree, the algorithm selects a sample

of training data, and recursively partitions the sample of data points

by randomly selecting a split value that falls between the minimum

and maximum values of a given attribute (i.e. dimension). Once an

ensemble of such isolation trees is constructed, a test data point is

passed down each of these trees. The path length it takes to isolate

the data point is averaged over the trees to produce an anomaly

score for the data point. The algorithm relies on the assumption

that anomalous points will be more easily separable from the rest

of the sample [20].

Isolation forest has the following beneficial properties: First,

it is an unsupervised method, which is essential as we are not

provided anomalous data and hencemust train an anomaly-agnostic

detector. Second, it has linear time complexity [19], allowing

to scale to high-dimensional data. Third, it allows for anomaly
scoring, enabling a nuanced interpretation of how "anomalous" a

data point is, instead of providing a mere binary classification.

6.0.3 Training and testing. An overview of DEXTER Anomaly

Score computation is displayed in Algorithm 1. We will denote

the training data as a sample 𝐷 = {𝑠𝑛, 𝑎𝑛, 𝑠𝑛+1}𝑁𝑛=1
.

Training. First, DEXTER partitions 𝐷 into windows of size𝑊

states. For each window𝑤𝑖 , the model extracts time-series features

along each dimension 𝑑 , 1 ≤ 𝑑 ≤ 𝑚, to obtain 𝑓𝑖,𝑑 . Once feature

extraction for all windows is complete: for each dimension 𝑑 , all

extracted features are concatenated to make 𝑓𝑑 . This aggregate fea-

ture set is used to fit the ensemble of isolation forest models, where

each model is assigned to a different state dimension, resulting in

𝑚 total models. For each model in the ensemble 𝐼𝐹𝑑 , the aim is to

instill an understanding of the predominant patterns present in the

given dimension of in-distribution observations.

Dexter Anomaly Score Computation. For a given timestep T, DEX-

TER collates the last𝑊 states to constitute a window, and extracts

features 𝑓 ′
𝑑
along each dimension in𝑚. The ensemble of trained

isolation forest models is then utilized to compute anomaly scores

for these features. The concluding anomaly score for a timestep

is calculated as the arithmetic mean of the scores spanning all the

dimensions in𝑚.

6.1 Sequential Hypothesis Testing with
DEXTER+C

The previously described DEXTER algorithm outputs an anomaly

score after each transition in the test-time deployment environ-

ment. We now introduce DEXTER+C (short for DEXTER+CUSUM),

Algorithm 1 DEXTER

Require: State dimensions𝑚, window size𝑊 , policy 𝜋 , dataset 𝐷

of training transitions

Training

Initialize ensemble of Isolation Forests IF = {IF1, ..., IF𝑚}
Partition 𝐷 into windows𝑤1, ...,𝑤𝑁 of size𝑊

for each𝑤𝑖 in windows do
for dimension 𝑑 from 1 to𝑚 do

Extract time series features 𝑓𝑖,𝑑
end for

end for
for dimension 𝑑 from 1 to𝑚 do

Form 𝑓𝑑 by concatenating 𝑓𝑖,𝑑
Train 𝐼𝐹𝑑 using 𝑓𝑑

end for

DEXTER Anomaly Score Computation
for Time 𝑡 from 0 to 𝑇 do

Action 𝑎𝑡 ← 𝜋 (𝑠𝑡), observe 𝑠𝑡+1
Update window with 𝑠𝑡+1
for dimension 𝑑 from 1 to𝑚 do

