
Bootstrapping Linear Models for Fast Online Adaptation in
Human-Agent Collaboration

Benjamin A. Newman
Carnegie Mellon University, Meta
Pittsburgh, Pennsylvania, USA

newmanba@cmu.edu

Chris Paxton
Meta

Pittsburgh, Pennsylvania, USA
cpaxton@meta.com

Kris Kitani
Carnegie Mellon University, Meta
Pittsburgh, Pennsylvania, USA

kkitani@cmu.edu

Henny Admoni
Carnegie Mellon University

Pittsburgh, Pennsylvania, USA
henny@cmu.edu

ABSTRACT
Agents that assist people need to have well-initialized policies that
can adapt quickly to align with their partners’ reward functions. Ini-
tializing policies to maximize performance with unknown partners
can be achieved by bootstrapping nonlinear models using imitation
learning over large, offline datasets. Such policies can require pro-
hibitive computation to fine-tune in-situ and therefore may miss
critical run-time information about a partner’s reward function as
expressed through their immediate behavior. In contrast, online
logistic regression using low-capacity models performs rapid infer-
ence and fine-tuning updates and thus can make effective use of im-
mediate in-task behavior for reward function alignment. However,
these low-capacity models cannot be bootstrapped as effectively
by offline datasets and thus have poor initializations. We propose
BLR-HAC, Bootstrapped Logistic Regression for Human Agent Col-
laboration, which bootstraps large nonlinear models to learn the
parameters of a low-capacity model which then uses online logistic
regression for updates during collaboration. We test BLR-HAC in
a simulated surface rearrangement task and demonstrate that it
achieves higher zero-shot accuracy than shallowmethods and takes
far less computation to adapt online while still achieving similar
performance to fine-tuned, large nonlinear models. For code, please
see our project page https://sites.google.com/view/blr-hac

KEYWORDS
Assistive Robotics; Online Assistance; Human-Robot Interaction;
Collaborative Assistance

ACM Reference Format:
Benjamin A. Newman, Chris Paxton, Kris Kitani, and Henny Admoni. 2024.
Bootstrapping Linear Models for Fast Online Adaptation in Human-Agent
Collaboration. In Proc. of the 23rd International Conference on Autonomous
Agents and Multiagent Systems (AAMAS 2024), Auckland, New Zealand, May
6 – 10, 2024, IFAAMAS, 10 pages.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

1 INTRODUCTION
Agents that collaborate with people to complete a person’s pre-
ferred goal cannot always know this preference in advance of an
interaction. Though people may initially state these preferences,
they may drift, sometimes changing entirely, over the course of
multiple interaction episodes. While there may be no continued
explicit communication between collaborative partners, people’s
in-situ behaviors are goal-driven and thus can reveal the up-to-date
preference. This means that updating agent policies based on in-situ
behaviors is critical for assisting people during collaborations, i.e.
ensuring that robot actions are deferential to user goals [21].

Much current research in human-agent collaboration aims to
learn zero-shot collaboration policies from offline datasets that are
either collected from human-human demonstrations [8] or gen-
erated synthetically [28]. Instead of using an individual’s in-situ
behavior to update a model online to improve performance with re-
spect to that individual’s preference, these approaches train agents
offline in collaboration with the population of partner agents repre-
sented by the training dataset. They then target good performance
in aggregate on task metrics. At test time, these approaches assume
the preferences and behavior of a new human collaborator will
fall within the distribution of the collaborators represented by the
training data. While these approaches have been shown to be ef-
fective on task metrics in general collaboration settings, they do
not necessarily transfer to the stricter criteria of assistive collabo-
rations where success in a task is dictated by a personal preference
and people’s goals and behaviors can drift away from the training
distribution.

Furthermore, the population of personal preferences is substan-
tial and diverse, making it difficult to ensure sufficient coverage
during training time. Collecting large datasets of human-human
data is time-consuming and expensive, while collaboration among
populations of procedurally generated agents can yield data that
do not tightly match the distribution of the human population. Fur-
thermore, as people repeatedly execute a collaborative task, they
may develop new preferences that are unlikely to be captured by
the distribution of collaboration data represented in offline datasets.

We propose a method that takes advantage of these advance-
ments in zero-shot coordination and applies them to algorithms
for fast, online adaptation from in-situ behavior. In this way, we
hope to achieve both good initial performance when assisting a

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1463

https://sites.google.com/view/blr-hac
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

A

Corrective Action
place on bottom

H A

State

Actions Action
place on top

Action
place on bottom

H

Action
select sd

Action
select sd

Figure 1: One step of an example surface rearrangement task: cupboard organization. From left to right: a person (H) picks an
object to place in the dishwasher; the agent (A) initially places this incorrectly; the person corrects the placement. From this,
the agent learns that the user likes to place blue objects on the bottom shelf and can place the next, similar object correctly.

new partner, but also to continue to adapt to their preference over
continued exposure.

Deciphering people’s exact preferences can be difficult, however,
as these preferences are often not explicitly stated and can change
over the course of an interaction. Fortunately, in-situ behaviors are
goal-directed and can implicitly reveal information about a person’s
current preference or goal, even when it is not expressly communi-
cated. We suggest that agents engaging in assistive collaborations
utilize these goal-directed behaviors to infer and act towards a
person’s current goal, thereby enabling personalized assistance.

To do develop a model that can utilize these goal-directed be-
haviors for collaborative assistance, we introduce BLR-HAC: Boot-
strapped Logistic Regression for Human Agent Collaboration. This
model is trained using a two-stage approach: first, we pretrain
a transformer [30] to learn to produce the parameters of a shal-
low, parameterized policy that second, is updated throughout a
human-agent collaboration using online logistic regression. To test
BLR-HAC, we first introduce a formalization of a specific instance
of a rearrangement task, which we call assistive surface rearrange-
ment. We then compare BLR-HAC’s performance in a simulated
version of this task against two baselines: 1) a traditional trans-
former trained with behavior cloning and 2) a traditional shallow
policy trained with online logistic regression.

Our chosen domain of surface rearrangement models household
tasks, like dishwasher loading, which have complex, long-term
dependencies determined by a combination of a person’s environ-
ment and their strongly held preferences. For example, a person
may prefer to place large dishes before small ones to maximize
capacity. Such high dimensional state and preference spaces lead
to an almost infinite number of diverse and equally valid solutions
for completing any given household chores. For example, choosing
to load a dishwasher based on dish material is just as valid as load-
ing based on dish size; it is a matter of personal preference. Given
this diversity, household tasks make especially good testbeds for
studying algorithms that require aligning robot policies with peo-
ple’s reward functions, thus mimicking many use cases for assistive
robotics.

