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ABSTRACT

In reinforcement learning (RL), an agent learns to perform a task by

interacting with an environment and receiving feedback (a numeri-

cal reward) for its actions. However, the assumption that rewards

are always observable is often not applicable in real-world problems.

For example, the agent may need to ask a human to supervise its

actions or activate a monitoring system to receive feedback. There

may even be a period of time before rewards become observable, or

a period of time after which rewards are no longer given. In other

words, there are cases where the environment generates rewards

in response to the agent’s actions but the agent cannot observe

them. In this paper, we formalize a novel but general RL framework

— Monitored MDPs — where the agent cannot always observe re-

wards. We discuss the theoretical and practical consequences of

this setting, show challenges raised even in toy environments, and

propose algorithms to begin to tackle this novel setting. This paper

introduces a powerful new formalism that encompasses both new

and existing problems and lays the foundation for future research.
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1 INTRODUCTION

Reinforcement learning (RL) has developed into a powerful setting

where agents can tackle a variety of tasks, including games [36],

robotics [15], medical applications [45], and user engagement [11].

Autonomous agents trained with RL learn by trial and error: they

are deployed in an environment, try different actions, and receive a

numerical reward depending on the outcome of their actions. More

interactions lead to more data as the agent tries to maximize its re-

wards. Traditionally, RL frames the environment-agent interaction
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as a Markov Decision Process (MDP), where rewards are assumed

to be observable after every action. This is in stark contrast with

many real-world situations, where the agent may need additional

instrumentation (e.g., cameras or specialized sensors) or a human

expert to observe the reward [46]. If the instrumentation breaks or

the expert is unavailable, the agent does not observe any reward for

its actions, even though the efficacy of its behavior is still important.

Or even if the agent observes rewards, these could be imperfect

due to human mistakes or faulty instrumentation [19]. In other

words, there will be situations where the agent cannot observe the

exact rewards generated by the environment to judge its actions. This

paper argues that such circumstances should be part of the problem

specification, suggesting an extension to MDPs is needed, as agents

that ignore these complications can result in real-world failures.

Consider the situation shown in Figure 1. Here, an autonomous

agent is tasked with household chores, and the quality of its behav-

ior is provided through feedback from the homeowner and smart

sensors. However, this reward feedback is not always observable,

as the owner may not be present, the sensors may not have full

coverage of the home, or even be malfunctioning. In such situations,

the agent should not interpret the lack of reward as meaning that all

behavior is equally desirable. Neither should it think that avoiding

monitoring or intentionally damaging sensors is an effective way

to avoid negative feedback. Further, the agent may need to reason

about how to seek the most useful feedback, such as planning ex-

ploratory actions when the owner is home or in well-monitored

rooms. Ideally, such an agent will eventually learn to judge its own

actions without the need for human feedback or home sensors.

We argue that to autonomously learn to complete tasks in such

real-world settings, RL agents need a comprehensive framework

where 1) the agent cannot always observe rewards even though its

behaviour should still seek to maximize the unobserved reward; 2)

the agent may need to explicitly act to observe rewards, yet whether

it observes the reward or not may not be fully under its control; 3)

the process that determines the observation of rewards, namely the

monitor, is itself something that can be learned or modelled by the

agent; and 4) the reward provided to the agent may be imperfect.

Most importantly, even if the agent does not receive explicit rewards

through the monitor, its actions are still impactful: the environment

always generates rewards in response to the agent’s actions, even

when the agent cannot observe them because the monitor — that

communicates rewards to the agent — could be unavailable or faulty.

To the best of our knowledge, there is no framework that fully

formalizes this problem setting in the RL literature.Active RL tackles
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       I Need Help:
Monitor Me!

I Can Judge 
Actions On 

My Own!

Figure 1: Example of Monitored MDP. The agent is tasked with household chores but needs the owner or home sensors to

observe rewards. If the owner is not home or the sensors are unavailable (left), the agent will not receive positive rewards for

cleaning dishes or negative rewards for spilling water. Thus, the agent must learn how to seek monitoring — where to move for

sensory feedback or when the owner is home (center) — and act appropriately even when monitoring is unavailable (e.g., be

cautious when not being monitored). Eventually, the agent can judge actions on its own without any monitoring (right).

similar problems [16, 37], but it is limited to cases where there are

explicit binary actions that deterministically control when reward

is observed. Partial monitoring addresses the problem of learning

with limited feedback, but only in bandits [2, 3, 18, 20]. In sparse-

reward RL, the agent receives a zero-reward after each action until

eventually receiving a more informative reward [17], but rewards

are always observable. In cautious RL, rewards may not be observ-

able [26] but the agent has no means to control their observability.

