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ABSTRACT
For effective human-agent teaming, robots and other artificial in-

telligence (AI) agents must infer their human partner’s abilities

and behavioral response patterns and adapt accordingly. Most prior

works make the unrealistic assumption that one or more teammates

can act near-optimally. In real-world collaboration, humans and

autonomous agents can be suboptimal, especially when each only

has partial domain knowledge. In this work, we develop compu-

tational modeling and optimization techniques for enhancing the

performance of human-agent teams, where both the human and the

robotic agent have asymmetric capabilities and act suboptimally

due to incomplete environmental knowledge. We adopt an online

Bayesian approach that enables a robot to infer people’s willing-

ness to comply with its assistance in a sequential decision-making

game. Our user studies show that user preferences and team per-

formance vary with robot intervention styles, and our approach

for mixed-initiative collaboration enhances objective team perfor-

mance (𝑝 < .001) and subjective measures, such as user’s trust

(𝑝 < .001) and perceived likeability of the robot (𝑝 < .001).
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1 INTRODUCTION
Human-agent teaming has the potential to leverage the unique

capabilities of humans and artificial intelligence (AI) agents to en-

hance team performance. However, both humans and agents can be

suboptimal, especially under uncertainty [19, 23]. Imagine a human
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collaborating with a robot in an urban search-and-rescue (USAR)

mission with reduced visibility due to fog or smoke. The human can

take control when the robot is error-prone (e.g., in unstructured

environments). Likewise, the robot can intervene when human

vision is limited. Optimizing this collaboration requires robots to

develop a Theory of Mind [35], i.e., the ability to infer the human

teammates’ mental states and anticipate their actions to determine

when intervention is beneficial. In this work, we look at mixed-
initiative interactions, where the robot models human behavior to

decide when to intervene to maximize team performance.

In human-robot teams, mixed-initiative interaction refers to a

collaborative strategy in which teammates opportunistically seize

and relinquish initiative from and to each other during a mission,

where initiative can range from low-level motion control to high-

level goal specification [18].We study such interactions in a teaming

task where humans and robots act suboptimally due to partial

environmental knowledge. Specifically, the human teleoperates

the robot, similar to USAR missions [16], and must collaborate

with the robot (seize or relinquish control) to reach a goal location.

The human and the robot have asymmetric capabilities and non-

identical, partial knowledge of the environment. During the task,

when the human selects an action, the robot can comply, interrupt,

or take over with an alternative action. The human can then decide

to accept or oppose the robot’s decision.

Our goal is to learn a domain-agnostic robot policy that can

effectively adapt to diverse users to maximize team performance

without prior human interaction data. Achieving such ad-hoc or

zero-shot coordination with novel human partners has been a long-

standing challenge in AI [22, 33]. Recent works explore zero-shot

human-AI collaboration by learning AI agent policies either from

human-human demonstrations [5, 14] or via self-play without any

human data [45, 47]. However, these approaches look at domains

where both humans and agents have symmetric capabilities. In con-

trast, our work delves into human-agent teaming with asymmet-
ric capabilities, where mixed-initiative teaming is essential. While

prior works in mixed-initiative teaming have adopted strategies

for switching control between humans and robots by estimating

performance [7, 38], or operator engagement [9], our work differs

by explicitly modeling user compliance to determine when robots

should intervene to maximize performance.

Our contributions are two-fold. First, we propose a novel, on-

line, Bayesian approach for zero-shot human-robot collaboration
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in mixed-initiative settings. We assume no prior knowledge of hu-

man capabilities. We model the human-robot team as a Partially

Observable Markov Decision Process (POMDP), where the robot

maintains a belief over users’ compliance tendencies. Initially, the

robot has high uncertainty about user compliance, but Bayesian

updates during subsequent interactions refine the estimation, re-

ducing the uncertainty. By conditioning the robot’s policy on the

estimated individual’s compliance, our approach is more robust to

adapt to a diverse pool of participants than having a single, unified

model for all subjects. To address the computational challenges

in solving POMDPs and ensure that our approach is feasible to

run online, we employ a Monte-Carlo search while anticipating

appropriate user behavior with approximate belief updates.

Second, we design a new user study interface for examining

mixed-initiative human-robot teaming. We open-source our imple-

mentation
1
. Through two human-subjects experiments (𝑛 = 30 and

𝑛 = 28), we demonstrate that (1) user preferences and team per-

formance can vary when the robot employs different intervention

styles, and (2) our proposed approach performs favorably on both

objective (team performance) and subjective (users’ trust, robot

likeability) metrics with novel users.

2 RELATEDWORK
2.1 Modeling Human Behavior
For seamless human-robot collaboration, robots must anticipate

human behavior and act accordingly. Prior works have shown that

robots modeling human behavior can enhance team performance

in various applications, such as autonomous driving [40], assistive

robotics [17], and collaborative games [34]. Both model-free and

model-based approaches have been employed for modeling human

behavior. Model-free approaches (e.g., imitation learning [5] and

inverse reinforcement learning [13]) require substantial data and

generally employ neural networks to learn human behavior.