While some prior approaches to developing autonomous assis-
tants for household tasks rely on people providing full task demon-
strations in advance of a collaboration, BLR-HAC aims to operate
in real time, utilizing information from each action as it is taken by
a person. Furthermore, approaches relying on full task demonstra-
tions can introduce additional burden on a person and be redundant
to the goal-directed behavior people exhibit when completing tasks
[6]. In contrast, training shallow, low-capacity models with logistic
regression through MaxEntIRL to utilize in-situ behavior has been
shown to effectively and quickly adapt to people’s objectives in
areas such as robot teleoperation [16] and motion planning [18].

We test BLR-HAC in a simulated version of our surface re-
arrangement task. We find that BLR-HAC outperforms baseline
low-capacity models and large, nonlinear models trained with be-
havior cloning in zero-shot coordination. We also find that BLR-
HAC achieves similar performance but requires a fraction of the
compute of a transformer that is fine-tuned online. This finding
holds true when considering both preferences that remain the same
over time, i.e. are stationary, and those that drift, i.e. are nonsta-
tionary. Taken together, these results show how BLR-HAC is able
to take advantage of the strengths of both zero-shot and fast online
adaptation methods. It does this by pretraining a large, nonlinear
model to learn the parameters of a shallow policy that can be up-
dated with online logistic regression. This results in a collaborative
agent that is both well-initialized and highly adaptable.

In this paper we make the following contributions:

• a formalization of common household tasks as collaborative
IRL tasks, which we call surface rearrangement,
• a novel model, BLR-HAC, that combines the strengths of
pretrained large, nonlinear models with low-capacity models
trained online via logistic regression for efficient learning in
human-robot collaborations, and
• evidence from experiments in simulation that BLR-HAC
outperforms its component models.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1464

2 RELATEDWORK
First, we present work in state and action-conditioned models that
do not explicitly learn about their human partner during task execu-
tion. We follow this by reviewing work in adaptive collaborations.

2.1 State and Action-Conditioned Collaboration
Prior approaches to solving long-horizon tasks with complex tem-
poral dependencies and under specified solutions, such as those
present in our surface rearrangement domain, can rely on resolv-
ing ambiguities through a combination of teleoperation and pre-
programmed routines [12], or by suggesting optimal, predetermined
solutions [20]. Solutions following the former method can place un-
due burden on a person to explicitly express their preferences, and
render robot action redundant when a demonstration completes.
They also require people to continually demonstrate their desired
solution as the constraints of the task, such as a person’s preference
or the environment, vary. Methods following the latter example do
not allow for full freedom of expression from the user and assume
all users have the same “optimal” solution.

Zero-shot coordination is a recent field of research aiming to
develop models that can successfully and immediately interact
with novel partners. This can be done by pretraining models in
simulation against agents designed to mimic human behavior [8]
or over a diverse population of simulated agents [28]. Using these
methods, though, can lead to overly specific solutions. Others have
used large language models trained with web-scale data to propose
task plans that are then executed by robots [2]. These task plans
are not adapted to an individual user, whose reward function may
or may not fit well within the distribution seen during training.
These methods place the burden on the person to either accept a
less preferred robot behavior or continue to provide actions that
increase the likelihood of the robot behavior exhibiting behavior
in line with the person’s preferences. In this work, we focus on
combining these good initializations with online adaptation.

Often, approaches relying solely on large, pretrained deep neural
networks require people to generate explicit descriptions of their
preferences which can be decoded by the model into robot action
[2]. Actions produced from this process are not guaranteed to align
with a person’s task objective. While deep networks can potentially
be adapted to meet individual preferences through fine-tuning
[10, 14], doing sowith largemodels can lead to challenging, unstable
learning that results in variable performance [19]. In this work, we
focus on developing an algorithm that can quickly adapt to people’s
naturally expressed, task-oriented behavior.

2.2 Adaptive Collaborations
Using IRL for robot control can be difficult, in part, due to the
ambiguity that arises from traditional IRL [1]. Maximum entropy
IRL facilitates this by using the principle of maximum entropy to
order solutions according to how well they match observed user
behavior [32]. This solution has also been used in behavioral science
to model people’s ability to infer others’ goals from their behavior
as exhibited during goal-directed plans [6].

These insights have been applied to robot trajectory optimization
for shared control. In the difficult task of teleoperating a high-
degree of freedom robot arm with a low-degree of freedom input

device, such as a joystick, a robot can observe user input commands
and infer the user’s most likely goal from a set of predetermined
goals. The robot then assists the user by moving along a path
towards the predicted goal [16]. MaxEntIRL can also be used to
interpret less direct forms of user behavior, such as physically
pushing a robot out of the way to determine which path the user
prefers the robot to take, for example to carry a coffee mug around
a laptop computer instead of over it [18], using naturalistic eye
gaze in combination with joystick signals to control a robot arm
[4, 5, 22], or using corrective actions to learn about features of
the environment that relate to a person’s preference to increase
generalizability and sample efficiency [24]. We are interested in
adapting online MaxEntIRL for determining high-level task plans
consistent with user preferences in household collaborations from
in-task corrective behavior.

IRL has also been applied to learn robot policies in other types
of human-robot interactions. For example, to learn people’s prefer-
ences from observations of independent task demonstrations [31],
or by learning assistive social actions for therapy by combining a
therapists’ expertise with expert demonstrations [3], or for social
health, such as a robot receptionist learning to give hygiene ad-
vice in a shopping mall [11]. Our formulation learns preferences
from in-situ, collaborative behavior for collaborative rearrangement
tasks.

Finally, another important aspect ofmaintaining assistive human-
agent collaborations is to maintain collaborative fluency [15]. Main-
taining principles of collaborative fluency, such as minimizing agent
and human idle time, allows human-agent collaborations to func-
tion similarly to human-human collaborations, thereby reducing
friction on people to interact with autonomous agents. Further-
more, robots assisting people to complete collaborative tasks has
been shown to affect a person’s ultimate decision [23], making it
important to continually monitor and assess people’s goals during
collaboration. In this work, we will use these ideas as justification
for our desire to develop an algorithm that adapts to user prefer-
ences in real-time.

3 METHODS
We formalize the task of surface rearrangement, a specific instance
of rearrangement problems [7, 29], as a decentralized partially ob-
servable Markov decision problem (DEC-POMDP).

3.1 Defining Surface Rearrangement
To study assistive collaborations, we introduce assistive surface
rearrangement, a collaborative pick and place task where two agents
work together to arrange a set of objects 𝑂 into a set of locations
𝐿. In this task, the assistive agent aims to help a person rearrange
objects into locations. Importantly, the agent’s goal is to achieve the
final state that is desired by the person, which is initially unknown
to the agent.