This paper formalizesMonitored Markov Decision Processes (Mon-

MDPs), a novel RL framework that accounts for unobservable re-

wards by introducing the monitor, a separate MDP that dictates

when and how the agent sees the rewards, and that the agent can af-

fect with dedicated actions. We discuss the theoretical and practical

consequences of unobservable rewards, present toy environments,

and provide algorithms to illustrate the resulting challenges. We

believe that Mon-MDPs allow to formalize the complexity of many

real-world tasks, provide a unifying view of existing areas of re-

search, and lay the foundation for new research directions.

2 PROBLEM FORMULATION

AMarkov Decision Process (MDP) is a mathematical framework for

sequential decision-making, defined by the tuple ⟨S,A,R,P,γ⟩.
An agent interacts with an environment by repeatedly observing

a state 𝑠𝑡 ∈ S, taking an action 𝑎𝑡 ∈ A, and observing a bounded

reward 𝑟𝑡 ∈ R. The state dynamics are governed by the Markovian

transition function P(𝑠𝑡+1 | 𝑎𝑡 , 𝑠𝑡 ), while the reward is determined

by the reward function 𝑟𝑡 ∼ R(𝑠𝑡 , 𝑎𝑡 ). Both functions are unknown

to the agent, whose goal is to act to maximize the sum of discounted

rewards
∑∞
𝑡=1

γ𝑡−1𝑟𝑡 , where γ ∈ [0, 1) is the discount factor that
describes the trade-off between immediate and future rewards.

1

2.1 Monitored MDPs

In Monitored MDPs (Mon-MDPs) the observability of the reward is

governed by the monitor, a separate Markovian decision process.

Formally, a Mon-MDP is defined by the tuple

⟨Se,Ae,Pe,Re,M,Sm,Am,Pm,Rm,γ⟩.
The tuple ⟨Se,Ae,Pe,Re,γ⟩ is the same as classic MDPs where

the superscript e stands for “environment.” However, the environ-

ment reward 𝑟e𝑡 ∼ Re (𝑠e𝑡 , 𝑎e𝑡 ) is not directly observable. Instead, the

1
The constraint γ < 1 ensures the infinite sum is well-defined. Alternatively, one

could allow γ = 1 but with restrictions on the MDP, e.g., absorbing states.

agent observes a proxy reward 𝑟e𝑡 ∼ M(𝑟e𝑡 , 𝑠m𝑡 , 𝑎m𝑡 ), whereM is the

monitor function, 𝑠m ∈ Sm is the monitor state, and 𝑎m ∈ Am
is the

monitor action. Even so, the monitor function is not guaranteed

to always show a reward and the agent may receive 𝑟e𝑡 = ⊥, i.e.,
“unobservable reward” (i.e., the monitor dictates what the agent sees

about the environment reward according to its current state and ac-

tion). The monitor state follows the Markovian transition function

Pm (𝑠m
𝑡+1 | 𝑠

m

𝑡 , 𝑠
e

𝑡 , 𝑎
m

𝑡 , 𝑎
e

𝑡 ),2 and executing monitor actions yields a

bounded monitor reward 𝑟m𝑡 ∼ Rm (𝑠m𝑡 , 𝑎m𝑡 ).3 We will use monitor

to refer to the tuple ⟨M,Sm,Am,Pm,Rm⟩, and monitor function

to refer toM. The monitor together with the environment tuple

⟨Se,Ae,Pe,Re,γ⟩ is the Mon-MDP. Figure 2 shows a diagram of

the Mon-MDP in contrast to the standard MDP framework.

Monitor

Agent

EnvironmentEnvironment

Agent

Figure 2: In classic MDPs (left), the agent directly observes

environment rewards 𝑟e. In Mon-MDPs (right), instead, it

receives proxy rewards 𝑟e via the monitor. Like the environ-
ment, the monitor is governed by a Markovian transition

function and has its own rewards 𝑟m. At every step, the agent

observes the environment and the monitor states, and ex-

ecutes actions affecting both. The goal is to maximize the

cumulative sum of rewards (𝑟e + 𝑟m), while observing 𝑟e in-

stead of 𝑟e. If the reward is unobservable, the agent receives

𝑟e = ⊥.