In contrast, model-based approaches require far fewer samples

but make certain assumptions about human behavior (e.g., hu-

mans exhibit bounded rationality [44]). In Human-Robot Interac-

tion (HRI), POMDPs and their variants (e.g., BAMDP, MOMDP, I-

POMDP) are often used to account for latent factors such as trust, in-

tent, or capability influencing human decision-making [6, 25, 37, 46].

However, existing works mostly assume known model parame-

ters or use maximum likelihood estimation (MLE) [6, 26, 37, 46],

which may not generalize well across individuals and can overfit

[3]. Hence, we instead adopt a Bayesian approach to jointly learn

the POMDP parameters and the robot policy during human interac-

tions, similar to prior work [25, 29, 32]. Our work differs from prior

Bayesian approaches in HRI by maintaining belief about dynamic
latent parameters, such as trust or compliance [6, 30], which vary

during interactions and across individuals. To address the compu-

tational complexity of Bayesian approaches, we approximate the

belief space and use conjugate priors for efficient belief updates.

2.2 Human-Agent Teaming
Recently, there has been a surge in interest in designing AI agents

that are capable of collaborating with humans, especially in ad-hoc

1
https://github.com/CORE-Robotics-Lab/Bayes-POMCP

settings [1, 14, 15]. Ad-hoc or zero-shot human-agent teaming re-

quires agents to be adept at collaborating with diverse users in novel

contexts without prior interactions. Achieving ad-hoc, zero-shot

coordination with novel human partners has been a longstanding

challenge in AI and will be crucial for the ubiquitous deployment

of robots and AI agents [22, 31, 33]. Recent works aim to achieve

ad-hoc human-AI teaming either from human-human demonstra-

tions using Behavior Cloning [5] and offline RL [14] or via self-play

without any human data [45]. Others have also explored population-

based training to learn robot policies that are generalizable across

diverse users [27, 47]. However, these approaches focus on domains

where both humans and agents have symmetric capabilities and

work concurrently. In contrast, our work examines mixed-initiative

teaming, where humans and agents must assume or yield control to

achieve the task objective. Mixed-initiative approaches have been

previously employed in human-agent teams to share control over

high-level goals or task specification [11, 12], as well as low-level

motion control of agents [7, 41]. The initiative is consideredmixed
only when each team member is authorized to intervene or seize

control [18]. In our study, we investigate mixed-initiative motion

control in scenarios when humans and agents possess asymmetric
capabilities. Hence, we cannot apply approaches from prior work

for learning robot policies from human-human demonstrations.

Instead, we develop an online algorithm for learning the robot’s

intervention policy to improve team performance.

3 PRELIMINARIES
We model the human-robot team as a Bayes-Adaptive POMDP (BA-

POMDP) [39], allowing the robot to dynamically learn and adjust

its policy based on estimations of human model parameters while

accounting for estimation uncertainty.

A POMDP is defined as a tuple M = (𝑆,𝐴,𝑂,T , E, 𝑑0, 𝑅,𝛾)
where 𝑆 is a set of states 𝑠 ∈ 𝑆 , 𝐴 is a set of actions 𝑎 ∈ 𝐴, 𝑂 is

a set of observations 𝑜 ∈ 𝑂 , T (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑡 ) is the state transition
probabilities, E(𝑜𝑡 |𝑠𝑡 ) is the emission function, 𝑑0 is the initial state

distribution, 𝑅(𝑠𝑡 , 𝑎𝑡 ) is the reward, and 𝛾 ∈ (0, 1] is the discount
factor. The agent’s goal is to learn a policy, 𝜋 : B → 𝐴, that

maximizes the expected cumulative discounted reward (return),

where 𝑏 ∈ B is a belief state inferred by a history of previous

observations and actions, ℎ. Belief updates can be achieved via the

Bayes rule (infeasible for large state spaces) or with an unweighted

particle filter (approximate update).

Most prior works in POMDPs assume a fully specified environ-

ment (i.e., the model parameters T , E are known) [24], which is

unrealistic in HRI as we neither have access to the person’s true

latent states (e.g., trust, intent) nor how they change during the

interaction. We adopt the BA-POMDP framework — a Bayesian

Reinforcement Learning approach for solving POMDPs [39]. The

BA-POMDP employs Dirichlet vectors, 𝜒 , to represent uncertainty

over the model parameters (T , E). As the POMDP states are hidden,

𝜒 cannot be computed and is considered as part of the hidden state.

3.1 Solving POMDPs
Partially Observable Monte-Carlo Planning (POMCP) is an online

solver for POMDPs that uses the Monte-Carlo Tree Search (MCTS)

[43]. POMCP uses the UCT (Upper Confidence Bound (UCB) for
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Trees) to select actions and an unweighted particle filter for belief

updates. In POMCP, the UCT algorithm is extended to partially

observable domains using a search tree of histories ℎ instead of

states, where each node in the tree stores statistics – visitation count,

𝑁 (ℎ), value or mean return,𝑉 (ℎ), and belief,𝑏 (ℎ), approximated by

particles. The algorithm performs online planning through multiple

simulations, incrementally building the search tree. The return of

each simulation is used to update the statistics for all visited nodes.