Extract features 𝑓𝑑
Compute score 𝑎𝑑 with IF𝑑

end for
Set 𝐴𝑇 as average over all 𝑎𝑑

end for

which uses the information-theoretic hypothesis testing CUSUM al-

gorithm [26] to derive a decision rule for when to classify a test-time

deployment as OOD. DEXTER+C is detailed in Algorithm 2. First,

the average DEXTER anomaly score𝐴 for a held-out set of training

transitions is computed. Then, the CUSUM detection threshold 𝜏 is

computed by evaluating CUSUM on held-out training transitions

and choosing 𝜏 such that a targeted False Positive Rate (𝐹𝑃𝑅) is

achieved on the set of held-out transitions. This tunable targeted

𝐹𝑃𝑅 indicates the ratio of anomaly-free episodes that are falsely

classified as OOD. Note that both steps only require access to train-

ing transitions and that the only hyperparameter is the targeted

𝐹𝑃𝑅. At test time, an online CUSUM detector with detection thresh-

old 𝜏 is employed. This detector updates the CUSUM score 𝑆𝑡 based

on the previous timestep’s score and the current DEXTER anomaly

score 𝐴𝑡 . If the CUSUM score 𝑆𝑡 exceeds 𝜏 , an OOD scenario is

detected and the execution is halted.

7 EMPIRICAL EVALUATION
We first focus on the newly introduced benchmark scenarios ARNO,

ARNS, and ARTS, which contain temporally correlated anomalies.

We implement ARNO scenarios with three levels of noise (described

in Section 7.1) in three different environments – Cartpole, Reacher,

and Acrobot [4]. We implement ARNS scenarios with analogous

levels of noise on Cartpole and Reacher, as the implementation on

Acrobot leads to inconsistent agent policies, which are described in

more detail in the Appendix. Lastly, as the ARTS environment does

not contain a reward signal, we only implement a single noise level.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1449

Algorithm 2 DEXTER+C

Require: targeted 𝐹𝑃𝑅, state dimensions𝑚, window size𝑊 , policy

𝜋 , validation dataset 𝐷 of training transitions

Compute Mean Anomaly Score 𝐴 using Validation Set

Compute DEXTER anomaly scores for
1

2
𝐷 , storing in { 𝐴𝑡 }

𝐴← mean of { 𝐴𝑡 }

Compute CUSUM Threshold 𝜏 using Validation Set

𝑆𝑚𝑎𝑥_𝑙𝑖𝑠𝑡 ← []
for each episode 𝑒𝑝 in

1

2
𝐷 do

𝑆0 ← 0, 𝑆𝑚𝑎𝑥 ← 0

for each score 𝐴𝑡 in 𝑒𝑝 do
𝑆 ← 𝑆 +𝐴𝑡 −𝐴
𝑆𝑚𝑎𝑥 ← max(𝑆, 𝑆𝑚𝑎𝑥)

end for
Append 𝑆𝑚𝑎𝑥 to 𝑆𝑚𝑎𝑥_𝑙𝑖𝑠𝑡

end for
𝜏 ← 1-𝐹𝑃𝑅 percentile of 𝑆𝑚𝑎𝑥_𝑙𝑖𝑠𝑡

DEXTER+C Out-of-Distribution Detection
𝑆0 ← 0

for Time 𝑡 from 0 to 𝑇 do
Compute 𝐴𝑡 using DEXTER Anomaly Score Computation

𝑆𝑡 ← max(0, 𝑆𝑡−1 +𝐴𝑡 −𝐴)
if 𝑆𝑡 > 𝜏 then

Raise out-of-distribution alert

Break

end if
end for

The codebase and supplementary materials are publicly available

at: https://github.com/LinasNas/DEXTER.

We afterward consider the common benchmark scenarios intro-

duced by Haider et al. [16], which contain either i.i.d anomalies

or time-independent anomalies (five scenarios in total), two noise

levels for each anomaly, and two different environments (Cartpole

and Reacher), resulting in 20 different evaluation frameworks.

Previous works [9, 16] focus on AUROC computed for per-

transition anomaly scores as the main metric for detector perfor-

mance. However, AUROC scores do not yield a decision rule for

classifying observation as OOD. We hence also consider the re-

quired timesteps to classify the anomaly-containing test-time envi-

ronment as OOD as a metric for detector performance, we refer to

this metric as Detection Time.