2
The monitor states and actions may be as simple as “reward is (not) observable” and

“do (not) ask for reward”, or more heterogeneous. For example, the agent could ask

for rewards by pushing buttons, collecting and using a device, or uncovering objects.

Similarly, the monitor state may include the position of items, the battery of a device,

or the distance of the agent from environment sensors. The next monitor state 𝑠m
𝑡+1 ,

indeed, depends on both the current monitor pair (𝑠m𝑡 , 𝑎m𝑡 ) and environment pair

(𝑠e𝑡 , 𝑎e𝑡 ) . Consequently, the proxy reward also depends on both the environment and

the monitor. In Figure 1, to receive rewards from the home sensors, the sensor has to

be active (monitor state) and the agent near enough (environment state).

3
The monitor reward can represent a cost (e.g., if monitoring consumes resources),

but it is not constrained to be negative. Just like the environment reward, its design

depends on the agent’s desired behavior.
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In Mon-MDPs, the agent repeatedly executes a joint action

(𝑎e𝑡 , 𝑎m𝑡 ) according to the joint state (𝑠e𝑡 , 𝑠m𝑡 ). In turn, the environ-

ment andmonitor states change and produce a joint reward (𝑟e𝑡 , 𝑟m𝑡 ),
but the agent observes (𝑟e𝑡 , 𝑟m𝑡 ). The agent’s goal is to select joint ac-
tions tomaximize

∑∞
𝑡=1

γ𝑡−1
(
𝑟e𝑡 + 𝑟m𝑡

)
even though it only observes 𝑟e𝑡

instead of 𝑟e𝑡 . As shown in the remainder of the paper, not observing

directly 𝑟e𝑡 (and possibly not observing any reward if 𝑟e𝑡 = ⊥) makes

the optimization non-trivial, creating challenging — and potentially

impossible — problems, which we discuss further in Section 3.

2.2 Why RL Needs Mon-MDPs

As in MDPs, the agent is always being judged, i.e., the environment

always generates rewards in response to the agent’s actions. InMon-

MDPs, however, the agent does not observe these rewards directly,

but instead observes the proxy rewards given by the monitor. Most

importantly, the monitor does not affect the environment reward

— how the agent is judged — but only what the agent observes. In

Figure 1, if the agent spills water on the floor, there is a clear “bad”

feedback that the owner (i.e., the monitor) would give to the agent.

However, if the owner is not home, the agent would not receive it.

Nonetheless, the action that spilled water is still undesirable.

An alternative to the Mon-MDP framing of such a situation may

be to formalize it as an MDP with delayed reward: the act of spilling

water when the owner is not home causes no immediate feedback,

but later when the owner returns there is negative feedback for the

floor being wet. Such a framing either dictates a non-Markovian

reward function or places a significant burden on the state repre-

sentation to capture long sequences of actions, as well as stressing

the agent’s ability to do credit assignment. Further, suppose that

the water dries before the owner returns, or that the agent purpose-

fully only spills water where the owner will not notice. The agent

may never receive any negative feedback for this behavior — a

behavior that is undesirable. The owner’s lack of feedback should not

be interpreted by the agent as indifference to a behavior that would

otherwise result in negative feedback when monitored. Instead, the

agent should understand that spilling water (an environment action)

is undesirable regardless of the owner’s presence (the monitor state).

Another alternative to the Mon-MDP framing may be to avoid

explicitly representing the monitor with its own states, actions, and

rewards, as partially decoupled from the environment. However,

this separation — where the monitor and its state do not affect the

environment rewards — is the basis for the agent to know that

hiding spilled water from the owner does not avoid (unobserved)

negative rewards. An alternative that forces the environment and

monitor state together into a single state variable (and similarly for

environment and monitor actions) would only be able to achieve

the same effect through carefully constructed generalization bias

in the agent’s representation, which is its own challenges.