POMCP terminates based on preset criteria (e.g., max simulations).

We model the human-robot team as a BA-POMDP. Solving BA-

POMDP models is difficult as they are infinite-state POMDPs. The

current state-of-the-art online solver for BA-POMDPs is the BA-

POMCP (i.e., POMCP for BA-POMDPs) [20]. In this work, we pro-

pose Bayes-POMCP, which extends the BA-POMCP algorithm for

human-robot teams, by incorporating belief approximations and

simulating user actions for improved search efficiency.

4 METHOD
In this section, we first define the human-robot team model (BA-

POMDP) for mixed-initiative interactions and then describe our

approach, Bayes-POMCP, to learn an adaptive robot policy for

mixed-initiative human-robot teams.

4.1 Human-Robot Team Model
4.1.1 State Space. In our human-robot team model, the state space

combines the world state and user latent state, 𝑠 = (𝑥, 𝑧). The world
state, 𝑥 ∈ X, refers to the task at hand, and the latent state, 𝑧 ∈ Z,

refers to the user’s trust or tendency to comply with the robot.

The robot does not have access to the user’s latent state and must

deduce it from user actions. In this work, we assume that the world

state dynamics are independent of the user’s latent state, given

the user’s action. We focus on suboptimal human-robot teaming,

assuming that the suboptimality arises from incomplete knowledge,

i.e., both agents may make errors as they cannot observe the full

world state. Thus, the world state as observed by the robot may not

always align with what the human observes (𝑥𝑅𝑡 ≠ 𝑥𝐻𝑡 ,∀𝑡).

4.1.2 Action Space. As we are planning from the robot’s perspec-

tive, the action space comprises the actions 𝑎𝑅 ∈ 𝐴𝑅
that the robot

can take in the environment. In our mixed-initiative collaborative

scenario, we assume that the robot first observes the human action

and then selects its action
2
. The robot can choose to either execute,

intervene, or override the user’s actions. Additionally, the robot

may choose to explain whenever it intervenes or overrides the user.

4.1.3 Observation Space. The robot observes the human actions

𝑎𝐻 ∈ 𝐴𝐻
. We assume that the human’s action depends on their

knowledge of the current world state, 𝑥𝑡 , and the history of inter-

actions, ℎ𝑡−1, with the robot, i.e., the human follows the policy,

𝜋𝐻 (𝑎𝐻𝑡 |𝑥𝑡 , ℎ𝑡−1, 𝑎𝑅𝑡−1), where ℎ𝑡−1 = {𝑎𝐻
0
, 𝑎𝑅

0
, 𝑎𝐻

1
, 𝑎𝑅

1
, · · · , 𝑎𝐻

𝑡−1}.
Similar to prior work [6], we assume that the user’s latent state,

𝑧𝑡 , is a compact representation of the interaction history (𝑧𝑡 ≈
{ℎ𝑡−1 ∪ 𝑎𝑅𝑡−1}). Thus, 𝜋

𝐻 (𝑎𝐻𝑡 |𝑥𝑡 , ℎ𝑡−1, 𝑎𝑅𝑡−1) ≈ 𝜋𝐻 (𝑎𝐻𝑡 |𝑥𝑡 , 𝑧𝑡 ).

2
Our approach is not restricted to this mixed-initiative setting and can be extended to

cases where either the robot takes the first action or works concurrently with users.

4.1.4 Transition and Emission Models. We define the state transi-

tion model, T , from the robot’s perspective, i.e., T = 𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑅𝑡 ).
However, for mixed-initiative settings, the state transitions occur

as a result of both human and robot actions (Equations 1, 2):

𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑅𝑡 ) =
∑︁
𝑎𝐻

𝑝 (𝑠𝑡+1 |𝑠𝑡 , 𝑎𝑅𝑡 , 𝑎𝐻𝑡 ) × 𝜋𝐻 (𝑎𝐻𝑡 |𝑥𝑡 , 𝑧𝑡 ) (1)

=
∑︁
𝑎𝐻

𝑝 (𝑥𝑡+1 |𝑥𝑡 , 𝑎𝑅𝑡 , 𝑎𝐻𝑡 ) × 𝑝 (𝑧𝑡+1 |𝑧𝑡 , 𝑎𝑅𝑡 , 𝑎𝐻𝑡 ) × 𝜋𝐻 (𝑎𝐻𝑡 |𝑥𝑡 , 𝑧𝑡 ) (2)

Equation 2 comes from our assumption that given the human and

robot actions, the world state dynamics are independent of the

human latent state dynamics. In this work, we only estimate the

latent state dynamics as part of the BA-POMDP, as we assume that

the world state dynamics are deterministic and known.

The emission model E for the human-robot team refers to the

human policy 𝜋𝐻 (𝑎𝐻𝑡 |𝑥𝑡 , 𝑧𝑡 ) which is also unknown to the robot

and must be estimated to solve the BA-POMDP.