7.1 Evaluations for ARTS, ARNS and ARNO
Scenarios

Noise levels in each environment. In ARNO and ARNS environ-

ments, we apply three different levels of noise to generate the

anomalies. The levels are classified as Light, Medium, and Strong,

based on their effect on the agent’s reward in the environment. The

procedure to choose these levels is as follows. First, we normalize

the noise magnitude by the standard deviation of that dimension’s

Table 1: ARTS scenarios: Detector performance (AUC above,
Detection time below).

1-step 2-step

AUROC ↑

CPD: OCD 0.79 0.77

CPD: Chan 0.64 0.64

PEDM 0.51 0.5

DEXTER 0.89 0.83

Det. Time ↓ PEDM+C 200.0 200.0

DEXTER+C 19.8 28.0

observation. Then, we apply uncorrelated noise of different mag-

nitudes to the environment and train a reinforcement learning

agent using Proximal Policy Optimization (PPO) [28] in discrete

action-space environments, and Twin Delayed Deep Determinis-

tic (TD3)[14] algorithm for continuous action-space environments,

until it converges to a stable cumulative episodic reward. We then

measure how much, averaged over 50 episodes, the reward differs

from the reward achieved when an agent’s policy is optimized in an

undisturbed environment. Lastly, in each environment, we identify

three magnitudes of noise, which we classify as:

• Light noise: reduces

∑𝑇
𝑡=0

𝑟𝑡 by ∼ 1%

• Medium noise: reduces

∑𝑇
𝑡=0

𝑟𝑡 by ∼ 25%

• Strong noise: reduces

∑𝑇
𝑡=0

𝑟𝑡 by ∼ 50%

7.1.1 Evaluation Procedure. Our experimental evaluation follows

recent frameworks [9, 16]. We first apply uncorrelated noise of

each of the three levels. Then for each noise level, we train a policy

𝜋𝐴 (𝑎 |𝑠) until it is optimized for the episodic task with episode

length 𝐻 ∈ N.
In each episode, we introduce an anomaly at a random time

𝑡𝑎 ∈ (𝑡0 + 5, 𝑡𝐻 − 5), and apply this anomaly until the end of the

episode. That anomaly changes the correlation structure of noise

from no correlation to either 1-step or 2-step correlation, as it can be

observed in Figure 1. We test each of the two cases separately. All

transitions before the anomaly is applied, [(𝑠𝑡0
, 𝑠𝑡1
), . . . , (𝑠𝑡𝑎−1, 𝑠𝑡𝑎)]

are labeled as in-distribution, and all transitions after, [(𝑠𝑡𝑎 , 𝑠𝑡𝑎+1)
. . . , (𝑠𝑡𝐻−1

, 𝑠𝑡𝐻)] are labelled as anomalous.

To account for the effects of initialization and varying injec-

tion times, we repeat this procedure for multiple random point

time points and different initial environment states. Therefore, in

expectation, we obtain a balanced dataset.

Importantly, the noise level throughout the episode is constant,

since after the injection time, we simply change the correlation

structure of the noise, but not its magnitude. The experiments are

implemented in such a way since we are specifically interested in

whether the detectors can identify structural changes to the noise,

rather than detect the sudden emergence of noise itself, unlike most

prior benchmark environments [9, 16].

7.1.2 DEXTER and DEXTER+C. We implement DEXTER (described

in Algorithm 1) with a window size of𝑊 = 10 timesteps, since it

strikes a balance between a sample that is long enough to allow for

meaningful time series feature extraction, while being short enough

to allow for quick anomaly detection. We implement DEXTER+C

(described in Algorithm 2) with a target 𝐹𝑃𝑅 of 1%.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1450

https://github.com/LinasNas/DEXTER

Table 2: ARNO scenarios: Detector performance (AUC above, Detection time below).