There are further advantages for separating out the monitor

process. First, whether the details of the monitor are known in

advance by the agent is a design decision, and keeping them sep-

arate allows clarity to what is known and what must be learned

through interaction. Second, explicitly reasoning about the monitor

and environment separately facilitates better exploration and more

advanced behavior. For example, if the outcome of some states or

actions has not been monitored, the agent could either (a) avoid

them, or (b) intentionally explore them when it knows it will gain

monitoring feedback. For instance, if the agent learns that it can

reliably observe rewards when the owner is home, it could try new

actions for which it does not know the reward. In contrast, if the

owner is not home, the agent may choose to act cautiously. Third,

decoupling the monitor and the environment creates new oppor-

tunities for task transfer, where only the monitor is different or

only the environment is. For example, the agent may first learn

in a Mon-MDP and then be deployed in a similar — but entirely

unmonitored — environment, or may be assigned new tasks under

the same monitor. E.g., the agent in Figure 1 could be assigned new

chores within the same house, and reasoning about the presence of

the owner or home sensors would allow to learn more efficiently.

We argue that current RL frameworks do not capture the com-

plexity of these — and many more — real-world tasks. In contrast,

Mon-MDPs provide a comprehensive framework that can be ap-

plied to a large variety of challenging real-world complexities. In

the next section, we discuss related work that capture some of these

complexities, and show how Mon-MDPs can be seen as a general

framework encompassing existing areas of research.

2.3 Related Work

In partially observable MDPs (POMDPs), the environment state

is not directly observable. The presence of an unobservable compo-

nent may induce the reader to think that Mon-MDPs are related to

POMDPs [1]. However, not observing the reward rather than the

state is not just cosmetics. In Mon-MDPs, the agent cannot judge its

own actions without rewards, but can still identify the environment

state (and, thus, explore). In contrast, in POMDPs the agent must

learn to identify the state from its observations to provide an appro-

priate input for its actions [12]. POMDPs and Mon-MDPs are not

mutually exclusive, though, and we can formalize Mon-POMDPs

where both rewards and states are not observable.

In sparse-reward RL, the agent receives meaningful rewards

rarely and zero-rewards otherwise. This makes exploration hard,

especially if the reward is given only at task completion. To compen-

sate for the sparsity of rewards, intrinsic motivation relies on auxil-

iary rewards such as bonuses for hard-to-predict states [31, 35, 38],

rarely-visited states [4, 30, 39], or impactful actions [29, 33]. At first

it may seem that intrinsic motivation could be a complete solution

to Mon-MDPs — the agent could use auxiliary rewards when en-

vironment rewards are unobservable. However, in Mon-MDPs the

problem is not the sparsity of rewards, but their unobservability,

i.e., receiving 𝑟e𝑡 = ⊥. While auxiliary rewards may improve explo-

ration, they cannot replace 𝑟e𝑡 — that remains unobservable — and

thus the agent cannot directly maximize the sum of environment re-

wards. Nonetheless, techniques for sparse-reward MDPs will likely

still be valuable in Mon-MDPs. We return to this in Section 5.

In cautious and risk-averse RL, the agent faces some form of

uncertainty, either aleatoric (inherent randomness of the environ-

ment) or epistemic (due to the agent’s ignorance). InMon-MDPs, the

unobservability of the reward can be seen as epistemic uncertainty.

Thus, cautious and risk-averse methods could be used to reason

about rewards uncertainty. However, the general setting of cautious

and risk-averse RL is fundamentally different from Mon-MDPs, as

either the reward is always observable [47, 48] or never [26].
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-10

B C
+2

-1

+1
Figure 3: Example showingwhy learningwith unobservable reward is non-trivial.

The agent moves between states A, B, and C, but rewards can be observed only

with monitoring. Otherwise, the agent observes 𝑟e𝑡 = ⊥. If the agent interprets
the lack of reward as meaning that all actions are equally good, it could believe

that transitioning from B to A is as good as transitioning from B to C.

In human-in-the-Loop (HITL), a human helps the agent in

making the correct decisions, e.g., by providing rewards or suggest-

ing appropriate actions [8, 14, 21]. One may see the monitor as the

human in HILT. However, in HITL, typically there is either (a) never

an environment reward, e.g., the MDP has no reward function and

all guidance comes from the human; or (b) always an environment

reward, and the human provides additional guidance to the agent.

In neither of these settings there is an environment reward that the

agent can only sometimes see. Yet, many of these techniques deal

with imperfect (human) rewards, which are a factor in Mon-MDPs.