A single episode of this task consists of an object repository con-
taining objects 𝑜 ∈ 𝑂 . The initial state of the episode is 𝐿 randomly
chosen objects from 𝑂 , and 𝐿 vacant locations. Each location has a
capacity for a single object. Progress in the task is made by placing
objects 𝑜 into locations 𝑙 ∈ 𝐿. A task is completed when all objects

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1465

Algorithm 1 Surface Rearrangement
Require: 𝜋𝜃 , 𝜋𝜃 , env, 𝑂, 𝐿
1: 𝑠0 ← env.reset ()
2: 𝜉 ←

[
𝑠0

]
3: while 𝜉 .length < 𝐿 do
4: 𝑎𝑡

ℎ
← 𝜋𝜃

(
·|𝑠𝑡−1

)
5: 𝑎𝑡𝑟 ← 𝜋

𝜃

(
·|𝑎𝑡

ℎ
, 𝑠𝑡−1

)
6: 𝑠𝑡 , 𝑎𝑡𝑐 ←env.step

(
𝑎𝑡
ℎ
, 𝑎𝑡𝑟 , 𝑠

𝑡−1
)

7: 𝜉 .append
([
𝑎𝑡
ℎ
, 𝑎𝑡𝑟 , 𝑎

𝑡
𝑐 , 𝑠

𝑡
])

8: end while

𝑜 have been placed into a location 𝑙 . For simplicity, we assume that
𝑁 ≤ |𝐿 | and that placing 𝑜 in 𝑙 occurs instantaneously.

Two agents interact in an episode in the following way. The
human agent 𝜋𝜃 first picks an object given the current state 𝑠𝑡−1.
Then, the robot agent 𝜋

𝜃
places this object into a location. The

environment then returns the next state 𝑠𝑡 and the human corrects
the robot’s action, returning 𝑎𝑡𝑐 . An episode 𝜉 can be represented
as the following tuple:

(
𝑠0, 𝑎1

ℎ
, 𝑎1𝑟 , 𝑎

1
𝑐 , 𝑠

1, ...𝑎𝐿
ℎ
, 𝑎𝐿𝑟 , 𝑎

𝐿
𝑐 , 𝑠

𝐿
)
.

3.2 Formalizing Surface Rearrangement
Given this description, we can model assistive surface rearrange-
ment as a decentralized partially observable Markov decision prob-
lem (DEC-POMDP) which is a tuple of (𝑆,Π, 𝐴,𝑇 , 𝑍,𝑂, 𝑟,𝛾). Our
objective is to train a policy 𝜋𝑟 that solves this DEC-POMDP:

• S is the set of all possible states. As in prior work [18], we
assume that a particular state 𝑠 ∈ 𝑆 is a tuple of observable
and unobservable features: 𝑠 = (𝑥, {𝜃𝑖 }). Observable state
features are represented as a tuple of all possible locations
and all possible objects. Locations are represented by their
ID and their current occupancy. Objects are represented by
their ID and the location they currently occupy, if any. The
unobservable portion of the state, 𝜃𝑖 describes the learn-
able parameters of the reward function consistent with the
human’s preference in the task.
• Π is the set of agents. In our initial version of this problem,
we assume two agents: a human agent and an assistive agent.
• 𝐴𝑖 is the set of actions for a particular agent 𝑎𝑖 . We assume
that the person both selects objects and corrects object place-
ments, while the robot can only make object placements.
• 𝑍𝑖 is the set of observations used to infer 𝜃 . The assistive
agent’s observation space is the person’s action space. In this
work we assume that the human does not infer the robot’s
preference.
• 𝑇 (𝑠𝑡−1, a𝑡−1, 𝑠𝑡) denotes the transition dynamics that model
the probability of entering a particular state given the current
state and both agents’ actions. As in prior work [18], changes
in 𝑇 are dictated by 𝜃 . We assume this to be constant and
deterministic within a single episode.
• 𝑂𝑖 (𝑠𝑡+1, 𝑢𝑡𝑖 , 𝑧

𝑡+1), the observation distribution for agent 𝜋𝑖 .
• 𝑟𝑖 (𝑠𝑡 , {𝑎𝑖 }𝑡) is the reward function for the each agent. We
assume an assistive setting where the agent is trying to

estimate and maximize the person’s reward function. We
therefore assume all agents have the same reward function.
• 𝛾 , a discounting factor.

Given that we assume two agents and that we are only optimizing
one (because the other is assumed to be a person over whose policy
we have no control), this problem reduces to a single agent problem,
allowing it to be decomposed to a POMDP. Since POMDPs are
computationally intractable to solve exactly, we use the QMDP
approximation [17]. Prior work in online human robot collaboration
[18] has shown how a QMDP can be solved online using online
gradient descent, adapted for our purpose in Alg. 3.

4 APPROACH
Our ultimate goal is to learn an assistive policy that collaborates
with a person during a surface rearrangement task. Given that
we want our policy to be assistive, it should take actions that are
aligned with the person’s underlying preference for completing the
task. We interpret this as a regret minimization problem, where the
policy aims to minimize the regret of its actions with respect to the
actions that would be exhibited under the person’s true preference
for completing the task. Importantly, we assume that the policy
does not have prior knowledge of this preference and that the
person does not immediately or explicitly reveal it. Additionally,
we assume that the space of possible preferences the person could
hold to be extremely large, making disambiguation from limited
interaction with the person difficult.

Under these conditions, we have two main ways to perform
regret minimization. First, we can ensure our policy takes good
initial actions that are likely to align with the person’s preference,
often referred to as zero-shot performance. Second, we can adapt
the policy online as a history of behavior is accumulated.

Action inference and policy adaptation do not operate within a
vacuum, but rather within the course of the interaction. The com-
mon metric in human-robot interaction of collaborative fluency
[15], for example, is critical to people considering an interaction
with a robot to be “good.” An important facet of this metric is re-
lated to the amount of time the robot sits idle during task execution.
This makes frequently updating large models during an interaction
challenging, as both action inference and policy updating require
large amounts of computation, leading to high robot idle times. We
aim to develop a method that can take advantage of the good perfor-
mance of large nonlinear models while being able to quickly adapt
to user preferences, as expressed through their in-situ behavior,
without causing the robot to idle.

To learn an assistive policy that solves the DEC-POMDP dis-
cussed in Sec. 3.2, we first generate a simulated dataset of diverse,
high-level preferences (Sec. 4.1.1). Using these preferences, we col-
lect a dataset of collaborative demonstrations in a simulated sur-
face rearrangement task over a range of difficulties (Sec. 4.1.2). We
then train our two-stage algorithm by first, learning to mimic the
collected expert demonstrations (Sec. 4.2) and second, using the
preference representations learned in Sec. 4.3 to perform fast, online
adaptation.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1466

Object Features

𝝓h

Input Preference EstimationFeature Embedding

Location Features

𝝓r

Transformer Encoder
Block θ

Human Action

ah
t-k-1:t

Robot Action

ac
t-k-2:t-1

Transformer Encoder
Block 𝝅Preference Model

𝟁

State Features

𝝓s

State

st-k-2:t-1

ar
t

Action Estimation

Figure 2: BLR-HAC Overview From left to right, we first embed the input state and actions using 𝜙 . These are then concatenated
and fed into the preference estimator 𝜓 . This learns to output reward parameters, 𝜃 which are used to initialize an online
learning policy using the policy 𝜋 , which determines the robot’s action 𝑎𝑟 .

