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ABSTRACT
Understanding the emergence of cooperation in systems of com-
putational agents is crucial for the development of effective coop-
erative AI. Interaction among individuals in real-world settings
are often sparse and occur within a broad spectrum of incentives,
which often are only partially known. In this work, we explore
how cooperation can arise among reinforcement learning agents in
scenarios characterised by infrequent encounters, and where agents
face uncertainty about the alignment of their incentives with those
of others. To do so, we train the agents under a wide spectrum of
environments ranging from fully competitive, to fully cooperative,
to mixed-motives. Under this type of uncertainty we study the
effects of mechanisms, such as reputation and intrinsic rewards,
that have been proposed in the literature to foster cooperation in
mixed-motives environments. Our findings show that uncertainty
substantially lowers the agents’ ability to engage in cooperative
behaviour, when that would be the best course of action. In this
scenario, the use of effective reputation mechanisms and intrinsic
rewards boosts the agents’ capability to act nearly-optimally in
cooperative environments, while greatly enhancing cooperation in
mixed-motive environments as well.
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1 INTRODUCTION
The question of how cooperation can emerge in human and animal
societies [20, 50], as well as in systems of artificial agents has been
a focus of research for decades [5, 12, 15, 39]. Understanding the
mechanisms behind cooperation emergence is fundamental for the
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development of artificial agents capable of effectively collaborating
with both other agents and humans. The most significant chal-
lenges in the problem of cooperation emergence are encountered
in scenarios where agents’ incentives exhibit some degree of mis-
alignment, commonly known as mixed-motive environments [52].
One instance of such environments are social dilemmas, among
which the public goods game [4] is the focus of the present paper.

State of the art. Among all the factors that can undermine co-
operation emergence, uncertainty is a prominent one. There are
two main types of uncertainty at play in social dilemmas: social
uncertainty, which refers to uncertainty regarding the behavior of
other agents [7, 18]; and environmental uncertainty, which refers to
the variability of resources obtained from the environment [3, 62].

Addressing social uncertainty is the drive behind many of the
mechanisms that have been studied, across disciplines, in order to
foster cooperation. Direct and indirect reciprocity are among the
main social mechanisms that have been demonstrated to facilitate
the emergence of cooperation in scenarios with misaligned inter-
ests [53]. While direct reciprocity refers to the behaviour of acting
cooperatively with individuals who previously acted cooperatively
with us, indirect reciprocity refers to cooperating with individuals
who behaved cooperatively with others. These cooperation-aiding
mechanisms have been extensively studied in social psychology
[24, 26, 55, 63], philosophy [44, 45], computational biology [43] and
evolutionary game theory [40–42, 64]. The mechanism of indirect
reciprocity is particularly relevant in systems where encounters
among individuals are rather sparse, and agents have to rely on
external information to judge others. One of the ways in which
indirect reciprocity can be instantiated is by means of reputation
mechanisms. Reputation is an indirect measure of the trustwor-
thiness of an individual, usually rooted in the past conduct the
individual exhibited with others [44, 45]. Research has shown how
reputation can lead to faster emergence of cooperation in social
dilemmas and, more generally, mixed-motive games, especially if
assisted by other cooperation-driving mechanisms, such as partner
selection and trust-building [1, 2, 8, 30].

To the best of our knowledge, however, it is still unclear to
what extent such mechanisms remain robust even under conditions
of environmental uncertainty, which has been shown to act as a
detrimental factor in the provision of public goods in human groups
[9, 28, 62]. In particular, we are concerned with situations in which
computational agents may be uncertain about how (mis-)aligned
their interests actually are in the interaction at play: To what extent
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cooperation-aiding mechanisms remain effective under environmental
uncertainty? This is the core research question of the paper.

Contributions. In this work, we focus on the impact of environ-
mental uncertainty in scenarios where agents’ incentives are (mis-)
aligned to various extents. We investigate the effect of different
cooperation-aiding mechanisms (reputation, steering agents and
intrinsic rewards) in fostering cooperation among reinforcement
learning (RL) even under this type of uncertainty.

This paper presents the three following contributions. First, we
present the outcomes related to the impact of environmental uncer-
tainty on independent reinforcement learning agents trained on the
Extended Public Goods Game (EPGG) [46]. This game enables train-
ing across environments with a variety of incentive alignments,
while introducing uncertainty on those. We find that uncertainty
diminishes agents’ cooperation in cooperative and mixed-motive
settings while keeping the competitive behaviour in the competi-
tive ones. Second, we present an analysis of the independent role of
reputation with effective social norms, steering agents and intrinsic
rewards in shaping the behaviour of independent Deep Q-network
(DQN) agents [37], trained on the EPGG with uncertainty. We find
that the presence of an effective social norm enables agents to lever-
age reputation, promoting cooperative behaviour in mixed-motive
and cooperative environments. This result is also achieved by the
integration of intrinsic rewards based on the idea of self-play. Third,
we analyse the entangled effect of reputation, intrinsic reward and
uncertainty on the behaviour learnt by DQN agents. We show
that this combination of social mechanisms brings learning agents
closer to the optimal behavior in the competitive environments,
particularly when steering agents are employed. Moreover, the in-
clusion of intrinsic rewards boosts cooperation in the cooperative
environments when steering agents are not employed.