In Bayesian persuasion, rewards depend on states, actions, and

an external parameter [6, 10, 13, 44]. One agent (the sender) cannot

influence the environment state, but its actions determine what

another agent (the receiver) observes about the external parameter.

This relationship recalls the monitor-agent’s in Mon-MDPs, in the

sense that one affects what the other observes. However, the two

frameworks are fundamentally different. In Bayesian persuasion,

there are two decision-makers (receiver and sender) with possibly

conflicting goals — the sender affects the receiver’s observations

for its own good. In Mon-MDPs, the monitor is a fixed process like

the environment, and the agent (the only decision-maker) has one

goal — to maximize the sum of monitor and environment rewards.

In active RL (ARL), the agent must pay a cost to observe either

the state [5] or the reward [16, 37, 40]. ARL is perhaps the closest

framework to Mon-MDPs but its setting is simpler. To the best

of our knowledge, ARL considers only binary actions to request

rewards, constant request costs, and perfect reward observations.

By contrast, in Mon-MDPs (a) the observed reward depends on the

monitor — a process with its own states, actions, and dynamics; (b)

there may be no direct action to request rewards, and requests may

fail; (c) the monitor reward is not necessarily a cost; and (d) the

monitor can be imperfect and modify the reward. For these reasons,

Mon-MDPs can be considered a more general form of ARL.

In partial monitoring for multi-armed bandits, the agent must

maximize the payoffs of its actions, while unable to observe the

exact payoffs [2, 3, 18, 20]. E.g., the agent may observe only payoffs

for some bandit arms but not all, or payoffs within a range. Mon-

MDPs can be considered a partial monitoring problem, as the agent

has to maximize the cumulative sum of partially observable rewards.

However, to the best of our knowledge, Mon-MDPs are the first

example of partial monitoring in sequential decision-making.

3 MON-MDPS OPTIMALITY

In Mon-MPDs, the agent’s goal is to maximize the sum of cumu-

lative rewards (𝑟e𝑡 + 𝑟m𝑡 ) while receiving (𝑟e𝑡 , 𝑟m𝑡 ). However, issues
arise when 𝑟e𝑡 is unobservable (𝑟e𝑡 = ⊥). On one hand, we cannot

simply replace 𝑟e𝑡 with 𝑟e𝑡 as the sum would be ill-defined. On the

other hand, we cannot replace 𝑟e𝑡 = ⊥ with an arbitrary value or

even just ignore it (this could result in suboptimal or even dan-

gerous agent’s behavior, as we show in Section 4.2). To address

this problem, we will first define optimality in Mon-MDPs, and

then we discuss under what conditions convergence to optimality

is guaranteed (despite the presence of unobservable rewards).

3.1 Policy Optimality

We define 𝑎𝑡 B (𝑎e𝑡 , 𝑎m𝑡 ), 𝑠𝑡 B (𝑠e𝑡 , 𝑠m𝑡 ), and 𝑟𝑡 B𝑟e𝑡 + 𝑟m𝑡 as the joint

action, joint state, and joint reward, respectively. Although 𝑟𝑡 may

not be observable to the agent, it is well-defined — we can formalize

the problem like a classic MDP with policy 𝜋 (𝑎𝑡 |𝑠𝑡 ) and sum of

discounted rewards
∑∞
𝑡=1

γ𝑡−1𝑟𝑡 . Similarly, we can define an optimal

policy 𝜋∗ as a policy maximizing the Q-function 𝑄𝜋 (𝑠, 𝑎), i.e.,

𝜋∗ B argmax

𝜋
𝑄𝜋 (𝑠, 𝑎), (1)

where 𝑄𝜋 (𝑠𝑡 , 𝑎𝑡 ) B E
[∑︁∞

𝑖=𝑡
γ𝑖−𝑡𝑟𝑖

��� 𝜋,P, 𝑠𝑡 , 𝑎𝑡 ], (2)

where P(𝑠𝑡+1 | 𝑠𝑡 , 𝑎𝑡 ) = Pm (𝑠m
𝑡+1 | 𝑠

m

𝑡 , 𝑎
m

𝑡 , 𝑠
e

𝑡 , 𝑎
e

𝑡 ) P(𝑠e𝑡+1 | 𝑠
e

𝑡 , 𝑎
e

𝑡 ).
This problem is well-defined and the existence of at least one op-

timal policy is guaranteed under assumptions already satisfied by

Mon-MDPs.
4
Notice that the monitor functionM does not appear

here — for every Mon-MDP, there always exists an optimal policy.