Cartpole Acrobot Reacher

Light Noise Medium Noise Strong Noise Light Noise Medium Noise Strong Noise Light Noise Medium Noise Strong Noise

Detector 1-step 2-step 1-step 2-step 1-step 2-step 1-step 2-step 1-step 2-step 1-step 2-step 1-step 2-step 1-step 2-step 1-step 2-step

AUROC ↑

CPD: OCD 0.67 0.69 0.76 0.72 0.78 0.73 0.64 0.65 0.75 0.76 0.8 0.79 0.51 0.51 0.51 0.51 0.52 0.52

CPD: Chan 0.69 0.68 0.72 0.75 0.75 0.73 0.62 0.59 0.76 0.71 0.86 0.77 0.51 0.51 0.52 0.52 0.53 0.53

PEDM 0.55 0.62 0.6 0.51 0.6 0.55 0.57 0.54 0.52 0.54 0.5 0.53 0.81 0.5 0.84 0.51 0.87 0.5

DEXTER 0.81 0.85 0.89 0.9 0.93 0.9 0.74 0.71 0.96 0.91 0.99 0.95 0.67 0.6 0.91 0.63 0.97 0.61

Det. Time ↓ PEDM+C 138.8 143.2 133.0 79.3 199.1 183.1 163.9 199.2 79.7 197.2 177.2 169.9 21.3 200.7 19.3 193.6 18.1 200.8

DEXTER+C 23.2 15.2 13.1 19.9 14.85 14.7 32.1 42.5 12.7 13.9 8.0 11.5 60.9 72.1 20.0 197.1 12.4 110.6

Table 3: ARNS scenarios: Detector performance (AUC above, Detection time below).

Cartpole Reacher

Light Noise Medium Noise Strong Noise Light Noise Medium Noise Strong Noise

Detector 1-step 2-step 1-step 2-step 1-step 2-step 1-step 2-step 1-step 2-step 1-step 2-step

AUROC ↑

CPD: OCD 0.66 0.66 0.68 0.68 0.67 0.68 0.51 0.51 0.51 0.51 0.51 0.51

CPD: Chan 0.67 0.68 0.68 0.69 0.68 0.7 0.51 0.51 0.51 0.51 0.51 0.51

PEDM 0.66 0.64 0.63 0.61 0.59 0.56 0.52 0.51 0.55 0.55 0.51 0.5

DEXTER 0.73 0.73 0.88 0.8 0.84 0.77 0.56 0.62 0.51 0.7 0.55 0.67

Det. Time ↓ PEDM+C 33.0 44.5 53.1 50 44.5 125.3 189.4 197.7 201.0 201.0 195.8 197.2

DEXTER+C 32.2 16.9 17.8 37.8 24.0 27.4 199.0 95.1 193.6 61.1 198.7 66.7

Table 4: Benchmark scenarios: Detector performance (AUC above, Detection time below).

Cartpole Reacher

Action Fact. Action Noise Action Offset Body M. Fact. Force Vector Action Fact. Action Noise Action Offset Body M. Fact. Force Vector

Detector Minor Severe Minor Severe Minor Severe Minor Severe Minor Severe Minor Severe Minor Severe Minor Severe Minor Severe Minor Severe

AUROC ↑ PEDM 0.59 0.94 0.66 0.98 0.82 1.0 0.6 0.9 0.59 1.0 0.62 0.95 0.59 0.99 0.61 0.98 0.64 0.56 0.74 0.98
DEXTER 0.76 0.64 0.75 0.55 0.76 0.71 0.75 0.66 0.72 0.56 0.73 0.69 0.72 0.62 0.74 0.66 0.71 0.73 0.76 0.69

Det. Time ↓ PEDM+C 153.1 1.7 76.3 1.7 200.0 1.1 151.3 2.9 127.1 1.1 199.6 196.6 200.8 52.7 200.5 192.3 199.3 201.0 200.1 200.8

DEXTER+C 44.8 50.4 42.1 69.4 44.0 52.8 46.2 50.9 48.2 200.0 53.6 53.3 51.9 129.9 46.8 65.6 53.7 52.1 44.0 55.2

7.1.3 Probabilistic Ensemble Dynamics Model (PEDM). We imple-

ment the PEDM fromHaider et al. [16] as the state-of-the-art bench-

mark for generalized out-of-distribution detection. For a fair com-

parison, we further also implement a CUSUM-based PEDM detector

analogously to DEXTER+C, which we refer to as PEDM-C.