2 RELATEDWORK
Social Dilemmas. Social dilemmas are group settings where the

conflict between the individual and collective interest can easily
lead to cooperation failure, ultimately giving rise to suboptimal
outcomes for the group [17, 32]. In recent times, these scenarios
are being explored using MARL [29] to gain insight into the condi-
tions under which cooperative behaviour might emerge. In [49] a
model that allows agents to optimise multiple objectives in social
dilemmas with team settings is developed. In [34], with the aim
of defining more complex environments than matrix games, tem-
porally extended social dilemmas are introduced. In [31] authors
work on improving communication in sequential social dilemmas
setting via intrinsic motivation, by rewarding agents that have
high social influence over other agents. In [22] reciprocation is em-
ployed to elicit cooperation in otherwise selfish individuals, giving
rise to pro-sociality. While the aforementioned studies focus on
analysing games with a mixed-motive structure, in this work we
aim at investigating the impact of concurrently training over a set
of environments with different levels of incentive alignments, using
the public goods game as a source of inspiration.

Reputation and Social Norms. Reputation is a central mechanism
to develop cooperation in multi-agent systems. The concept of rep-
utation is strongly tied to the development of trust among agents

[10, 38, 47], and therefore to partner selection [2, 11, 21]. The influ-
ence of the partner selection mechanism on the emergence of coop-
eration among independent RL agents is investigated in [2]: agents
determine their partner selection choice by observing the actions
other agents took in previous interactions. Other works showed
how decentralised trust can improve the consensus rate among
learning agents in the presence of unreliable agents [27]. Combined
effect of the mechanisms such as reputation, partner selection, and
(direct and third-party) punishment on learning agents has also
been studied, showing how the highest rates of cooperation are
reached by these mechanisms simultaneously [16]. In [36], authors
investigate intrinsic motivation for reputation in agents trained on
spatially and temporally complex tasks, by directly modifying the
reward signal. They observe an increase in group coordination in
the game when agents are motivated to achieve a good reputation.

Studies in computational and evolutionary biology [13, 23], evo-
lutionary game theory [35, 40–42, 58], and artificial intelligence
investigated the evolution of social norms, their impact on the
group dynamics, and their role in sustaining cooperation. For ex-
ample, [51] examines the changes in cooperativity within a group
when different social norms are applied. The findings show that the
most effective norms are the ones expressing that agents should
cooperate with good individuals and defect with bad ones. This
is widely observed result (see [42, 48, 54], among others). In [57]
author investigate the effect of public sanctioning on the emergence
of social norms, to solve social dilemmas. In [1], the authors study
the interaction of reputation mechanisms and social norms in a
reinforcement learning framework, and show that the reputation
mechanism alone is not sufficient to guide tabular RL agents to-
wards a cooperative equilibrium. However, this approach becomes
effective when combined with intrinsic rewards, or when (non-
learning) agents that already adhere to the norm are introduced in
the system.

In the real-world, interactions are characterised by environments
that present different levels of incentive alignment. Furthermore,
oftentimes it is not straightforward to determine to which extent
the incentives between agents are actually aligned: agents may not
be aware of whether they are playing in a cooperative, competitive,
or mixed scenario. All of the aforementioned studies focus on apply-
ing social mechanisms on agents that are acting in mixed-motive
environments in which the achievement of cooperative behaviour
by learning is not guaranteed. However, none of these studies fo-
cuses on learning across a range of environments with different
levels of incentive alignment, which is the main distinctive char-
acter of our work. We are investigating, in particular, the effect
of social mechanisms — building upon the framework of [1] — in
environments that exhibit different levels of incentive alignments
and in presence of uncertainty. We should also note that, in contrast
[1], we go beyond tabular learning approach, to accommodate the
continuous nature of EPGG.

3 PRELIMINARIES
In this section, we introduce (1) the Extended Public Goods Game,
which is the main game-theoretic setting of our work, and (2) the
key social mechanisms we used to study emergence of cooperation:
reputation, social norms and intrinsic rewards.
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3.1 The Extended Public Goods Game
The Public Goods Game (PGG) is a collective decision game ex-
tensively studied in economics, which describes situations where
cooperation by rational agents is Pareto optimal, but because of the
profitability of free-riding, rational agents converge to defection,
which is the Nash equilibrium [4]. We refer to this kind of games
as mixed-motive, since the incentives of the agents are partially
misaligned. We model Public Goods Games as a tuple ⟨𝑁, 𝒄, 𝐴, 𝑓 , 𝒖⟩,
where 𝑁 symbolises the set of players, and |𝑁 | = 𝑛 ∈ N is the
number of players. Every player 𝑖 is endowed with some amount of
wealth (or coins) 𝑐𝑖 ∈ R≥0, and 𝒄 = (𝑐1, . . . , 𝑐𝑛) denotes the tuple
containing all agents’ coins. In this work we will be assuming all
endowments to be equal, so for all 𝑖, 𝑗 ∈ 𝑁 , 𝑐𝑖 = 𝑐 𝑗 . Each agent
can decide weather to cooperate (investing in the public good) or
defect (keeping the endowment); therefore, the set 𝐴 of allowed
actions consists of cooperate (𝐶) and defect (𝐷) i.e., 𝐴 = {𝐶, 𝐷}.
The vector 𝒂 = (𝑎1, . . . , 𝑎𝑛) ∈ 𝐴 represents the action profile of the
agents. The number 𝑓 ∈ (1, 𝑛) is called the multiplication factor,
and specifies the quantity by which the total good collected by the
agents’ investment is multiplied. This resulting quantity generates
the public good, which is then evenly distributed among all agents.
We define by 𝒖 the vector of utilities received by the agents, and
𝑢𝑖 : 𝐴𝑛 × (1, 𝑛) × (R≥0)𝑛 → R is the utility function for agent 𝑖 ,
specified as follows:

𝑢𝑖 (𝒂, 𝑓 , 𝒄) =
1
𝑛

𝑛∑︁
𝑗=1

𝑐 𝑗 𝐼 (𝑎 𝑗 ) · 𝑓 + 𝑐𝑖 (1 − 𝐼 (𝑎𝑖 )), (1)

where 𝑎 𝑗 is the 𝑗−th entry of the action profile 𝒂 and 𝐼 (𝑎 𝑗 ) is
the indicator function, equal to 1 if the action of the agent 𝑗 is
cooperative, and 0 otherwise, and 𝑐 𝑗 denotes the 𝑗−th entry of
𝒄 . Because we assumed 1 < 𝑓 < 𝑛, it is easy to check that, in
PGG, the profile with all agents defecting is a dominant strategy
equilibrium, while the Pareto optimal profile is the one in which all
agents cooperate. This captures the social-dilemma nature of PGG.
In particular, for 𝑛 = 2 the PGG defines a class of Prisoner Dilemma
games.

Following [46], in this paper we generalise the definition of PGG
by letting 𝑓 range over (0, 𝑅+) instead of (1, 𝑛), where 𝑅+ > 𝑛 is
an arbitrary value. This defines the class of Extended Public Good
Games (EPGG). EPGG can model not only mixed-motives scenarios
(i.e., when 1 < 𝑓 ≤ 𝑛) but also (1) fully competitive scenarios (i.e.,
when 0 ≤ 𝑓 < 1) in which the defection profile is a Pareto optimal
dominant strategy equilibrium (thus a Nash equilibrium) and in-
centives are therefore fully misaligned; and (2) fully cooperative
scenarios (i.e., when 𝑛 ≤ 𝑓 ≤ 𝑅+) in which the cooperation profile
is a Pareto optimal dominant strategy equilibrium (thus an optimal
Nash equilibrium) and incentives are therefore fully aligned. Note
that in the boundary case 𝑓 = 1 both CC and DD are Pareto optimal
but only DD is an equilibrium. It is important to mention already
that our agents will be trained in the EPGG under uncertainty about
the value of 𝑓 . The uncertainty of agent 𝑖 consists of an observed
value of the multiplication factor 𝑓 𝑜𝑏𝑠

𝑖
∈ (0, 𝑅+) which, however,

may differ from the true one (i.e., 𝑓 ). As detailed in Section 6, we
model the uncertainty on the observation as Gaussian noise over
the true value of 𝑓 (while ensuring that any observed value 𝑓 𝑜𝑏𝑠

𝑖
less than 0 is truncated to 0).

In our work we consider interactions among two agents at a time.
Figure 1 shows the normal form of the matrix games instantiating
the EPGG for 2 players, with𝑁 = {𝑋,𝑌 } endowedwith 4 coins each,
for the following set of multiplication factors: 𝑓 ∈ {0.5, 1.0, 1.5, 3.5}.
These games model fully competitive (𝑓 ∈ {0, 1}), fully cooperative
(𝑓 ∈ {3.5}) and mixed-motives (𝑓 = 1.5) interactions.

3.2 Reputation
Following [1, 41], we model reputation for an agent 𝑖 as a binary
variable, 𝑟𝑖 ∈ {0, 1} in which 1 (resp. 0) will denote good- (resp. bad-)
reputation. How these values are assigned depends on social norms,
mechanisms that drive reputation update in the group. Social norms
are basically functions i.e., 𝑔 : 𝐴 × {0, 1} → {0, 1} that update the
reputation of each playing agent after every interaction. That is, the
new value of the reputation 𝑟𝑖 is computed based on the last action
𝑎𝑖 took by the agent, and the current reputation 𝑟 𝑗 of the opponent
i.e., 𝑟𝑖 = 𝑔(𝑎𝑖 , 𝑟 𝑗 ). Given two possible values for both the reputation
and the available actions, there are 22

2
possible social norms that

could be defined [41]. It has been shown that some social norms are
more apt to push and maintain cooperation than others [42]. One
of the most effective social norms for sustaining cooperation in
mixed-motive scenarios is to assign a good reputation to those who
cooperate with agents having good reputations and defect against
those with bad reputations, regardless of their actions. Formally,

𝑔(𝑎𝑖 , 𝑟 𝑗 ) =


1 if 𝑎𝑖 = 𝐶 and 𝑟 𝑗 = 1,
1 if 𝑎𝑖 = 𝐷 and 𝑟 𝑗 = 0,
0 otherwise

(2)

i.e., a reputation of 1 is assigned to an agent that cooperates with an
opponent that has reputation 1, or to an agent that defects against
an opponent with reputation 0, and assigns 0 otherwise.