Algorithm 2 Expert Demonstration Collection
Require: Θ, 𝜋, env,𝑂, 𝐿
1: 𝐷 = []
2: for 𝜃 in Θ do
3: 𝜉 ← surfaceRearrangement(𝜋𝜃 , env, O, L)
4: 𝐷.append (𝜉)
5: end for

4.1 Datasets
4.1.1 Modeling a Diverse User Population. The two key ideas of
our method to develop assistive robots for household collaborations
is that the method should be able to both effectively use a large
population of preference data to pretrain good initializations and
be able to quickly adapt to a particular preference when presented
with information about that preference.

To capture these ideas in our experiments, we develop a simu-
lated dataset of preferences. First, we sample a large set of pref-
erences, representing a population, as encoded by 𝜃 . We assume
preferences from within this population are drawn normally from
one of several modes, each of which indicates a subpopulation of
similar preferences. We sample three preference datasets: train, ,
and test. From each set of preferences, we sample episodes of sur-
face rearrangement episode rollouts, thus creating three datasets:
𝐷𝑡𝑟𝑎𝑖𝑛, 𝐷𝑒𝑣𝑎𝑙 , and 𝐷𝑡𝑒𝑠𝑡 . 𝐷𝑡𝑟𝑎𝑖𝑛 consists of 1000 simulated prefer-
ences, sampled from four modes, with 1000 episodes per preference.
𝐷𝑒𝑣𝑎𝑙 , and 𝐷𝑡𝑒𝑠𝑡 each contain 100 simulated preferences, with 20
episodes per preference.

4.1.2 Environments for Surface Rearrangement. To test the efficacy
of our approach at varying difficulties, we develop three environ-
ments. Each environment scales problem difficulty by increasing
the size of the state space. We have a small environment, with five
possible objects and five locations, a medium environment, with
ten objects and ten locations, and finally a large environment, with
25 objects and 25 locations.

To collect a demonstration dataset for each environment, we use
Alg. 2. Importantly, to collect expert demonstrations, we set 𝜃 = 𝜃

and use a linear policy 𝜋 = 𝜙ℎ (𝑎ℎ) · 𝜃 · 𝜙𝑟 (𝐴𝑟), where all 𝜙 are
implemented as one-hot embedding layers. For each environment

Algorithm 3 Learning Priors for Online Linear Regression

Require: 𝐷,M, 𝜙ℎ, 𝜙𝑟 , 𝜙𝑠
1: while training do
2: for (𝑠, 𝑎ℎ, 𝑘) in 𝐷 do
3: 𝜃 ←M (𝜙𝑠 (𝑠) , 𝜙ℎ (𝑎ℎ) , 𝜙𝑟 (𝑎𝑐))
4: 𝑎𝑟 ← argmax𝑎𝑟 ∈𝐴𝑟

𝜙ℎ (𝑎𝑡ℎ) · 𝜃 · 𝜙𝑟 (𝐴𝑟)
5: loss← 𝑝 (𝑎𝑐) log𝑞(𝑎𝑟)
6: training←M .update(loss)
7: end for
8: end while

we collect 100 demonstrations from each preference generated in
Sec. 4.1.1.

4.2 Learning Preferences in a Diverse User
Population

The first step of our proposed algorithm aims to minimize regret
by achieving good zero-shot performance. Ultimately, we want
to model 𝑝 (𝑎𝑟 |𝑠, 𝑎ℎ). This problem, however, is ill-posed, as two
policies parameterized by different preferences will correctly take
two different actions 𝑎𝑟 given the same state and human action.
To account for this ambiguity, we include a history of 𝑘 prior state
and action pairs taken under the current preference and maxi-
mize 𝑝 (𝑎𝑟 |𝑠𝑡−𝑘−2:𝑡−1, 𝑎𝑡−𝑘−1:𝑡ℎ

, 𝑎𝑡−𝑘−2:𝑡−1𝑐). For the sake of brevity,
we will slightly abuse notation and refer to this distribution as
𝑝 (𝑎𝑟 |𝑠, 𝑎ℎ, 𝑘).

Again, when training assistive agents, achieving low zero-shot
performance is not our only objective. We also need an agent that
adapts online to incoming user behavior while maintaining collabo-
rative fluency. This means developing a lightweight, low-parameter
model capable of performing action inference and policy adaptation
in real time.

To do this, instead of learning 𝑝 (𝑎𝑟 |𝑠, 𝑎ℎ, 𝑘) directly, we first
learn a latent space that corresponds to the weights of a logistic
regression problem. These weights serve as the input to the second
step of our algorithm, Sec. 4.3. Thus, we train ourmodel tomaximize
𝑀𝜙,𝜓 (𝑠, 𝑎ℎ, 𝑘, 𝑡) = 𝑝 (𝜃 |𝑠, 𝑎ℎ, 𝑘, 𝑡). In this way, we place an inductive
bias over the latent space of the model, enticing it to learn a matrix
of size 𝑂 × 𝐿, that can be used as the weights of an online logistic

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1467

regression problem. We treat this as a classification problem and
minimize the cross entropy loss between our model’s predictions
and the collected expert demonstrations: 𝐿 = 𝑝 (𝑎𝑐) ·log𝑞(𝑎𝑟) where
𝑞(𝑎𝑟) = 𝜙 (𝑎ℎ) ·𝑀 (𝑠, 𝑎ℎ, 𝑘, 𝑡) · 𝜙 (𝐴𝑟), as shown in Alg. 3.

4.3 Bootstrapping Shallow Linear Models for
Fast, Online Adaptation

The second step of our proposed algorithm aims to minimize regret
through online adaptation. Using the output of the model learned
in Sec. 4.2, we can employ online logistic regression, which has
been shown to work well for teaching human preferences to agents
through corrective feedback in robot control tasks. Importantly,
since online logistic regression has a very simple update rule to
estimate 𝜃 that operates over a much smaller number of parameters
than a large, nonlinear network, we can adapt this initial estimate
of the person’s preference in-situ without risking large human or
robot idle time, thereby maintaining collaborative fluency.

To update our estimate of 𝜃 , we use a linear approximation of the
QMDP solution to the DEC-POMDP in Section 3.2 and stochastic
gradient descent, resulting in the following update rule:

𝜃 = 𝜃 − 𝛼 (𝜙ℎ (𝑎ℎ) · 𝜙𝑟 (𝑎𝑟) − 𝜙ℎ (𝑎ℎ) · 𝜙𝑟 (𝑎𝑐))
where 𝛼 is the learning rate.