7.1.4 Changepoint detectors. In the newly introduced scenarios,

we also implement change point detectors from Chen et al. [7],

which the authors introduce under the name OCD, as well as an-

other changepoint detector proposed by Chan [5]. OCD conducts

likelihood ratio tests against simple alternatives of different scales

in each coordinate, and then aggregates these test statistics across

scales and coordinates. Unlike OCD, which is tailored for detecting

changes in the mean of a multi-dimensional Gaussian data stream,

a detector from Chan [5] tests the null hypothesis of data following

a multivariate normal distribution against an alternative where

one of the coordinates has a mixture distribution. Such methods

constitute state-of-the-art models used to identify changes in high-

dimensional data streams, with a focus on changes to the mean,

from online changepoint detection literature in statistics. More

information on their implementation is provided in the Appendix.

7.2 Detection Performance Metrics
To evaluate the performance of the different detectors, we consider

both AUROC as well as average detection time, i.e. the average

number of steps before an anomalous episode is classified as out-of-

distribution. If the anomaly is not classified as OOD before the end

of the episode, we set the detection time to the maximum episode

length.

7.3 Detection Performance Results in novel
scenarios.

The results for both performance metrics and for all detectors across

all scenarios and environments are given in Tables 1, 2, 3.

AUROC results. We find that DEXTER outperforms all other de-

tectors in the vast majority of scenarios and noise levels, achieving

the best performance in 2 out of 2 ARTS settings, 17 out of 18 ARNO

settings, and 11 out of 12 ARNS settings. We observe that PEDM

detector performs no better than random guessing in ARTS setting

(average AUROC of 0.51), as well as marginally better than random

guessing in ARNO scenarios (average AUROC of 0.59). The main

exception is the 1-step correlated noise setting in ARNO Reacher

environment, where PEDM performs with an average of 0.84 AU-

ROC across the three noise levels, and outperforms DEXTER on the

Light Noise level. The performance of PEDM on ARNS is similar,

with an average AUROC score of 0.57 across all noise levels and en-

vironments. Such results confirm our hypothesis about the model’s

limitations outlined in Section 2.0.2. CPD detectors perform only

marginally better than PEDM across the three types of noise in

Cartpole and Acrobot, though their AUROC scores across Reacher

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1451

environments in ARNO and ARNS settings are below PEDM, with

an average of around 0.51. The scores of changepoint detectors in

these settings are also quite repetitive, since in the vast majority

of cases, they consistently detect an anomaly at one of the earliest

steps in the episode. Since both algorithms are designed to identify

changes to the mean of time series data, this may be especially

difficult in high-dimension noisy environments, such as Reacher.

Detection time results. We find that DEXTER+C outperforms

PEDM+C by a large margin in the vast majority of settings, in

accordance with the higher AUROC scores.

7.4 Detection Performance Results in
Benchmark Scenarios.

We observe in Table 2 that DEXTER (DEXTER+C) generally out-

performs PEDM (PEDM+C) for minor anomaly scenarios, while

the opposite holds true for severe anomalies. This finding is as ex-

pected, as DEXTER requires a larger time-series window to extract

features. These results suggest that a combination of both DEXTER

(DEXTER+C) and PEDM (PEDM+C) approaches might result in

optimal outcomes.

8 CONCLUSION AND FUTUREWORK
This paper focused on the problem of generalized OOD detection in

reinforcement learning. We started by outlining the terminological

discussions that are currently present in the literature, and offered

a framework that formalizes the problem and aligns its terminology

with the broader field of generalized OOD detection in machine

learning. We then outlined potential shortcomings in the architec-

tures of current state-of-the-art detectors, and introduced a new

set of testing scenarios for generalized OOD detection in RL.