The social norm defined in Equation (2) is the norm we deploy in
our experiments. However, application of social norms to the EPGG
requires one further adaptation with respect to existing approaches.
Because of the uncertainty about the multiplicative factor, we need
to consider the fact that agents should not be expected by the norm
to cooperate when operating in fully competitive environments.
To account for this, we make the social norms dependent on the
multiplication factor of the game that is currently being played. So,
social norms for the EPGG are functions 𝐺 : [0, 𝑅+] ×𝐴 × {0, 1} ×
{0, 1} → {0, 1}. In this setting we will be working with one specific
adaptation of Equation (2):

𝐺 (𝑓 , 𝑎𝑖 , 𝑟𝑖 , 𝑟 𝑗 ) =
{
𝑔(𝑎𝑖 , 𝑟 𝑗 ) if 𝑓 ≥ 1,
𝑟𝑖 otherwise

(3)

That is, if the multiplication factor currently played is bigger or
equal than 1 — the boundary between a competitive (𝑓 < 1) and
a mixed motive (𝑓 > 1) interaction — we let the social norm mod-
ify the reputation of agent 𝑖 as described earlier. However if the
multiplication factor is less than 1, reflecting a competitive setting,
the reputation of the agent stays fixed at its current value 𝑟𝑖 . Such
design is justified as, in competitive games, the cooperative action
does not represent a Pareto optimal outcome nor a Nash equilib-
rium. Consequently, neither the group nor the individual would
benefit from it. However, in the boundary case 𝑓 = 1 — where both
full cooperation and full defection are Pareto optimal (see Figure
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𝑓 = 0.5 Player 𝑋
𝐶 𝐷

Player 𝑌 𝐶 2, 2 1, 5
𝐷 5, 1 4, 4

𝑓 = 1.0 Player 𝑋
𝐶 𝐷

Player 𝑌 𝐶 4, 4 2, 6
𝐷 6, 2 4, 4

𝑓 = 1.5 Player 𝑋
𝐶 𝐷

Player 𝑌 𝐶 6, 6 3, 7
𝐷 7, 3 4, 4

𝑓 = 3.5 Player 𝑋
𝐶 𝐷

Player 𝑌 𝐶 14, 14 7, 11
𝐷 11, 7 4, 4

Figure 1: Normal form games instantiating the EPGG for two players (X and Y) with 4 coins each, for four possible values of the
multiplication factor: 𝑓 = 0.5 (competitive game), 𝑓 = 1.0 (boundary game with both 𝐶𝐶 and 𝐷𝐷 optimal), 𝑓 = 1.5 (mixed-motive
game) and 𝑓 = 3.5 (cooperative game).

1) — the norm demands an out-of-equilibrium response attributing
positive reputation to cooperation rather than defection. With the
introduction of reputation, the policy of an RL agent 𝑖 playing on
the EPGG against an opponent 𝑗 depends both on the observed
value of the multiplication factor 𝑓 𝑜𝑏𝑠

𝑖
, which can be affected by un-

certainty, and the reputation of the opponent 𝑟 𝑗 . Thus, the policy of
agent 𝑖 is a function 𝜋𝑖 : [0, 𝑅+] × {0, 1} → [0, 1]. The action taken
by agent 𝑖 is then sampled from the distribution: 𝑎𝑖 ∼ 𝜋𝑖 (·|𝑓 𝑜𝑏𝑠𝑖

, 𝑟 𝑗 ).
Besides the social norms driving the reputation update, reputation
systems may also benefit from bootstrapping effects provided by
agents with fixed behaviors. In [1] authors show that relying solely
on the reputation mechanism is insufficient to shift the equilibrium
of the Prisoner’s Dilemma towards cooperation. However, they also
noted that introducing agents that do not respond to the incentives
of the game but rather exhibit fixed behaviour, strictly adhering
to specific social norms, may significantly enhance cooperation
among agents. They refer to such agents as steering agents. In our
study we leverage this approach, experimenting with different pro-
portions of steering agents in the game, to evaluate the impact of
those on the learning agents. Following [1] we implement a steer-
ing agent 𝑖 as an agent that follows the social norm defined by
Equation (3). Noting that our objective is investigating the agent’s
behaviour in the presence of observation uncertainty, we empha-
sise that steering agents receive uncertain observations as well. A
steering agent 𝑖 playing against an opponent 𝑗 with reputation 𝑟 𝑗 ,
receiving observation 𝑓 𝑜𝑏𝑠

𝑖
on the value of the multiplication factor,

employs the fixed policy 𝜋𝑠 :

𝜋𝑠 (𝑓 𝑜𝑏𝑠𝑖 , 𝑟 𝑗 ) =
{
1 if 𝑓 𝑜𝑏𝑠

𝑖
≥ 1 and 𝑟 𝑗 = 1

0 otherwise
(4)

3.3 Intrinsic Reward
The idea of intrinsic reward comes from the psychological concept
of intrinsic motivation [25], which characterises the drive of doing
something for its inherent enjoyability rather than for any external
or utilitarian gain [14]. This defines a reward signal that does not
come from an external source (i.e., the environment), but from the
agent itself [6]. Following the model provided by [1], we ground
intrinsic rewards in the idea of self-play, namely, those are the utility
that agent 𝑖 imagines it would obtain when playing against itself.
This choice is motivated by the goal of prioritising learning policies
that are effective against agents with a similar behaviour. Intrinsic
reward is defined as the utility that agent 𝑖 , with reputation 𝑟𝑖 , would
receive when playing against an agent with its same reputation in
an environment where the true multiplication factor is the observed
one: 𝑢𝑖 (𝒂′, 𝑓 𝑜𝑏𝑠𝑖

, 𝒄), where 𝒂′ = (𝑎′
𝑖
, 𝑎′

𝑖
) and 𝑎𝑖 ∼ 𝜋𝑖 (·|𝑓 𝑜𝑏𝑠𝑖

, 𝑟𝑖 ).