5 EXPERIMENTAL DESIGN
To test our algorithm, we design several experiments. First, we vali-
date the need for large, nonlinear models to learn the distribution of
preferences embedded in the demonstration dataset, Sec. 5.1. Then
we explore how our algorithm fares in its intended use case: fast,
online adaptation. We test this in two scenarios. Sec. 5.2.1 analyzes
adaptation to a single preference over time, while Sec. 5.2.2 explores
how well our algorithm fares when the preference generating the
behavior changes without explicit communication to the robot.

5.1 Zero-Shot Coordination
We evaluate our model in each environment over the test set using
Alg. 3. While we are in search of an algorithm that performs regret
minimization, this metric is relative to a specific preference. To
understand model performance in an absolute sense and compare
across environments, we report accuracy in terms of the number of
correct robot action predictions. This metric is inversely correlated
with regret.

We choose our baselines to examine two key questions: 1) are
high-capacity, nonlinear models necessary for disambiguation be-
tween preferences in a highly diverse preference space, and 2) how
does inducing an inductive prior over the latent space affect zero-
shot performance?

To answer these questions we introduce baselines across two
axes: model complexity and model bias. To determine the effect of
high-capacity nonlinear models on zero-shot performance we com-
pare four levels of model complexity in terms of how we implement
𝜓 in Fig. 2:
• ShallowLinear. Typical online IRL settings learn a shallow
model from scratch using MaxEntIRL. To bootstrap this pro-
cess, one could perform the same process over the offline
dataset, thereby encoding the diverse preference population

in the initial model weights. Our intuition, though, is that
since demonstrations are drawn from a large, diverse popu-
lation of preferences, and that the relations between prefer-
ences and people are not known a priori, this disambigua-
tion will benefit from a nonlinear function approximator. We
expect nonlinear, high-capacity models to outperform this
baseline.
• DeepLinear. Since the space of preferences is very large,
it could simply be that increasing model capacity without
introducing nonlinearity may capture the preference distri-
bution. To test this, we introduce DeepLinear, which simply
adds additional model parameters in both width and depth.
We expect this model to outperform a ShallowLinear model
but underperform nonlinear methods.
• Multi-Layer Perceptron. To test the importance of model-
ing the preference distribution with a nonlinear model, we
introduce a multi-layer perceptron baseline. We expect this
model to outperform both linear methods but underperform
attention-based mechanisms.
• Causal Transformer. Finally, since we are passing a his-
tory of behavior to the model at every time step, we can
infer the current preference from this sequence of behaviors.
Attention-based mechanisms, specifically causal transform-
ers, have been shown to excel at modeling sequential data.
To test this we implement𝜓 as a transformer, and expect it
to outperform all other methods.

The second axis of baselines we develop compares the impor-
tance of introducing an inductive bias over the latent space in order
to learn 𝜃 . We compare an implementation of the above models
in which each model minimizes 𝐿 = 𝑝 (𝑎𝑟) · logM(𝑠, 𝑎ℎ, 𝑘) to our
proposed inductive bias, which minimizes 𝐿 = 𝑝 (𝑎𝑟) · log𝜙 (𝑎ℎ) ·
M(𝑠, 𝑎ℎ, 𝑘) · 𝜙 (𝐴𝑟).

5.1.1 Implementation Details. To implement our models we make
the following decisions. We perform a separate parameter sweep
for each model and environment for the following parameters and
ranges: learning rate (1𝑒−3, 1𝑒−6), the dimensionality of hidden
layers (25, 28), and the number of layers in𝜓 (3, 5, 7, 10, 12). We set
the size of the input history to be 50, padding when necessary. For
each model, we implement all 𝜙 as a single, one-hot embedding
space of vocabulary size 208, where 0-7 are special characters, 8-107
are location indices, and 108-207 are object indices. To implement
𝜓 , we use PyTorch [25] and base our implementation of a causal
transformer on Decision Transformer [9]. We implement 𝜋 as a
simple linear model for inductive bias and as an MLP for no in-
ductive bias. All models are trained using the appropriate training
and evaluation sets, which do not overlap with the test set, with 10
epochs of early stopping.

5.2 Test-Time Adaptation
Developing assistive policies is not only about achieving good zero-
shot performance, however. The space of actual human preferences
is almost boundless and likely impossible to capture in advance
of an interaction. Therefore, it is important to develop algorithms
that can rapidly align themselves with preferences associated with
a person’s in-situ behavior. We study this in two settings. First,

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1468

Small Medium Large

No Prior Prior (ours) No Prior Prior (ours) No Prior Prior (ours)

ShallowLinear 0.413 0.665 0.215 0.518 0.096 0.289
DeepLinear 0.425 0.680 0.199 0.504 0.101 0.303

MLP 0.605 0.759 0.361 0.653 0.120 0.358
Transformer 0.729 0.771 0.603 0.673 0.160 0.412

Table 1: We compare zero-shot performance on the test set of each environment. We have two axes of comparison: model
complexity in the rows, and inductive prior in the columns. Results are reported in terms of accuracy. We can see that the
highest capacity, attention based model trained with an inductive prior outperforms all other models in every environment.

we analyze our algorithm’s ability to adapt to a stationary prefer-
ence over the course of multiple episodes. Then, we analyze our
algorithm’s ability to adapt in scenarios where preferences are non-
stationary. Here, we are interested in an algorithm’s ability to 1)
maintain decent performance in the face of the preference change,
and 2) rapidly recover after the change in preference.

5.2.1 Stationary Preferences. To test our algorithm’s ability to
adapt to stationary preferences, we average the performance of
our bootstrapped online IRL algorithm over all preferences in the
testing set over 20 episodes in each testing environment.

We compare against a linear model that learns from scratch and
a method that optimizes over all transformer parameters between
episodes but keeps inference computation constant. We measure
computation cost in terms of FLOPS and calculate these values
empirically using FVCore. We expect to see that the bootstrapped
online IRL algorithm achieves similar performance to the online
transformer method but at a fraction of the compute.

5.2.2 Nonstationary Preferences. Similar to the stationary pref-
erences experiment, we run IRL over 20 episodes. In this analy-
sis, however, we switch to a different random objective after 10
episodes. Again, we compare against a linear model learning from
scratch and an online transformer implementation. We expect to
see that the linear method starts with poor performance but adapts
quickly when exposed to incoming behavior. We expect to see that
the transformer method starts with good performance and adapts
more slowly as behavior data is accumulated. Finally, we expect
our method to achieve the benefits of both the linear from scratch
and the transformer methods: it should start off with reasonable
performance and adapt quickly as data is aggregated.