By introducing noise with different types of autocorrelations,

these scenarios focus on anomalies that, to the best of our knowl-

edge, have not been explicitly studied in the literature, but are

highly relevant to many real-world scenarios. We also proposed

a new generalized OOD detection model called DEXTER, which

first extracts relevant time series features from observations, and

then applies an ensemble of isolation forest algorithms to detect

potential anomalies. Its extension DEXTER+C further establishes a

decision rule by use of CUSUM.

Lastly, we also adopted several existing changepoint detection

methods from statistics for generalized OOD detection. After a

series of experiments, we found that DEXTER outperforms the

existing state-of-the-art models for OOD detection on the novel test

scenarios. However, in some benchmark scenarios, a combination

of previously used approaches together with DEXTER appears to

yield improved results. In future work, we plan to explore such

combinations of different detection mechanisms.

Despite the successes of our method, it still faces several im-

portant limitations, which point in the directions to take in future

work. First, our evaluations are limited to simulated environments.

Future work should test on sim-to-real settings. Second, we do not

test on scenarios with noise that is correlated across dimensions.

Future work should address cross-dimensional feature extraction.

Third, DEXTER uses a fixed window length to detect anomalies,

which is fixed before interacting with the test-time environment.

Future work should study how this can be replaced by a sliding

scale and/or hierarchical pyramid of window sizes. Lastly, draw-

ing on existing work [30], we foresee the process of effectively

selecting relevant features at test-time as a natural step to improve

DEXTER’s efficiency in high-dimensional environments.

Generalized OOD detection is critical to ensure the safety of RL

algorithms when they are deployed in the real world. Unlike the

kinds of out-of-distribution perturbations that have been considered

in previous work, the robotic systems such as drones that have

already been used in the real world [17] risk facing noise that is

correlated across timepoints. This noise could come from physical

disturbances such as a malfunctioning robot joint or a partially

broken camera lens. If the disturbance at each individual time point

is slight, it risks not to be caught by systems relying on one-step

transitions like PEDM.

However, over a long time period, these disturbances can cause

significant damage to the system, decreasing performance and

putting potentially dangerous strain on the rest of the robot. Fur-

ther, not addressing temporally correlated noise risks leaving the

control system open to adversarial attacks, which induce perturba-

tions that are correlated across time, such as illusory attacks [13].

This suggests that inclusion of a DEXTER-like system for detection

of temporally-correlated noise – possibly in conjunction with a

PEDM-like system optimized at detecting one-step perturbations –

is necessary to ensure safe deployment of RL systems.

More broadly, we hope that our work helps shift future OOD

dynamics detection towards more general approaches, improving

both AI safety and security. Importantly, this work helps facilitate

the move from individual time-step decision rules to information-

theoretic optimal CUSUM detection methods.

ACKNOWLEDGMENTS
We’d like to thank James Duffy for an in-depth overview of out-of-

distribution detection methods in econometrics and statistics. We

further thank Philip Torr for helpful comments. LN was supported

by the Center for AI Safety (CAIS) and Future of Life Institute

for this project. KS was supported by a Cusanuswerk Doctoral

Fellowship. CSDW received generous support from the Coopera-

tive AI Foundation. This project received funding by Armasuisse

Science+Technology.

REFERENCES
[1] OpenAI: Marcin Andrychowicz, Bowen Baker, Maciek Chociej, Rafal Jozefowicz,

Bob McGrew, Jakub Pachocki, Arthur Petron, Matthias Plappert, Glenn Powell,

Alex Ray, et al. 2020. Learning dexterous in-hand manipulation. The International
Journal of Robotics Research (2020).

[2] GE Box, Gwilym M Jenkins, and Gregory C Reinsel. 2015. i GM Ljung, Time

series analysis: forecasting and control.