When the intrinsic reward formulation is employed, the reward
function 𝑅𝑖 : 𝐴𝑛 × R≥0 × R𝑛 → R of agent 𝑖 playing against agent
𝑗 on a game with multiplication factor 𝑓 and receiving observation
𝑓 𝑜𝑏𝑠
𝑖

, is a convex combination of the two utilities:

𝑅𝑖 = 𝛽 𝑢𝑖 (𝒂, 𝑓 , 𝒄) + (1 − 𝛽) 𝑢𝑖 (𝒂′, 𝑓 𝑜𝑏𝑠𝑖 , 𝒄), (5)

where 𝒂 = (𝑎𝑖 , 𝑎 𝑗 ) and 𝑎𝑖 ∼ 𝜋𝑖 (·|𝑓 𝑜𝑏𝑠𝑖
, 𝑟 𝑗 ), and 𝑢𝑖 (𝒂, 𝑓 , 𝒄) is the

utility received from the EPGG. 𝛽 ∈ [0, 1] is a parameter that
determines the weight of the game utility 𝑢𝑖 (𝒂, 𝑓 , 𝒄) against the
intrinsic reward 𝑢𝑖 (𝒂′, 𝑓 𝑜𝑏𝑠𝑖

, 𝒄) i.e., when 𝛽 = 1 (resp. 𝛽 = 0) the
obtained reward is the game utility (resp. intrinsic reward).

4 METHODS
In this section we present the experimental framework we employ
to investigate the effect of reputation, steering agents and intrinsic
rewards on the behaviour of independent reinforcement learning
agents trained on the EPGG. To assess the effect of these elements
on the system, we conduct four different kind of experiments, con-
sidering both scenarios with and without uncertainty in the agents’
observation of the multiplication factor. First, we perform a study
where the reputation and the intrinsic rewards mechanism are
disabled. Second, we enable the reputation mechanism. In these ex-
periments we additionally investigate the influence of the presence
of steering agents to enforce norms within the system. To do so, we
observe the results on the average cooperation—that is, the average
relative frequency with which cooperative actions are selected by
the agents—under different proportions of steering agents. Third,
we perform experiments where only the intrinsic reward mech-
anism is enabled. And fourth, we study the interaction between
reputation mechanism, steering agents and intrinsic rewards.

As described in Section 3.1, the EPGG consists of a set of games,
each characterised by a multiplication factor 𝑓 , that is a continu-
ous variable in (0, 𝑅+). In order to compare our results to previous
work on reputation mechanisms and MARL [1], we opt for tabular
Q-learning [59] as a baseline. In this case, the set of multiplica-
tion factors needs to be discretised. To alleviate this restriction,
we employ Deep Q-Networks (DQN) [37], as the natural function
approximation extension of the tabular approach. To the best of
our knowledge, ours is the first study of reputation mechanisms
for emergent cooperation with DQN agents.

Training process. To conduct the experiments, we employ a pool
of 10 agents whose endowments are all fixed to the same constant
value 𝑐 = 4. At every training epoch two players (that will be re-
ferred to as active agents) are uniformly sampled from the pool, and
a multiplication factor 𝑓 is sampled uniformly from a predefined
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set of values. Afterwards, the two selected agents play repeatedly
the matrix game defined by 𝑓 for a fixed number of rounds𝑀 . At
each of these rounds every agent 𝑖 observes the current multipli-
cation factor of the game 𝑓 𝑜𝑏𝑠

𝑖
, potentially with uncertainty (how

precisely this uncertainty is modelled we will deal with in Section
6). When no uncertainty is introduced, the observed value of the 𝑓
coincides with the true value: 𝑓 𝑜𝑏𝑠

𝑖
= 𝑓 , ∀ 𝑖 ∈ 𝑁 . If the reputation

mechanism is not enabled, this observed value is the only input
the active agents receive. In this case the agent’s policy takes the
simplified form 𝜋𝑖 : [0, 𝑅+] → [0, 1], and 𝑎𝑖 ∼ 𝜋 (·|𝑓 𝑜𝑏𝑠

𝑖
). If the

reputation mechanism is enabled, the agents receive as part of the
input the reputation 𝑟 𝑗 of the opponent. The type of the policy in
this case is the one defined in Section 3.2.

Upon receiving their observations, the active agents take a co-
operate or defect action according to their policy. After acting, the
agents receive a reward from the environment, which, if the intrin-
sic reward mechanism is not enabled, is equal to the utility function
of the EPGG for the current game being played. Otherwise, the re-
ward function is of the form described in Section 3.3. Subsequently,
the reputation of each active agent 𝑖 is updated depending on the
actual multiplication factor 𝑓 , the action taken (𝑎𝑖 ), the opponent’s
reputation (𝑟 𝑗 ), in accordance with the social norm in Equation (3).

We refer to the set of EPGG games employed for training by
describing the set of associated multiplication factors. In the non-
tabular case (DeepQ-learning [37]), agents are trained on the contin-
uous range of values 𝐹1 = [0.5, 3.5]. In the tabular case (Q-learning
[59]) the set 𝐹2 = {0.5, 1.0, 1.5, 3.5} has been employed. This second
set has been chosen because it contains games with cooperative
(𝑓 = 3.5), competitive (𝑓 = {0.5, 1.0}) and mixed-motive nature
(𝑓 = {1.0, 1.5}), while 𝐹1 is the continuous extension of 𝐹2.