5.2.3 Implementation Details. For both experiments, we do a hy-
perparameter sweep over the learning rate in the range (1𝑒−2, 1𝑒−5)
for the transformer and (1, 5, 10) for the linear models. In both cases,
we use the maximum learning rate for all experiments. Additionally,
we use stochastic gradient descent for optimization in both cases.
To train the transformer method, we perform five steps of gradient
descent between each episode.

6 RESULTS
From running the experiments outlined in Sec. 5, we have three
main results. First, we find support for our hypothesis that nonlin-
ear, high-capacity models trained with inductive biases can learn
a diverse population of user preferences. In Tab. 1, we see the

attention-based method trained with an inductive prior outper-
forms all other methods, achieving 77.1%, 67.3%, and 41.2% accu-
racy on the small, medium, and large environments, respectively.
We see that the difference in performance between models trained
with and without the inductive prior increases as the difficulty of
the problem increases. Additionally, we see the general trend that
higher capacity, nonlinear models outperform lower capacity linear
models. These results empirically justify our desire to use a high-
capacity nonlinear model to bootstrap a linear model in an online
logistic regression problem.

Our second set of results is shown in Fig. 3. Here, we plot the test-
time adaptation accuracy for three models: linear (in red), BLR-HAC
(in green), and an online transformer (in yellow). From these graphs,
we can see support for our hypothesis that bootstrapped, shallow
linear models trained with IRL achieve good accuracy with low
computation. We can see that BLR-HAC and Transformer both start
with higher accuracy than Linear in all cases and that this difference
increases as the problem complexity increases. Furthermore, we see
how BLR-HAC achieves similar performance over episodes as the
transformer method, but at a fraction of the computation. While
both methods have similar inference compute, of𝑂𝑥𝐿 FLOPS, BLR-
HAC uses only 2𝑥𝑂𝑥𝐿 FLOPS, while the Transformer method uses
∼ 400𝑀 FLOPS during updates.

Finally, we see in Fig. 4 results from test-time adaption with
nonstationary preferences. These results show mixed support for
our hypothesis that bootstrapped, shallow linear models trained
with IRL recover well from unexpected shifts in user behavior. In
each graph, episodes 1-10 show similar results to the previous set
of experiments. At episode 10, however, the preference shifts, and
all models suffer a drop in performance. Interestingly, in all cases,
BLR-HAC suffers the smallest drop in performance. While this is a
positive result, we also see that as the environment becomes more
complex, BLR-HAC suffers in its adaptation rate from episodes
10-20. While it adapts on par with the linear method (though still
achieves higher performance due to its better initial performance)
it adapts slower than the transformer-based method. This is likely
due to the fact that the transformer is able to make better use of
the larger amounts of data that are being aggregated in the large
environment.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1469

1 5 10 15 20
0

0.5

1

Episode Number

A
cc
ur
ac
y
(%

co
rr
ec
t)

Stationary Adaptation in 𝑆𝑚𝑎𝑙𝑙

Linear
BLR-HAC
Transf

1 5 10 15 20
0

0.5

1

Episode Number

Stationary Adaptation in𝑀𝑒𝑑𝑖𝑢𝑚

1 5 10 15 20
0

0.5

1

Episode Number

Stationary Adaptation in 𝐿𝑎𝑟𝑔𝑒

Figure 3: Stationary Test-Time Adaptation. Learning curves for each test environment for each algorithm.We report the average
accuracy over each episode. BLR-HAC is able to achieve the low zero-shot performance of the transformer method, and the fast
adaptation of the linear method. Additionally, we can see that as the episode length increases, these differences in performance
are more notable, with the linear method failing to catch up to the other two methods over the course of 20 episodes.

1 5 10 15 20
0

0.5

1

Episode Number

A
cc
ur
ac
y
(%

co
rr
ec
t)

Nonstationary Adaptation in 𝑆𝑚𝑎𝑙𝑙

Linear
BLR-HAC
Transf

1 5 10 15 20
0

0.5

1

Episode Number

Nonstationary Adaptation in𝑀𝑒𝑑𝑖𝑢𝑚

1 5 10 15 20
0

0.5

1

Episode Number

Nonstationary Adaptation in 𝐿𝑎𝑟𝑔𝑒

Figure 4: Nonstationary Test-Time Adaptation. Learning curves over each test environment for each algorithm. We report
average accuracy over episodes. BLR-HAC is able to perform on par with the transformer method in the small and medium
environments and part of the large environment. BLR-HAC outperforms all methods in all environments immediately after
the preference switch. In the large environment, though, the transformer recovers more quickly as it has access to more data.

7 DISCUSSION, LIMITATIONS, AND FUTURE
WORK

We develop policies for assistive agents that are both well-initialized
and highly-adaptable. Through simulated experiments, our method
achieves both the good initializations of large, nonlinear models
trained with behavior cloning and the fast adaptation to user behav-
ior present in low-capacity models trained with online MaxEntIRL.
Importantly, BLR-HAC initializes better than ShallowLinear on test
data that is far from the initial distribution, meaning that our ap-
proach should ideally allow for faster adaptation to populations for
whom it is difficult to collect data for offline pretraining.

Future work should explore applying BLR-HAC to user studies
with real people to determine whether the better initializations and
faster adaptations of our method hold outside of simulation and
are preferred. It is also important to study how the effect of the size
of the surface rearrangement problem on these results.

User studies also provide an opportunity to improve our method.
Collecting interaction data through interactive simulators, such
as AI Habitat [27, 29], deployed on platforms such as Amazon

Mechanical Turk [13] or Prolific [26] would allow us to pretrain
BLR-HAC with real data.

Finally, our method also assumes a single, synchronized modal-
ity of corrective actions: direct state corrections. This makes our
learning problem easier by maximizing the correlation between the
leader’s corrections and their reward function. We would like to
extend our approach to account for other modalities of corrections
issued asynchronously, such as those expressed in real time through
verbal or nonverbal communication.

8 CONCLUSION
In this work, we laid out an argument for why assistive agents
should be both well-initialized and highly-adaptable. We introduced
a novel formulation of assistive human-agent collaboration as col-
laborative inverse reinforcement learning and introduced an algo-
rithm BLR-HAC that takes advantage of sophisticated population-
level modeling found in deep neural networks with the fast adapta-
tion of shallow, low-capacity inverse reinforcement learning meth-
ods. Finally, we verified these claims through simulated experi-
ments.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1470

9 ETHICS STATEMENT
We show we can use offline datasets to bootstrap assistive collab-
orations by pretraining assistive agents. This method, however,
necessitates using specific subpopulations of the larger human pop-
ulation, i.e. those represented by the dataset. This leads to ethical
questions such as: Are the preferences present in the dataset repre-
sentative of the larger population? How does this affect people who
hold preferences outside this subpopulation? These questions are
especially pertinent in assistive settings, where agents are likely to
encounter out-of-distribution phenomena at test-time. It is ques-
tions such as these that motivate this work.