[3] George EP Box, Gwilym M Jenkins, Gregory C Reinsel, and Greta M Ljung. 2015.

Time series analysis: forecasting and control. John Wiley & Sons.

[4] Greg Brockman, Vicki Cheung, Ludwig Pettersson, Jonas Schneider, John

Schulman, Jie Tang, and Wojciech Zaremba. 2016. OpenAI Gym.

arXiv:arXiv:1606.01540

[5] Hock Peng Chan. 2017. Optimal sequential detection in multi-stream data. (2017).

[6] Stephanie CY Chan, Samuel Fishman, John Canny, Anoop Korattikara, and Sergio

Guadarrama. 2019. Measuring the reliability of reinforcement learning algorithms.

arXiv preprint arXiv:1912.05663 (2019).
[7] Yudong Chen, Tengyao Wang, and Richard J Samworth. 2022. High-dimensional,

multiscale online changepoint detection. Journal of the Royal Statistical Society
Series B: Statistical Methodology 84, 1 (2022), 234–266.

[8] Maximilian Christ, Nils Braun, Julius Neuffer, and Andreas W Kempa-Liehr. 2018.

Time series feature extraction on basis of scalable hypothesis tests (tsfresh–a

python package). Neurocomputing 307 (2018), 72–77.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1452

https://arxiv.org/abs/arXiv:1606.01540

[9] Mohamad H Danesh and Alan Fern. 2021. Out-of-Distribution Dynamics De-

tection: RL-Relevant Benchmarks and Results. arXiv preprint arXiv:2107.04982
(2021).

[10] Christian Schroeder de Witt and Thomas Hornigold. 2019. Stratospheric Aerosol

Injection as a Deep Reinforcement Learning Problem. https://doi.org/10.48550/

arXiv.1905.07366 arXiv:1905.07366 [physics, stat].

[11] Jonas Degrave, Federico Felici, Jonas Buchli, Michael Neunert, Brendan Tracey,

Francesco Carpanese, Timo Ewalds, Roland Hafner, Abbas Abdolmaleki, Diego

de Las Casas, et al. 2022. Magnetic control of tokamak plasmas through deep

reinforcement learning. Nature 602, 7897 (2022), 414–419.
[12] Alfonso Delgado-Bonal and Alexander Marshak. 2019. Approximate entropy and

sample entropy: A comprehensive tutorial. Entropy 21, 6 (2019), 541.

[13] Tim Franzmeyer, João F Henriques, Jakob N Foerster, Philip HS Torr, Adel Bibi,

and Christian Schroeder deWitt. 2022. Illusionary Attacks on Sequential Decision

Makers and Countermeasures. arXiv preprint arXiv:2207.10170 (2022).
[14] Scott Fujimoto, Herke Hoof, and David Meger. 2018. Addressing function ap-

proximation error in actor-critic methods. In International conference on machine
learning. PMLR, 1587–1596.

[15] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. 2018. Soft

actor-critic: Off-policy maximum entropy deep reinforcement learning with a

stochastic actor. In International conference on machine learning. PMLR.

[16] Tom Haider, Karsten Roscher, Felippe Schmoeller da Roza, and Stephan Günne-

mann. 2023. Out-of-Distribution Detection for Reinforcement Learning Agents

with Probabilistic Dynamics Models. In Proceedings of the 2023 International
Conference on Autonomous Agents and Multiagent Systems. 851–859.

[17] Elia Kaufmann, Leonard Bauersfeld, Antonio Loquercio, Matthias Müller, Vladlen

Koltun, and Davide Scaramuzza. 2023. Champion-Level Drone Racing Using

Deep Reinforcement Learning. Nature 620, 7976 (Aug. 2023), 982–987. https:

//doi.org/10.1038/s41586-023-06419-4

[18] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. 2017. Simple

and scalable predictive uncertainty estimation using deep ensembles. Advances
in neural information processing systems 30 (2017).

[19] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2008. Isolation forest. In 2008
eighth ieee international conference on data mining. IEEE, 413–422.