An optimal policy exists, but can the agent actually learn it? The

environment reward 𝑟e𝑡 is not always observable and the agent sees

𝑟e𝑡 instead. How should it treat unobservable rewards 𝑟e𝑡 = ⊥? This
problem is non-trivial. Consider a Mon-MDP whose deterministic

environment is shown in Figure 3. Every time the agent moves, it

can ask to be monitored or not with 𝑎m ∈ {MONITOR ME, NO-OP}.
The agent observes 𝑟e𝑡 = 𝑟e𝑡 when moving if 𝑎m𝑡 = MONITOR ME, and
𝑟e𝑡 = ⊥ otherwise. The monitor reward is constant: 𝑟m𝑡 = 0. The

optimal policy for sufficiently large γmoves between B and C for an
undiscounted cumulative reward of 0. What should the agent think

when it does not ask to be monitored and sees 𝑟e𝑡 = ⊥? Should it

assume ⊥ = 0? If so, the agent will believe it can avoid negative

rewards by not asking to bemonitored, and choose tomove between

A and B for an (apparent, but incorrect) undiscounted cumulative

reward of 2. Or, what if the monitor function clips the environment

reward to [−1, 1], a common practice in RL [25, 41]? In this case,

the agent will conclude that moving between A and B yields the

same rewards of moving between B and C.
This example shows that convergence to an optimal policy de-

pends on the observability of proxy rewards, how the agent treats

𝑟e𝑡 = ⊥, and if the monitor function alters environment rewards.

In the extreme case, solving a Mon-MDP may be hopeless, such as

the case of a monitor function always returning ⊥, where no agent

could ever learn an optimal policy. The next section discusses some

properties of “well-behaved” Mon-MDPs, sufficient to guarantee

the existence of an algorithm that converges to an optimal policy. In

Appendix B, we give a formal treatment of solvable and unsolvable

Mon-MDPs as well as interesting settings between these two.

4
These standard assumptions include stationary reward and transition functions,

bounded rewards, and a discount factor γ ∈ [0, 1) [32].
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(a) Simple. The reward 𝑟e𝑡 is 1

(goal) or 0 (otherwise). To ob-

serve 𝑟e𝑡 = 𝑟e𝑡 , the agent must

do 𝑎m𝑡 = MONITOR ME and pay

𝑟m𝑡 = −0.2. Otherwise 𝑟e𝑡 = ⊥.

(b) Penalty. Like the Simple ver-

sion, but there are penalty cells

that give 𝑟e𝑡 = −10.

(c)Button. Monitoring is turned

ON by hitting the red button

with 𝑎e𝑡 = DOWN. When monitor-

ing is ON, 𝑟m𝑡 = −0.2 and 𝑟e𝑡 = 𝑟e𝑡
until the button is hit again.

Figure 4: In our Mon-MDPs, the

agent starts in the top-left cell

and has to reach the goal avoiding

penalty cell. There are nine states

𝑠e (one for each cell) and four ac-

tions 𝑎e (LEFT, RIGHT, UP, DOWN). Re-
wards 𝑟e are 1 (goal), -10 (penalty

cells), and 0 (otherwise). Episodes

end when the agent reaches the

goal or after 50 steps. We propose

three levels of difficulty depend-

ing on the presence of penalty

cells and on the type of monitor.

3.2 Convergence to an Optimal Policy

Property 1 (Ergodic Mon-MDP). A Mon-MDP is ergodic if any

joint state (𝑠e, 𝑠m) can be reached by any other joint state (𝑠e, 𝑠m)′
given infinite exploration. This implies that every state will be visited

infinitely often given infinite exploration.
5

Property 2 (Ergodic Monitor Function). A monitor function

𝑟e ∼ M(𝑟e, 𝑠m, 𝑎m) is ergodic if for all environment pairs (𝑠e, 𝑎e) the
proxy reward will be observable (𝑟e ≠ ⊥) given infinite exploration.