4.1.5 Reward Function. The reward function R(𝑥, 𝑎𝐻 , 𝑎𝑅) is posi-
tive for team actions that aid in achieving the task objective and

negative for team actions that hinder task success. We assume that

both the user and the robot know the reward function.

4.2 Adaptive Robot Intervention Policy
Tomaximize human-robot team performance in real-time formixed-

initiative settings, we implement a modified version of the BA-

POMCP [20]. Here, we highlight the key changeswemake to the BA-

POMCP algorithm. Figure 1 provides an overview of our approach,

and the complete procedure is described in Algorithm 1.

Algorithm 1: Bayes-POMCP: Maximizing Perfor-
mance in Mixed-Initiative Human-Robot Teams
Input: Initial world state 𝑥0; Interaction history ℎ−1 = [];

initial belief 𝑏0; Search Tree 𝑇 = {}
1 𝑎𝑅−1 ← No-Assist // By default before episode starts

2 𝑧0 ← {ℎ−1 ∪ 𝑎𝑅−1} // Initial human latent state

3 𝑎𝐻
0
← RealHuman(·|𝑥0, 𝑧0) // First human action

4 ℎ0 ← [𝑎𝐻
0
]

5 𝑇 (ℎ0) ← ConstructNode(𝑇,ℎ0) // Construct root node
6 for 𝑡 = 0, 1, 2, . . .max_steps do
7 𝑎𝑅𝑡 ← Search(ℎ𝑡 ) // Root node ▷ Search (Supp. Alg. 2)

8 if (ℎ𝑡𝑎𝑅𝑡 ) ∉ 𝑇 then
9 ConstructNode(𝑇,ℎ𝑡𝑎

𝑅
𝑡 )

10 𝑥𝑡+1 ← 𝑝 (·|𝑥𝑡 , 𝑎𝑅𝑡 , 𝑎𝐻𝑡 ) // Update World State

11 𝑧𝑡+1 ← {ℎ𝑡 ∪ 𝑎𝑅𝑡 } // Update true latent state⇏ Robot

12 𝑎𝐻
𝑡+1 ← RealHuman(·|𝑥𝑡+1, 𝑧𝑡+1) // Next user action

13 ℎ𝑡+1 ← ℎ𝑡 ∪ {𝑎𝑅𝑡 , 𝑎𝐻𝑡+1}
14 if ℎ𝑡+1 ∉ 𝑇 then
15 𝑇 (ℎ𝑡+1) ← ConstructNode(𝑇,ℎ𝑡+1)

16 𝑏 (ℎ𝑡+1) ← Belief-Update(𝑏 (ℎ𝑡 ), 𝑎𝑅𝑡 , 𝑎𝐻𝑡+1)
17 Prune-Tree(𝑇,ℎ𝑡+1) // ℎ𝑡+1 is the root node

Full Research Paper  AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1456



update history h

human takes 
an action

robot takes 
an action

execute action 
in environment

online belief 
update

construct Monte-
Carlo Search Tree

SEARCH 
(Appendix: 

Alg. 2)
SIMULATE

belief update
anticipate 

human behavior update tree

cum
ulative discounted rew

ard

select robot 
action with UCB

if terminal

if not 
terminal

Max. # simulations?

YES
NO

return robot 
action

greedily select robot action 
with updated statistics

Figure 1: Graphical overview of the Bayes-POMCP approach for mixed-initiative Human-Robot Teaming: At each timestep 𝑡 ,
the human first takes an action based on interaction history, ℎ, and their current observation of the world state, 𝑥 . The robot
then determines when and how to intervene by anticipating human behavior using a Monte-Carlo tree search. The reward is
calculated based on both human and robot actions.

4.2.1 Belief Approximation. Similar to POMCP, BA-POMCP also

constructs a search tree via environment simulations and maintains

a belief over latent parameters using an unweighted particle filter to

determine the best action at each time step. However, BA-POMCP

requires maintaining a belief over both the latent states |𝑆 | and
the model parameters T , E (i.e., |𝑆 |2 × |𝐴| + |𝑆 | × |𝐴| × |𝑂 | param-

eters). Computing the posterior update over such a large space

can be expensive, and achieving convergence to true parameters is

challenging, especially with limited interactions.

Hence, we leverage the independence assumption between the

world state and the latent state transition (Equation 2) to approxi-

mate the belief in each node in the search tree, making it feasible

to compute the belief updates in real-time. Since only the human

action is needed to determine the next world state, we choose to

maintain the belief only over user compliance. We compute the

posterior update for the belief 𝑏 (ℎ𝑡+1) from the prior belief, 𝑏 (ℎ𝑡 ),
based on the interaction history, ℎ𝑡 , at each node.