[20] Fei Tony Liu, Kai Ming Ting, and Zhi-Hua Zhou. 2012. Isolation-based anomaly

detection. ACM Transactions on Knowledge Discovery from Data (TKDD) 6, 1
(2012), 1–39.

[21] S Lawrence Marple Jr and William M Carey. 1989. Digital spectral analysis with

applications.

[22] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness,

Marc G Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg

Ostrovski, et al. 2015. Human-level control through deep reinforcement learning.

nature (2015).
[23] Aaqib Parvez Mohammed and Matias Valdenegro-Toro. 2021. Benchmark for

out-of-distribution detection in deep reinforcement learning. arXiv preprint
arXiv:2112.02694 (2021).

[24] Robert Müller, Steffen Illium, Thomy Phan, Tom Haider, and Claudia Linnhoff-

Popien. 2022. Towards Anomaly Detection in Reinforcement Learning. In Pro-
ceedings of the 21st International Conference on Autonomous Agents and Multiagent
Systems. 1799–1803.

[25] Charles Packer, Katelyn Gao, Jernej Kos, Philipp Krähenbühl, Vladlen Koltun,

and Dawn Song. 2018. Assessing generalization in deep reinforcement learning.

arXiv preprint arXiv:1810.12282 (2018).
[26] E. S. Page. 1954. Continuous Inspection Schemes. Biometrika 41, 1/2 (1954),

100–115. https://doi.org/10.2307/2333009 Publisher: [Oxford University Press,

Biometrika Trust].

[27] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal Policy Optimization Algorithms. Technical Report. arXiv.
[28] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov.

2017. Proximal policy optimization algorithms. arXiv preprint arXiv:1707.06347
(2017).

[29] Andreas Sedlmeier, Thomas Gabor, Thomy Phan, Lenz Belzner, and Claudia

Linnhoff-Popien. 2019. Uncertainty-based out-of-distribution classification in

deep reinforcement learning. arXiv preprint arXiv:2001.00496 (2019).
[30] Hui Yie Teh, I Kevin, Kai Wang, and Andreas W Kempa-Liehr. 2021. Expect

the unexpected: unsupervised feature selection for automated sensor anomaly

detection. IEEE Sensors Journal 21, 16 (2021), 18033–18046.
[31] Emanuel Todorov, Tom Erez, and Yuval Tassa. 2012. MuJoCo: A physics engine

for model-based control. In 2012 International Conference on Intelligent Robots
and Systems.

[32] A. Wald. 1945. Sequential Tests of Statistical Hypotheses. The Annals of Math-
ematical Statistics 16, 2 (1945), 117–186. https://www.jstor.org/stable/2235829

Publisher: Institute of Mathematical Statistics.

[33] Jingkang Yang, Kaiyang Zhou, Yixuan Li, and Ziwei Liu. 2021. Generalized

out-of-distribution detection: A survey. arXiv preprint arXiv:2110.11334 (2021).

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1453

https://doi.org/10.48550/arXiv.1905.07366
https://doi.org/10.48550/arXiv.1905.07366
https://doi.org/10.1038/s41586-023-06419-4
https://doi.org/10.1038/s41586-023-06419-4
https://doi.org/10.2307/2333009
https://www.jstor.org/stable/2235829

	Abstract
	1 Introduction
	2 Related Work
	3 Background and Notation
	4 Terminology of OOD Detection in Reinforcement Learning
	5 Novel Testing Scenarios for OOD Detection
	6 DEXTER: Detection via Extraction of Time Series Representations
	6.1 Sequential Hypothesis Testing with DEXTER+C

	7 Empirical Evaluation
	7.1 Evaluations for ARTS, ARNS and ARNO Scenarios
	7.2 Detection Performance Metrics
	7.3 Detection Performance Results in novel scenarios.
	7.4 Detection Performance Results in Benchmark Scenarios.

	8 Conclusion and future work
	Acknowledgments
	References