Property 3 (Truthful Monitor Function). A monitor func-

tion 𝑟e ∼ M(𝑟e, 𝑠m, 𝑎m) is truthful if ∀𝑡 either 𝑟e𝑡 = 𝑟e𝑡 or 𝑟e𝑡 = ⊥.

Proposition 1 (Sufficient Conditions for Convergence to

an Optimal Policy). There exist an algorithm such that for any

Mon-MDP with finite states and actions satisfying Properties 1, 2,

and 3, the algorithm converges to an optimal policy of that Mon-MDP.

We prove Proposition 1 in Section 4.3, after examining candidate

algorithms in Section 4.2. For now, we remark that Properties 1, 2,

and 3 guarantee that the agent will observe every environment

reward infinitely often, even though not for every monitor state

and action. In other words, the agent can still learn an optimal policy

even if there are situations where it cannot observe the rewards.

4 EMPIRICAL ANALYSIS OF MON-MDPS

In this section, we show practical challenges an agent faces in Mon-

MDPs, and why methods used in MDPs fail to converge to an opti-

mal policy. We start by introducing toy environments and monitors:

in some the agent can use a monitor action to immediately be mon-

itored, while in others it must execute certain environment actions

to activate monitoring. We then introduce algorithms that account

for unobservable rewards 𝑟e𝑡 = ⊥ in different ways. Source code is

available at https://github.com/AmiiThinks/mon_mdp_aamas24.

4.1 The Environment and The Monitors

We study Mon-MDPs in the 3×3 gridworld shown in Figure 4,

where the agent has to reach the goal (𝑟e𝑡 = 1) using actions 𝑎e ∈
{LEFT, DOWN, RIGHT, UP} while avoiding penalties (𝑟e𝑡 = −10).
However, rewards are not always observable. We consider three

Mon-MDPs of increasing difficulty, that differ in the environment

reward and the monitor dynamics (more details in Appendix D.1).

5
This is a generalization of the definition of ergodic MDPs [32].

• Simple grid (Simple). Together with 𝑎e, the agent selects 𝑎m ∈
{MONITOR ME, NO-OP}. With 𝑎m𝑡 = MONITOR ME, the agent ob-
serves 𝑟e𝑡 = 𝑟e𝑡 and pays a cost (𝑟m𝑡 = −0.2). Otherwise it receives
𝑟e𝑡 = ⊥ at no cost (𝑟m𝑡 = 0). The optimal policy brings the agent

to the goal (𝑟e𝑡 = 1), never asking to be monitored.

• Grid with penalties (Penalty). Same monitor as Simple, but the

grid now has cells with negative environment reward (𝑟e𝑡 = −10).
The optimal policy brings the agent to the goal, avoiding penalty

cells and never asking to be monitored.

• Gridwith penalties and button (Button). There is no MONITOR
ME action. Instead, monitoring is determined by the monitor state

𝑠m ∈ {ON, OFF}. The agent can change 𝑠m by hitting the red button

in the rightmost state with 𝑎e𝑡 = DOWN. At the start of an episode,

the monitor state is set randomly. Every time step 𝑠m𝑡 = ON, the
agent pays a cost (𝑟m𝑡 = −0.2). The optimal policy brings the

agent to the goal, avoiding penalty cells and turning OFF the

monitor along the way if it was ON at the start of the episode.

In the Simple and Penalty Mon-MDPs, the agent can observe re-

wards with the explicit monitor action 𝑎m𝑡 = MONITOR ME. In the

Button Mon-MDP, instead, the agent must use a sequence of en-

vironment actions 𝑎e𝑡 to start (or stop) observing rewards. This,

and not being able to observe rewards for a period of time, has

important consequences as we show in the next section.

4.2 The Algorithms

We present algorithms based on Q-Learning [43]. Given samples

(𝑠𝑡 , 𝑎𝑡 , 𝑟𝑡 , 𝑠𝑡+1), Q-Learning updates are

𝑄 (𝑠𝑡 , 𝑎𝑡 ) ← (1 − α𝑡 )𝑄 (𝑠𝑡 , 𝑎𝑡 ) + α𝑡 (𝑟𝑡 + γ

greedy policy︷            ︸︸            ︷
max

𝑎
𝑄 (𝑠𝑡+1, 𝑎)), (3)

where α𝑡 is the learning rate, and we wrote𝑄 in place of𝑄𝜋
for the

sake of simplicity. In classic MDPs, Q-Learning is guaranteed to con-

verge to an optimal greedy policy using Y-greedy exploration with

an appropriate learning rate α𝑡 and exploration Y𝑡 schedules [9].