The exploration strategy employed by the agents is 𝜖−greedy,
while the evaluation policy selects greedily the action that max-
imises the Q-function. Agents are trained independently for 10.000
epochs, and the number of interactions between the two active
agents has been fixed to𝑀 = 200. We also set the learning rate to
𝛼 = 0.01, discount factor 𝛾 = 0.99 and the reputation assignment er-
ror 𝜒 = 0.001 (in accordance with [1]). When intrinsic rewards are
enabled, we fixed 𝛽 = 0.1. When using Q-learning, replicating the
setup of [1], agents collect in a memory buffer all the𝑀 interactions
that occur at the current epoch. The Q-learning update is imple-
mented only after all the 𝑀 interactions are completed, leaving
the policy unaltered in this period. The interactions stored in the
memory buffer are then discarded after the update, to account both
for the possible change in the game played and the non-stationarity
of the environment. For training the Q-learning algorithm, we set
the current exploration rate 𝜖 to 0.01. The architecture used for the
DQN algorithm consists of a Multi-Layered Perceptron with one
hidden layer of size 4 and a ReLU activation function. For training
the DQN algorithm we employ a decaying exploration rate, with
a starting value of 𝜖 = 0.1 and an ending value of 𝜖 = 0.001. As
for the Q-learning update, the DQN update takes place for the two
playing agents at the end of the𝑀 interactions. The memory buffer
is cleared after every interaction.

Evaluation. The metric we analyse is the average cooperation
of the active agents after every training epoch, i.e, the average
relative frequency of cooperative actions. To assess the statistical

significance between the results of the different experiments, the
Welch’s t-test [60] with a p-value of 0.0001 has been employed,
where the variable of interest is the average cooperation of the
active agents over the last 50 training epochs of every run, also
averaged over 20 runs. For both the tabular and non-tabular cases,
the evaluation has been performed on the set 𝐹2.

5 LEARNINGWITHOUT UNCERTAINTY
In this section, we present the baseline results of the effect of rep-
utation, steering agents, and intrinsic rewards on the behavior of
independent RL agents trained on the EPGGwithout uncertainty on
𝑓 , so with perfect knowledge on the incentives (mis-)alignment.1

Q-learning. In the absence of any cooperation-aiding mecha-
nisms, Q-learning agents quickly converge to the rational behaviour
described in Section 3.1: in the cooperative game (𝑓 = {3.5}) agents
converge to cooperation, while in the competitive andmixedmotive
games (𝑓 = {0.5, 1.0, 1.5}), they converge to defection. This result
aligns with the baseline findings in [46], where two REINFORCE
[61] agents are trained in a two-players EPGG without uncertainty.
When reputation is enabled, cooperation is quickly reached and
stably maintained in the cooperative environment but also in the
mixed-motive one, without the need of introducing steering agents.
At 𝑓 = 0.5 defection remains a stable equilibrium. At 𝑓 = 1.0 agents
do not perfectly converge to defection, even if the rates of cooper-
ation are very low. The introduction of steering agents does not
significantly change the outcomes. The employment of the intro-
spective reward mechanism has an impact only at𝑚 = 1.5: here
agents do not converge to defection or cooperation, but reach an av-
erage cooperation of 0.51±0.21. The combination of reputation and
intrinsic rewards affects only the threshold environment 𝑓 = 1.0
when at least 70% of the population consists of steering agents,
shifting the defective equilibria to more cooperative outcomes.

Interestingly, the result for the mixed-motive environment when
employing reputation differs from the one obtained by [2] on the
Prisoner’s Dilemma game: here, the authors observe that enabling
reputation and effective social norms alone do not suffice to emerge
and support cooperation in a system of 10 agents playing the re-
peated Prisoner’s Dilemma game. However, the difference of the
outcome in our experiments is justifiable if we look at the gap be-
tween the utilities the agents get in the cooperation-cooperation
and defection-defection equilibria: in our setting the gap among
these utilities is smaller. We note that our finding is also consistent
with the argument that plain tabular reinforcement learning agents
can converge to cooperation in mixed-motive games even without
the use of reputation and memory [19].

Deep-Q Network. The outcomes of the experiments for the sce-
nario without uncertainty are depicted in Figure 2. The plots show
the average cooperation of the active agents at each evaluation step,
averaged over 20 runs. The results with and without reputation
mechanism are consistent with those found using Q-learning in
the cooperative environment 𝑓 = 3.5, the competitive environment
𝑓 = 0.5 and the threshold one 𝑓 = 1.0. However we can notice that,

1Due to space constraints, we present results and figures for the DQN algorithm,
while the results for Q-learning are discussed, but the visualisation of the outcomes is
available in the supplementary material.
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(a) 𝑓 = 0.5 (b) 𝑓 = 1.0 (c) 𝑓 = 1.5 (d) 𝑓 = 3.5

(e) 𝑓 = 0.5 (f) 𝑓 = 1.0 (g) 𝑓 = 1.5 (h) 𝑓 = 3.5

(i) 𝑓 = 0.5 (j) 𝑓 = 1.0 (k) 𝑓 = 1.5 (l) 𝑓 = 3.5

Figure 2: Average cooperation for DQN agents trained across environments with different multiplication factors. The top row
(a - d) shows the results in the absence of cooperation-aiding mechanisms, the middle row (e - h) in the presence of reputation
mechanisms and a social norm that aids cooperation, and the bottom row (i - l) in the presence of intrinsic rewards.

even in absence of the reputation mechanism, in the mixed-motive
environment 𝑓 = 1.5 the DQN agents reach an average cooperation
value of 0.78 ± 0.09, which is significantly far from the competitive
Nash equilibria of the game. The source of this outcome might
be twofold. Firstly, it may arise from the fact that the DQN algo-
rithm does not ensure convergence to the Nash equilibria. Secondly,
the imbalance in interval lengths between the competitive games
(𝑓 ∈ [0.5, 1.0]) and the cooperative ones (𝑓 ∈ [2.0, 3.5]), can be the
reason leading to a greater influence of the latter on the mixed-
motive environments (𝑓 ∈ [1.0, 2.0]). The middle row of Figure
2 shows that the introduction of reputation, even without steer-
ing agents, statistically improves the average cooperation of the
mixed-motive environment, leaving the results for the cooperative,
the competitive and the threshold environments unchanged2. The
incorporation of intrinsic rewards brings about the same outcome
as we observe in the absence of any additional mechanisms (further
details are provided in the supplementary material).