4.2.2 Simulating Human Policy. In BA-POMCP, we need to simu-

late human actions during the rollout for constructing the search

tree. As the robot lacks direct knowledge of the true human policy,

we first estimate the human policy parameters and use the same for

simulation. We model the true human policy as a Bernoulli distribu-

tion with an unknown parameter, 𝜇, that signifies the likelihood of

user compliance for a given interaction history, ℎ. To estimate 𝜇, we

adopt a Bayesian approach. We assume a prior distribution or belief

over the space of human policies 𝑏 = 𝑝 (𝜇). We approximate 𝑏 using

a set of particles, which is updated upon subsequent interactions

with the user. Updating beliefs can be computationally expensive,

but for the conjugate family of distributions, such updates can be

computed efficiently [3]. Thus, we model each particle as a beta

distribution – the conjugate prior for Bernoulli distributions.

During the rollout, we simulate human actions by sampling a

particle from the current belief, 𝑏. This sampled particle informs

whether the user will comply with the robot’s interventions. Ad-

ditionally, we assume that humans are rational and employ an

𝜖−greedy heuristic to select the user’s actions in case of noncom-

pliance. The belief, 𝑏, is updated based on the interaction outcomes

during simulation. For further details, refer to the Supplementary.

Alternatively, we can use a random policy to mimic human be-

havior, but this would require more simulations to cover a range of

possible human responses and determine the optimal robot action—

resulting in increased computation time. Thus, we opt for estimating

user compliance and then simulating the human actions, which we

find empirically to be more efficient. To evaluate the contributions

of our proposed modifications to the BA-POMCP algorithm [20],

we perform an ablation analysis without modeling humans. We

refer to this approach as POMCP in our analysis (Section 6.2).

5 EVALUATION
5.1 Domain
We modified the Frozen Lake environment from OpenAI Gym [4]

for evaluating mixed-initiative human-robot teaming. In this do-

main, the users must collaborate with the robot to navigate an

8 × 8 frozen lake grid from start to goal in the fewest steps possible

while avoiding holes and slippery regions. We modified the original

domain to only have certain grids as slippery instead of a constant

slip probability throughout the map. Stepping on a slippery region

will cause the agent to fall into a hole. Both the human and the

robot can only observe whether the adjacent four grids are slippery.

Each time the agent falls into a hole, the team incurs a penalty 𝛼

and must begin again from the start location.

To enforce suboptimality, we introduce errors in the human and

robot observations of slippery grids. These errors include – False
Positives (observing a safe grid as slippery), and False Negatives
(observing a slippery region as safe). Moreover, certain parts of

the map are covered by fog which reduces human visibility. The

human and robot accuracies for identifying slippery regions are

shown in Figure 2. During the game, the human teleoperates the

robot across the lake, but the robot may intervene or take control

if it finds that the user chose a longer or unsafe path (e.g., slippery

regions or holes) to the goal. Additionally, the user is equipped with
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Fog

Non-fog

Slippery

Ice hole

Goal

Start

Legend:

Human action: down

Interrupt Take-control

Robot action: stay Robot action: upHuman action: down

Robot can choose to interveneRobot observes
human action

a b

c Accuracy Fog Non-Fog

40% 90%

75% 75%Robot

Human

Human's world view Robot's world view

Figure 2: Frozen Lake Domain used in this study. Figure 2(a)
shows the overall game layout. Figure 2(b) depicts robot inter-
vention styles: interrupt, take-control, and Figure 2(c) shows
the human and robot accuracies in identifying slippery grids.

a high-quality (100% accurate) sensor for detecting slippery regions

in adjacent grids, but each use of the sensor incurs a point cost 𝜌 .

The overall team performance or game reward for each round is

calculated as a combination of step penalty (shorter path→ higher

reward), penalty for falling into holes 𝛼 , detection penalty 𝜌 , and a

bonus 𝜅 for reaching the goal as shown in Equation 3.

Reward = Max steps − # steps taken − 𝛼 × # falls into hole

− 𝜌 × # detections + 𝜅 × 1[goal reached == True] (3)

We empirically set max steps = 80, 𝛼 = 10, 𝜌 = 2 and 𝜅 = 30

for our human-subject experiments. Our environment is inspired

by USAR missions, where humans teleoperate robots, but both

humans and robots can have complementary skills and varying

domain knowledge. Further details of the user study domain can

be found in the Supplementary.

5.2 Human-Subjects Experiments
We conducted two user studies to 1) examine how users respond to

different robot intervention styles with and without explanations

but with a static policy (Data Collection Study) and 2) evaluate

human-robot team performance with the proposed adaptive Bayes-

POMCP approach (Evaluation Study).

5.2.1 Data Collection Study. We employ a 1 × 5 within-subjects
experiment design to examine user responses to various robot in-

terventions in mixed-initiative teaming (Figure 2b). These inter-

ventions include – no assist: the robot does not intervene (base-
line), interrupt: the robot stops the user from executing an action,

take-control: the robot overrides the user’s action with its own

action, interrupt+explain: the robot interrupts and explains, take-
control+explain: the robot takes over control and explains. To ensure
consistency across intervention strategies, the robot employs the

same handcrafted heuristic that determines when to intervene. The

heuristic intervention policy is a short-horizon planner that only

intervenes if the user’s current action is anticipated to lead to a

slippery region (based on the robot’s knowledge), a hole, or a longer

path (≥k steps) and will cede control to the user if the user persis-

tently chooses the action the robot is intervening. The heuristic

employs a static intervention style. The algorithm for the heuristic

policy can be found in the Supplementary.