We assume a critical part of providing assistance is to reduce
unnecessary burden placed on individuals while acting in align-
ment with their preference. When a person’s preferences are well
represented by the dataset, pretraining necessarily minimizes a
person’s burden to bring the agent into alignment with their prefer-
ence. When a person’s preferences are not well represented by the
dataset, our method aligns to the person’s preference quickly by
using their in-situ, goal-directed behavior. Thus, while the model
does not have an initial representation of these out-of-domain pref-
erences, it does know how to interpret goal-directed behaviors in
order to learn such a representation.

We believe there is ample opportunity for future work to con-
tinue to explore solutions to these ethical dilemmas, such as to
learn more generalizable features of preferences that allow for bet-
ter representations of human preferences, or by teaching agents
to learn to learn preferences, which would improve an assistive
agents ability to adapt to out-of-distribution preferences.

REFERENCES
[1] Pieter Abbeel and Andrew Y Ng. 2004. Apprenticeship learning via inverse

reinforcement learning. In Proceedings of the twenty-first international conference
on Machine learning. 1.

[2] Michael Ahn, Anthony Brohan, Noah Brown, Yevgen Chebotar, Omar Cortes,
Byron David, Chelsea Finn, Keerthana Gopalakrishnan, Karol Hausman, Alex
Herzog, et al. 2022. Do as i can, not as i say: Grounding language in robotic
affordances. arXiv preprint arXiv:2204.01691 (2022).

[3] Antonio Andriella, Carme Torras, Carla Abdelnour, and Guillem Alenyà. 2022.
Introducing CARESSER: A framework for in situ learning robot social assistance
from expert knowledge and demonstrations. User Modeling and User-Adapted
Interaction (03 2022). https://doi.org/10.1007/s11257-021-09316-5

[4] Reuben M. Aronson and Henny Admoni. 2022. Gaze Complements Control Input
for Goal Prediction During Assisted Teleoperation. Robotics science and systems
(2022). https://par.nsf.gov/biblio/10327640

[5] Reuben M. Aronson, Thiago Santini, Thomas C. Kübler, Enkelejda Kasneci, Sid-
dhartha Srinivasa, and Henny Admoni. 2018. Eye-Hand Behavior in Human-
Robot Shared Manipulation. In Proceedings of the 2018 ACM/IEEE International
Conference on Human-Robot Interaction (Chicago, IL, USA) (HRI ’18). Association
for Computing Machinery, New York, NY, USA, 4–13. https://doi.org/10.1145/
3171221.3171287

[6] Chris L Baker, Joshua B Tenenbaum, and Rebecca R Saxe. 2007. Goal inference
as inverse planning. In Proceedings of the Annual Meeting of the Cognitive Science
Society, Vol. 29.

[7] Dhruv Batra, Angel X Chang, Sonia Chernova, Andrew J Davison, Jia Deng,
Vladlen Koltun, Sergey Levine, Jitendra Malik, Igor Mordatch, Roozbeh Mot-
taghi, et al. 2020. Rearrangement: A challenge for embodied ai. arXiv preprint
arXiv:2011.01975 (2020).

[8] Micah Carroll, Rohin Shah, Mark K Ho, TomGriffiths, Sanjit Seshia, Pieter Abbeel,
and Anca Dragan. 2019. On the utility of learning about humans for human-ai
coordination. Advances in neural information processing systems 32 (2019).

[9] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover,
Michael Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. 2021.
Decision Transformer: Reinforcement Learning via Sequence Modeling.
arXiv:2106.01345 [cs.LG]

[10] Sean Chen, Jensen Gao, Siddharth Reddy, Glen Berseth, Anca D. Dragan, and
Sergey Levine. 2022. ASHA: Assistive Teleoperation via Human-in-the-Loop Rein-
forcement Learning. In 2022 International Conference on Robotics and Automation
(ICRA). 7505–7512. https://doi.org/10.1109/ICRA46639.2022.9812442

[11] Zhichao Chen, Yutaka Nakamura, and Hiroshi Ishiguro. 2022. Android as a
Receptionist in a Shopping Mall Using Inverse Reinforcement Learning. IEEE
Robotics and Automation Letters 7, 3 (2022), 7091–7098. https://doi.org/10.1109/
LRA.2022.3180042

[12] Matei Ciocarlie, Kaijen Hsiao, Adam Leeper, and David Gossow. 2012. Mobile
manipulation through an assistive home robot. In 2012 IEEE/RSJ International
Conference on Intelligent Robots and Systems. 5313–5320. https://doi.org/10.1109/
IROS.2012.6385907

[13] Kevin Crowston. 2012. Amazon Mechanical Turk: A Research Tool for Organiza-
tions and Information Systems Scholars. In Shaping the Future of ICT Research.
Methods and Approaches, Anol Bhattacherjee and Brian Fitzgerald (Eds.). Springer
Berlin Heidelberg, Berlin, Heidelberg, 210–221.

[14] Jerry Zhi-Yang He, Zackory Erickson, Daniel S. Brown, Aditi Raghunathan, and
Anca Dragan. 2022. Learning Representations that Enable Generalization in
Assistive Tasks. In 6th Annual Conference on Robot Learning. https://openreview.
net/forum?id=b88HF4vd_ej

[15] Guy Hoffman. 2019. Evaluating Fluency in Human–Robot Collaboration. IEEE
Transactions on Human-Machine Systems 49, 3 (2019), 209–218. https://doi.org/
10.1109/THMS.2019.2904558

[16] Shervin Javdani, Henny Admoni, Stefania Pellegrinelli, Siddhartha S. Srini-
vasa, and J. Andrew Bagnell. 2018. Shared autonomy via hindsight opti-
mization for teleoperation and teaming. The International Journal of Robot-
ics Research 37, 7 (2018), 717–742. https://doi.org/10.1177/0278364918776060
arXiv:https://doi.org/10.1177/0278364918776060

[17] Michael L Littman, Anthony R Cassandra, and Leslie Pack Kaelbling. 1995. Learn-
ing policies for partially observable environments: Scaling up. In Machine Learn-
ing Proceedings 1995. Elsevier, 362–370.

[18] Dylan P Losey, Andrea Bajcsy, Marcia K O’Malley, and Anca D Dragan. 2022.
Physical interaction as communication: Learning robot objectives online from
human corrections. The International Journal of Robotics Research 41, 1 (2022),
20–44.