6 LEARNINGWITH UNCERTAINTY
In this section, we investigate the role of reputation, steering agents
and intrinsic rewards on the behaviour of independent RL agents
trained on the EPGG when introducing uncertainty about 𝑓 , so

2The statistical significance has been assessed using the Welch’s t-test [60] with a
p-value of 0.0001.

with only noisy information about incentive (mis-)alignment. We
model uncertainty over the observation of the multiplication factor
𝑓 as Gaussian noise: for agent 𝑖 the observed multiplication factor
is sampled from the distribution 𝑓 𝑜𝑏𝑠

𝑖
∼ 𝑓 + N(0, 𝜎2

𝑖
), where 𝜎𝑖

is the uncertainty experienced by agent 𝑖 , which is the standard
deviation of the distribution. We note that, to ensure the adherence
of the observed values to the definition of 𝑓 inside the EPGG, we
clip any sampled value 𝑓 𝑜𝑏𝑠

𝑖
< 0 to 0. In these experiments, to allow

RL agents to receive continuous observations we utilise the DQN
algorithm. The DQN architecture and the employed hyperparame-
ters are identical to the ones previously outlined in Section 4. Here
we set all agents (both the learning agents and the steering ones)
to have the same uncertainty: 𝜎𝑖 = 𝜎,∀ 𝑖 ∈ 𝑁 . We fix the value
𝜎 = 2. In Figure 3 we present the plots for the results of the four
experiments outlined in Section 4 in the presence of uncertainty.
These plots depict the average cooperation for each training epoch
which, we recall, is computed as an average over 20 runs. Below we
provide an overview of the obtained results. For a more in-depth
discussion, please refer to the supplementary material.

Uncertainty. The top row of Figure 3 shows the results when
uncertainty is present and reputation and intrinsic rewards are
not integrated into the system. When compared to results obtained
without uncertainty, we note that uncertainty modifies significantly
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(a) 𝑓 = 0.5 (b) 𝑓 = 1.0 (c) 𝑓 = 1.5 (d) 𝑓 = 3.5

(e) 𝑓 = 0.5 (f) 𝑓 = 1.0 (g) 𝑓 = 1.5 (h) 𝑓 = 3.5

(i) 𝑓 = 0.5 (j) 𝑓 = 1.0 (k) 𝑓 = 1.5 (l) 𝑓 = 3.5

(m) 𝑓 = 0.5 (n) 𝑓 = 1.0 (o) 𝑓 = 1.5 (p) 𝑓 = 3.5

Figure 3: Average cooperation for DQN agents trained across environments with different multiplication factors under
uncertainty (𝜎𝑖 = 2 ∀ 𝑖 ∈ 𝑁 ). Results are displayed in four rows: the first without reputation or intrinsic rewards, the
second with reputation and a social norm that aids cooperation, the third with the intrinsic rewards formulation, and the
fourth with reputation, a social norm that aids cooperation, and the intrinsic rewards formulation.

Table 1: Averages and standard deviations for the cooperation values computed for each game, in the cases without uncertainty
(No U), with uncertainty (U), and with uncertainty and intrinsic rewards (UI), and p-values resulting from the Welch’s t-tests.

Multiplication factor No Uncertainty Uncertainty Uncertainty with I p-value (No U/U) p-value (U/UI)

0.5 0.00 ± 0.02 0.09 ± 0.07 0.31 ± 0.10 0.0021 2.5337e-8
1.0 0.02 ± 0.04 0.12 ± 0.06 0.36 ± 0.13 0.0003 1.2248e-9
1.5 0.78 ± 0.09 0.16 ± 0.06 0.45 ± 0.13 7.8726e-19 3.624e-11
3.5 0.98 ± 0.03 0.40 ± 0.07 0.78 ± 0.12 1.7306e-14 3.254e-12

the average cooperation within the cooperative and mixed-motive
environments 𝑓 ∈ {1.5, 3.5}, while it does not make a significant
difference in the competitive and threshold ones (i.e., 𝑓 ∈ {0.5, 1.0}).
The average values and the p-values resulting from the tests are

reported in Table 1. The main effects of uncertainty as follows: 1)
in the cooperative setting (𝑓 = 3.5), agents fail to reach cooperative
equilibria, causing the average cooperation to drop from 0.98 ±
0.03 when uncertainty is absent, to 0.40 ± 0.07 in the presence of
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Table 2: Averages and standard deviations for the cooperation in each game, averaged over the last 50 training epochs, for the
experiments with uncertainty. The measures are reported separately for two scenarios: the one where only the reputation
mechanism is enabled (R) and the one where both reputation mechanisms and intrinsic rewards are employed (RI). Values that
exhibit statistical significance are in bold.