5.2.2 Evaluation Study. We employ a 1 × 3 within-subjects experi-
ment to compare human-robot team performance under different

robot policies. The examined policies are our proposed approach –

Bayes-POMCP, the same heuristic policy as was used in the data

collection study, and an adversarial policy (Adv-Bayes-POMCP)

optimized for negative game reward (Equation 3). We include the

adversarial policy as an adaptive baseline to show that (1) our

proposed approach can successfully aid or inhibit the user from

reaching the goal, and (2) it is essential for the adaptive policy to

reason when to intervene effectively in addition to switching the

intervention styles. To perform a balanced comparison, we ensure

that the run times of all robot policies are identical. Further, we

limit the use of the detection sensor (≤ 5) in the evaluation study

to force participants to rely on the robot’s assistance.

5.2.3 Metrics. For both studies, we assess user preferences and

performance using subjective and objective measures, respectively.

Our subjective measures include trust [28], likeability [2], and will-

ingness to comply [36] (adapted from human-human interactions

for HRI) measured via 5-point Likert scales. All questionnaires were

administered to the users after each round in both studies. Further,

participants reported their demographics, highest completed ed-

ucation, prior experience with robots, and completed a 50-item

personality scale [10] as part of the pre-study questionnaire. At the

end of the study, users ranked their preferences for the different

robot agents. All questionnaires used for the study can be found in

the Supplementary. Objective performance was assessed based on

the total game reward (Equation 3) in each round.

5.2.4 Participants and Procedure. We recruited 30 participants

(Age: 25.56± 3.38, Female: 33%) for the data collection study and 28

new participants (Age: 25.27± 3.28, Female: 50%) for the evaluation

study, all from a local university campus after IRB approval. The

procedure was the same for both studies. Written consent from the

participants was obtained before the experiment. At the start of the

study, participants received written game instructions along with a

demonstration from the experimenter. Participants first completed

three practice rounds to familiarize themselves with the game and

then engaged in ten and six rounds (two rounds per condition)

for the data collection study and evaluation study, respectively.

The subjects were instructed to complete each round by taking the

shortest path to the goal. The experiment order was randomized,

and participants completed pre- and post-study questionnaires.

5.3 Hypotheses
To investigate how different users interact with various robot in-

tervention styles, we first conducted a data collection study. We

hypothesize the following:

H1A: The human-robot team performance can vary with different
robot intervention styles.Although the robot follows the same heuris-

tic across different conditions in Study 1, we hypothesize that the

team performance will vary across intervention styles as users may

respond differently. For instance, users may be better informed to

choose the next action appropriately when the robot intervenes

and provides an explanation.
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Figure 3: Results from the Data Collection Study with Heuristic Mixed-Initiative Policies. Figure 3a shows that users perform
the best with the take-control agents and the worst with the no-assist (baseline) agent. Figure 3b depicts users’ preference
rankings, with the interrupt+explain agent being the most favored (rank = 5). Error bars indicate standard error.

H1B: Users will have different preferences for working with various
robot intervention styles. Humans have varying personality traits

and task preferences, which may impact how they perceive and

collaborate with teammates. For instance, extroverted individuals

are more likely to assume leadership and less likely to renounce

control in human-human teams [21]. Likewise, we hypothesize that

users will have different preferences when working with robots

that interrupt or take control with or without offering explanations.

For the evaluation study, we compare the team performance with

the Bayes-POMCP policy against heuristics used in the first study

and an adversarial baseline – Adv-Bayes-POMCP. We hypothesize:

H2A: The human-robot team performance will be the highest when
the robot employs the Bayes-POMCP policy.We hypothesize that the

Bayes-POMCP policy, which actively anticipates human actions

by considering their latent states, is better suited for determining

when and how to intervene various users andwill therebymaximize

team performance. In contrast, the baselines that do not model the

human latent states (the heuristic policy) or optimize for negative

reward (the adversarial Bayes-POMCP) will perform poorly.

H2B: Users will most prefer to work with our proposed approach,
the adaptive Bayes-POMCP policy.We hypothesize that the Bayes-

POMCP policy can effectively intervene users by modeling their

latent states and will, therefore, not only improve team performance

but also have a positive impact on the users’ subjective preference

for collaborating with the robot.

6 RESULTS AND DISCUSSION
In this section, we first discuss the results of the data collection

study. Next, we show results from our simulation experiments used

to validate Bayes-POMCP before testing on human participants.

We then discuss the results from the evaluation study, comparing

our Bayes-POMCP approach and two baselines.

All our statistical analyses were performed using libraries in R,

and the significance level, 𝛼 , was set at 0.05. For our analysis, we

use parametric tests unless the model fails to meet the required

assumptions (e.g. normality, homoscedasticity).