[19] Marius Mosbach, Maksym Andriushchenko, and Dietrich Klakow. 2021. On
the Stability of Fine-tuning {BERT}: Misconceptions, Explanations, and Strong
Baselines. In International Conference on Learning Representations. https:
//openreview.net/forum?id=nzpLWnVAyah

[20] Benjamin Newman, Kevin Carlberg, and Ruta Desai. 2020. Optimal Assistance for
Object-Rearrangement Tasks in Augmented Reality. arXiv:2010.07358 [cs.HC]

[21] Benjamin A. Newman, Reuben M. Aronson, Kris Kitani, and Henny Admoni.
2022. Helping People Through Space and Time: Assistance as a Perspective
on Human-Robot Interaction. Frontiers in Robotics and AI 8 (2022). https:
//doi.org/10.3389/frobt.2021.720319

[22] Benjamin A. Newman, Reuben M. Aronson, Siddhartha S. Srinivasa, Kris
Kitani, and Henny Admoni. 2022. HARMONIC: A multimodal dataset of
assistive human–robot collaboration. The International Journal of Robot-
ics Research 41, 1 (2022), 3–11. https://doi.org/10.1177/02783649211050677
arXiv:https://doi.org/10.1177/02783649211050677

[23] Benjamin A. Newman, Abhijat Biswas, Sarthak Ahuja, Siddharth Girdhar, Kris K.
Kitani, and Henny Admoni. 2020. Examining the Effects of Anticipatory Robot
Assistance on Human Decision Making. In Social Robotics, Alan R. Wagner, David
Feil-Seifer, Kerstin S. Haring, Silvia Rossi, Thomas Williams, Hongsheng He, and
Shuzhi Sam Ge (Eds.). Springer International Publishing, Cham, 590–603.

[24] Benjamin A. Newman, Christopher Jason Paxton, Kris Kitani, and Henny Ad-
moni. 2023. Towards Online Adaptation for Autonomous Household Assistants.
In Companion of the 2023 ACM/IEEE International Conference on Human-Robot
Interaction (Stockholm, Sweden) (HRI ’23). Association for Computing Machinery,
New York, NY, USA, 506–510. https://doi.org/10.1145/3568294.3580136

[25] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory
Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Des-
maison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan
Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith
Chintala. 2019. PyTorch: An Imperative Style, High-Performance Deep Learn-
ing Library. In Advances in Neural Information Processing Systems 32. Curran
Associates, Inc., 8024–8035. http://papers.neurips.cc/paper/9015-pytorch-an-
imperative-style-high-performance-deep-learning-library.pdf

[26] Prolific. 2014 Online. Prolific. https://www.prolific.co
[27] Manolis Savva, Abhishek Kadian, Oleksandr Maksymets, Yili Zhao, ErikWijmans,

Bhavana Jain, Julian Straub, Jia Liu, Vladlen Koltun, Jitendra Malik, et al. 2019.
Habitat: A platform for embodied ai research. In Proceedings of the IEEE/CVF
International Conference on Computer Vision. 9339–9347.

[28] DJ Strouse, Kevin McKee, Matt Botvinick, Edward Hughes, and Richard Everett.
2021. Collaborating with humans without human data. Advances in Neural
Information Processing Systems 34 (2021), 14502–14515.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1471

https://doi.org/10.1007/s11257-021-09316-5
https://par.nsf.gov/biblio/10327640
https://doi.org/10.1145/3171221.3171287
https://doi.org/10.1145/3171221.3171287
https://arxiv.org/abs/2106.01345
https://doi.org/10.1109/ICRA46639.2022.9812442
https://doi.org/10.1109/LRA.2022.3180042
https://doi.org/10.1109/LRA.2022.3180042
https://doi.org/10.1109/IROS.2012.6385907
https://doi.org/10.1109/IROS.2012.6385907
https://openreview.net/forum?id=b88HF4vd_ej
https://openreview.net/forum?id=b88HF4vd_ej
https://doi.org/10.1109/THMS.2019.2904558
https://doi.org/10.1109/THMS.2019.2904558
https://doi.org/10.1177/0278364918776060
https://arxiv.org/abs/https://doi.org/10.1177/0278364918776060
https://openreview.net/forum?id=nzpLWnVAyah
https://openreview.net/forum?id=nzpLWnVAyah
https://arxiv.org/abs/2010.07358
https://doi.org/10.3389/frobt.2021.720319
https://doi.org/10.3389/frobt.2021.720319
https://doi.org/10.1177/02783649211050677
https://arxiv.org/abs/https://doi.org/10.1177/02783649211050677
https://doi.org/10.1145/3568294.3580136
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
https://www.prolific.co

[29] Andrew Szot, Alexander Clegg, Eric Undersander, Erik Wijmans, Yili Zhao,
John M Turner, Noah D Maestre, Mustafa Mukadam, Devendra Singh Chap-
lot, Oleksandr Maksymets, Aaron Gokaslan, Vladimír Vondruš, Sameer Dharur,
Franziska Meier, Wojciech Galuba, Angel X Chang, Zsolt Kira, Vladlen Koltun,
Jitendra Malik, Manolis Savva, and Dhruv Batra. 2021. Habitat 2.0: Training
Home Assistants to Rearrange their Habitat. In Advances in Neural Informa-
tion Processing Systems, A. Beygelzimer, Y. Dauphin, P. Liang, and J. Wortman
Vaughan (Eds.). https://openreview.net/forum?id=DPHsCQ8OpA

[30] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Ł ukasz Kaiser, and Illia Polosukhin. 2017. Attention is All
you Need. In Advances in Neural Information Processing Systems, I. Guyon, U. Von

Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.),
Vol. 30. Curran Associates, Inc. https://proceedings.neurips.cc/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf

[31] Bryce Woodworth, Francesco Ferrari, Teofilo E. Zosa, and Laurel D. Riek. 2018.
Preference Learning in Assistive Robotics: Observational Repeated Inverse Rein-
forcement Learning. In Proceedings of the 3rdMachine Learning for Healthcare Con-
ference (Proceedings of Machine Learning Research, Vol. 85), Finale Doshi-Velez, Jim
Fackler, Ken Jung, David Kale, Rajesh Ranganath, ByronWallace, and JennaWiens
(Eds.). PMLR, 420–439. https://proceedings.mlr.press/v85/woodworth18a.html

[32] Brian D. Ziebart, Andrew Maas, J. Andrew Bagnell, and Anind K. Dey. 2008.
Maximum Entropy Inverse Reinforcement Learning. In Proc. AAAI. 1433–1438.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1472

https://openreview.net/forum?id=DPHsCQ8OpA
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.mlr.press/v85/woodworth18a.html

	Abstract
	1 Introduction
	2 Related Work
	2.1 State and Action-Conditioned Collaboration
	2.2 Adaptive Collaborations

	3 Methods
	3.1 Defining Surface Rearrangement
	3.2 Formalizing Surface Rearrangement

	4 Approach
	4.1 Datasets
	4.2 Learning Preferences in a Diverse User Population
	4.3 Bootstrapping Shallow Linear Models for Fast, Online Adaptation

	5 Experimental Design
	5.1 Zero-Shot Coordination
	5.2 Test-Time Adaptation

	6 Results
	7 Discussion, Limitations, and Future Work
	8 Conclusion
	9 Ethics Statement
	References