Percentage of Steering Agents

0% 30% 50% 70% 90%
𝑓

R RI R RI R RI R RI R RI
0.5 0.22 ± 0.08 0.30 ± 0.11 0.29 ± 0.09 0.23 ± 0.06 0.34 ± 0.09 0.15 ± 0.06 0.37 ± 0.08 0.13 ± 0.07 0.45 ± 0.03 0.13 ± 0.20
1.0 0.25 ± 0.06 0.37 ± 0.11 0.38 ± 0.13 0.35 ± 0.08 0.57 ± 0.13 0.33 ± 0.12 0.70 ± 0.15 0.46 ± 0.14 0.98 ± 0.01 0.62 ± 0.37
1.5 0.33 ± 0.11 0.49 ± 0.12 0.41 ± 0.12 0.59 ± 0.09 0.64 ± 0.13 0.71 ± 0.14 0.76 ± 0.14 0.77 ± 0.12 0.98 ± 0.02 0.81 ± 0.36
3.5 0.65 ± 0.12 0.83 ± 0.09 0.55 ± 0.09 0.89 ± 0.04 0.83 ± 0.13 0.91 ± 0.06 0.87 ± 0.17 0.89 ± 0.10 1.00 ± 0.00 0.91 ± 0.21

uncertainty. 2) in mixed-motive games, the average cooperation
drops significantly, decreasing from an average value of 0.78 ± 0.09
(without uncertainty) to 0.16±0.06 (with uncertainty), when 𝑓 = 1.5.

Reputation. The second row of Figure 3 shows the results of the
experiments with the inclusion of the reputation mechanism and
the effective social norm described in Section 3.2. We observe that,
except for the competitive environment with 𝑓 = 0.5, the final
average cooperation presents significant differences compared to
the experiments without the reputation mechanism, in particular
in the absence of steering agents. We confirm the significance of
the results through a t-test comparing the “Uncertainty” column in
Table 1 with the 0% − R column in Table 2. When steering agents
are introduced, the average cooperation of the system increases in
all environments: just with 30% presence of steering agents, the
average cooperation is significantly higher in the mixed motive and
in the cooperative games (see again Tables 1 and 2). Notably, the
addition of steering agents leads to a slight improvement in cooper-
ation within the competitive scenario as well. This behavior can be
explained by remembering that the observed value 𝑓 𝑜𝑏𝑠

𝑖
has a lower

bound of 0 but no upper bound. Consequently, agents encounter a
bigger number of observed mixed-motive and cooperative values
𝑓 𝑜𝑏𝑠
𝑖

∈ (1, +∞) rather than competitive ones 𝑓 𝑜𝑏𝑠
𝑖

∈ (0, 1).

Intrinsic Rewards. In this section, we describe the results of the
experiments where the intrinsic reward formulation of Equation (5)
is applied, which are reported in the third row of Figure 3. From the
plots can be observed that, even without the addition of reputation
and social norms, the average cooperation values are significantly
higher in all the environments compared to the case where uncer-
tainty is present but intrinsic rewards are not introduced (top row
of Figure 3). The averages values and the p-values resulting from
the tests are contained in Table 1.

Reputation and Intrinsic Rewards. The bottom row of Figure 3
displays the results of the combined presence of intrinsic rewards
and reputation with an effective social norm. In Table 2 we com-
pare these results with those in which the intrinsic reward is not
introduced. Interestingly, for the competitive and threshold envi-
ronments (𝑓 ∈ {0.5, 1.0}), there is a significant difference among
the results when at least 50% or more steering agents are included
in the system, namely the combination of steering agents and intrin-
sic rewards lowers the average cooperation, partially recovering
the defective behavior. Thus, in these cases, the formulation of

intrinsic rewards, when combined with reputation and steering
agents, mitigates the optimistic bias introduced by the presence of
steering agents. This effect can be observed by comparing Figures
3e and 3m. On the other hand, there are significant differences
in the mixed-motive environment for 30% steering agents, and in
the cooperative one for cases of 0% and 30%, namely the inclusion
of intrinsic rewards in the presence of the reputation mechanism
enhances cooperation in both these environments.

7 CONCLUSION
In this work we investigated the impact of uncertain incentive
alignment on the cooperative behavior of independent reinforce-
ment learning agents. Our aim was to assess the effectiveness of
social mechanisms, such as reputation, steering agents and intrin-
sic rewards in promoting cooperation in environments marked by
this type of uncertainty. First, we observed that uncertainty signifi-
cantly lowers the agents’ cooperative behavior in the cooperative
and mixed-motives games, while leaving it unchanged in the com-
petitive and threshold ones. Adding a reputation mechanism with
an effective social norm significantly boosts cooperation in the
cooperative and mixed-motive environments, and without signifi-
cantly impacting behavior in the competitive and threshold ones.
Furthermore, steering agents induce optimism and significantly
boost cooperation. The intrinsic reward formulation mimics the
effect of reputation without steering agents: the two mechanisms,
if introduced separately, yield similar effects. And finally, under
uncertainty, the synergy between reputation and intrinsic rewards
recovers the competitive behavior in the competitive environment,
if a percentage of at least 50% of steering agents is employed. Si-
multaneously, it promotes cooperation in the mixed-motive and
cooperative environments, when no steering agents are in use, or
only a small fraction of them are deployed. As future work, we aim
to investigate scenarios involving more than two agents, as well
as more complex environments such as Cleanup and Harvest [56].
Moreover, we aim to explore the role of communication [33, 46] on
social norms emergence.
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