6.1 Data Collection Study
For the data collection study, we recruited 30 participants and

excluded one participant as an outlier since they failed to complete

all ten rounds in the study (failure rate across all subjects: 1.733 ±
2.365). Thus we have data from 29 subjects for our analysis.

H1A: Team Performance and Robot Intervention Styles. We com-

pare the team performance using the game reward (Equation 3)

across the five robot intervention styles employed in the first study.

The robot either used the same heuristic policy to determine when

to intervene or did not intervene at all (no-assist: baseline condition).

Each user participated in two rounds for each intervention style,

totaling ten rounds; all played on different maps with varying levels

of difficulty. To mitigate ordering effects and map-related biases,

the experiment conditions and map assignments were randomized.

We use Kruskal-Wallis (a non-parametric test), with the dependent

variable as the reward and the independent variable as the robot

intervention style. We obtain statistical significance for the inter-

vention style (𝐻 (4) = 58.16, 𝑝 < .001). We use Dunn’s test with

Holm-correction for performing post-hoc pairwise comparisons,

and the significance values are shown in Figure 3a.

Takeaway: We find that the human-robot team performance is

impacted by the intervention styles used by the robot, rejecting the

null hypothesis (Figure 3a). Firstly, it is worth noting that the team

performance significantly improves when the robot intervenes com-

pared to the baseline (no assistance), validating the need for robot

interventions in our study domain. Secondly, the team performance

is the highest when the robot takes over control. Lastly, adding ex-

planations did not significantly improve performance for the same

intervention style (e.g., between interrupt and interrupt+explain).

H1B: Users’ Working Preference and Robot Intervention Styles. At
the end of the first user study, participants were asked to rank their

preferences for working with various robot intervention styles

on a scale from 1 (lowest) to 5 (highest). As user rankings are

considered ordinal data, we use Kruskal-Wallis, a non-parametric

test, to analyze H1B. We find that robot intervention style indeed

influences user preferences (𝐻 (4) = 61.67, 𝑝 < .001). The majority
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Figure 4: Team performance in simulation experiments with static and dynamic latent user models. Figures 4a and 4b show
that Bayes-POMCP can enhance team performance across users of varied expertise and compliance tendencies, respectively.
Bayes-POMCP outperforms heuristics and the ablation POMCP model, especially for users with low expertise.

of the users preferred the interrupt+explain agent the most and the

take-control agent the least, as shown in Figure 3b.

Takeaway: Our results suggest that, despite explanations not im-

proving performance, most users favor working with robots that

offer explanations for their interventions. Interestingly, even though

the take-control agent achieved the highest team performance, it

was the least preferred choice for the majority of users. These find-

ings highlight the need for an adaptive robot policy that adjusts the

intervention style to maximize performance and user satisfaction.

If the robot only takes over control, it can improve team perfor-

mance in the short term but can cause user dissatisfaction and can

potentially lead to users abandoning the system in the long run.

6.2 Simulation Experiments
Before testing the Bayes-POMCP policy on actual users, we first

ensure its adaptability by experimenting with various simulated

humanmodels. In these simulation experiments, we compare Bayes-

POMCP against two baselines – (1) the standard POMCP algorithm

[43] with no human model (POMCP) and (2) the heuristic agents

(both take-control and interrupt) on five of the 8×8maps used in the

data collection study. To simulate a diverse set of users, wemodulate

two latent parameters that determine their behavior – the users’

capability or expertise (𝜓 ) to solve the task and the users’ tendency

to comply with the agent (𝜃 ). We test with both static users (whose

latent parameters – 𝜓, 𝜃 are fixed) and dynamic users, whose 𝜃

varies continuously based on the interaction history, but𝜓 remains

fixed (i.e., we assume no learning effect as the domain is simple). We

provide further details of the simulated human population in the

Supplementary. Our results (Figure 4) indicate that Bayes-POMCP

outperforms both the heuristics employed in the first study and the

ablation baseline without human modeling (POMCP) for static and

dynamic user models.

6.3 Evaluation Study
Upon verifying our policy with simulated models, we collected

data from 28 new participants (who did not take part in the first

user study) for the evaluation study. We excluded data from three

subjects. Two of the three subjects encountered graphic rendering

issues in the study interface. The third subject failed to complete

all six rounds (failure rate across all subjects: 3.48 ± 0.77).

H2A: Team Performance and Robot Policy. We evaluated the

team performance for different robot policies – the heuristic agents

(interrupt+explain and take-control+explain) from the first study,

our proposed approach, Bayes-POMCP, optimized for the true and

negative reward. Each user participated in two rounds per policy,

totaling six rounds, played on different maps (a subset from the

first study). We used the Kruskal-Wallis test with the reward as

the dependent variable and the robot policy as the independent

variable. We obtained statistical significance for the robot policy

(𝐻 (2) = 109.89, 𝑝 < .001). Post-hoc analysis was conducted using

Dunn’s test with Holm-correction, as shown in Figure 5a.

Takeaway:We find that Bayes-POMCP policy significantly outper-

forms our baselines for team performance (Figure 5a). We also find

that the adversarial Bayes-POMCP is effective in preventing the

user from reaching the goal, as reflected by the negative reward.

H2B: Users’ Working Preference and Robot Policy. Users ranked
their preferences for working with the different robot agents at the

end of the second study. We perform the Kruskal-Wallis test, which

shows that the robot policy significantly influences user preferences

(𝐻 (2) = 45.41, 𝑝 < .001). We find that 68% of the users preferred

the Bayes-POMCP agent the most, 20% preferred heuristic agents

the most, and 88% preferred the Adv-Bayes-POMCP agent the least.

12% (= 3/25) did not answer the preference survey.

We also analyzed subjective metrics with Likert scales for trust,

willingness to comply, and robot likeability. We conducted three

rANOVAwith the subjective metrics as the dependent variables and

independent variables as robot policy, number of rounds completed,

demographics (age, gender, prior robotics experience), and pre-

study questionnaire responses of the user. We find that robot policy

was statistically significant across all subjective metrics from the

three ANOVAs, with our proposed approach having the highest

mean values. We then performed post-hoc analysis using Tukey

HSD. For further details of the analysis, see Supplementary.

Takeaway: We find that the Bayes-POMCP policy significantly

outperforms our baselines across all subjective metrics, and the

majority (68%) preferred to work with the Bayes-POMCP agent.
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Figure 5: Results from the Evaluation Study. Figure 5a shows that the team performance is the highest for the Bayes-POMCP
agent and the lowest for the Adv-Bayes-POMCP (the adversarial baseline). Figure 5b shows that the majority of the users prefer
our approach compared to the baselines. Error bars indicate standard error.

Hypotheses I.V. Levels n D.V. Effect Size Power

H1A

Robot

Intervention

Style

5 29 Reward 0.201 0.3728

H1B

Robot

Intervention

Style

5 29

User

Ranking

0.428 0.995

H2A

Robot

Policy

3 25 Reward 0.738 0.923

H2B

Robot

Policy

3 25

User

Ranking

0.528 0.581

Table 1: Power analysis: D.V. and I.V. refer to the dependent
and independent variables, and 𝑛 is the number of subjects.

6.4 Power and Effect Size Analysis
For all our hypotheses, H1A, H1B, H2A, H2B, we used non-

parametric tests as the dependent variable was ordinal data or

the model did not pass the parametric test assumptions. We report

the effect size and statistical power for our analyses in Table 1. Tests

for H1A and H2B are underpowered, warranting additional data

for increased confidence in our results. We note thatH2B might be

underpowered due to the challenges in measuring user preferences

for adaptive systems [8] and posit that solely relying on post-trial

surveys may be insufficient.

7 LIMITATIONS AND FUTUREWORK
There are limitations to our experimental findings. Our results were

validated in a grid world with discrete actions using university stu-

dents. Further research is warranted in more complex environments

with a larger, diverse user population. We also find that assessing

user preferences for adaptive policies (H2B) with post-trial sur-

veys may be insufficient, and additional avenues for collecting user

preferences during interactions should be explored in future work.

While Bayes-POMCP successfully improves human-robot team

performance in a computationally efficient manner, it relies on

an environment simulator to estimate the value of human-robot

actions in the Monte Carlo search tree, which may not be available

for real-world human-robot collaboration tasks. Thus, we aim to

learn evaluation functions as shown in prior work [42]. Moreover,

our findings indicate that robot explanations only influenced users’

subjective perceptions but did not impact team performance. We

hypothesize that this may be because the task was relatively simple,

and users did not need explanations from the robot to enhance

their decision-making. In future work, we seek to assess the utility

of explanations in improving team performance by extending our

approach to use robots in realistic settings [7], thereby increasing

the problem complexity (e.g., complex human models, larger world

states). To address the increased computational complexity in such

challenging environments, we propose to develop efficient sampling

techniques with data-driven evaluation functions and novel search

heuristics to augment the Monte-Carlo search.

Lastly, our findings are limited to short-horizon interactions,

as users only played two rounds of the game with each agent. To

address this limitation, our proposed approach needs to be inves-

tigated in longitudinal interactions, where robots must anticipate

and adapt to changes in user behavior or preferences over time.

8 CONCLUSION
In this work, we propose an online Bayesian approach, Bayes-
POMCP, to optimize performance in mixed-initiative human-robot

teams when both agents are suboptimal. Our focus is on learning

a robot policy for effective user intervention. We design a novel

domain inspired by USAR missions and conduct two user studies.

Results from our first study indicate that robot interventions can

improve team performance while recognizing diverse user prefer-

ences for different intervention styles. Next, we demonstrate that

Bayes-POMCP can significantly improve team performance, com-

pared to our baselines, both for different simulated human models

and real users. Users also rated the Bayes-POMCP policy favorably

with respect to the subjective metrics such as trust and likeabil-

ity in our second study. In future work, we aim to further assess

our algorithm for long-horizon interactions and extend it beyond

grid-world domains to real-world human-robot collaboration tasks.
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