In Mon-MDPs, we observe 𝑟𝑡 B (𝑟e𝑡 , 𝑟m𝑡 ) — how do we update

𝑄 (𝑠𝑡 , 𝑎𝑡 ) when 𝑟e𝑡 = ⊥? We consider a set of Q-Learning variants

that differ in how they treat 𝑟e𝑡 = ⊥, and show that the resulting

policies can be very different (and often suboptimal). For each vari-

ant, we show the greedy policy learned after 10,000 steps in each of

our three Mon-MDPs. Figures show the action taken in every cell

— including monitoring actions. Figures outlined in red are subopti-

mal policies, while figures outlined in green are optimal. Over 100
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Move Move (Monitor is ON)Move (Ask to be Monitored)

(a) Simple ✗ (b) Penalty ✗ (c) Button ✗

Figure 5: If ⊥ = 0, the agent asks to be monitored only when

rewards are positive, “ignoring” negative rewards.

seeds, the algorithms always converged to these policies within

10,000 steps when γ = 0.99. For all details about the algorithms

variants, please see Appendix C.

4.2.1 Algorithm 1: Assign ⊥ = 0. Our first algorithm assumes

that unobservable rewards 𝑟e𝑡 = ⊥ have a constant value of 0. This

can be seen as treating the Mon-MDP as a sparse-reward MDP,

where most rewards are 0. Figure 5 shows that the policy ends

up ignoring negative rewards, asking to be monitored only when

positive rewards can be observed. In the Simple Mon-MDP, the

agent asks 𝑎m𝑡 = MONITOR ME as it moves to the goal (𝑟e𝑡 = 1).

In the Penalty Mon-MDP, the agent does not avoid penalty cells

(𝑟e𝑡 = −10), “pretending” that walking over them gives 𝑟e𝑡 = 0 by

not asking to be monitored. In the Button Mon-MDP, the agent

learns to press the button — again, without avoiding penalty cells

— and then goes to the goal. All of the learned policies across all

three Mon-MDPs are suboptimal. In Appendix D.3, we show that

this algorithm performs poorly for different values assigned to ⊥.

4.2.2 Algorithm 2: Ignore 𝒓e𝒕 = ⊥. Instead of assigning an arbi-

trary value to unobservable rewards, the algorithm does not update

the Q-function when 𝑟e𝑡 = ⊥. This could be considered a safe strat-

egy, as the agent disregards samples with incomplete information.

However, as shown in Figure 6, the resulting policy ends up al-

ways seeking monitoring. In the Simple and Penalty Mon-MDPs,

the agent executes 𝑎m𝑡 = MONITOR ME in every state. In the Button

Mon-MDP, when the monitor is ON the agent walks to the goal

without pressing the button. However, when the monitor is OFF,
the policy acts randomly. This happens because the Q-function

is never updated when the monitor is OFF, as receiving 𝑟e𝑡 = ⊥
precludes any update. As a result, its learned policy depends only

on the Q-function’s initialization. When all Q-values initialized to

the same value, the policy is random, as shown in Figure 6c.

(a) Simple ✗ (b) Penalty ✗ (c) Button ✗

Figure 6: Ignoring updates when 𝑟e𝑡 = ⊥, results in a policy

that can navigate only when monitored.

Move Move (Monitor is ON)Move (Ask to be Monitored)

(a) Simple ✓ (b) Penalty ✓ (c) Button ✗

Figure 7: With two Q-functions and joint policy, the agent

hits the wall in the top-left corner of the Button Mon-MDP.

4.2.3 Algorithm 3: Two Q-functions (Joint Greedy Policy).

Ignoring samples when 𝑟e𝑡 = ⊥ disregards useful information given

by 𝑟m𝑡 . To fix this, we decouple the value of states and actions

into two Q-functions: 𝑄e
trained using proxy rewards (only when

𝑟e𝑡 ≠ ⊥) and𝑄m
using monitor rewards. This way, even if 𝑟e𝑡 = ⊥we

can still update the latter. This begs the question: how should the

algorithm greedily select actions when there are two Q-functions?

The first strategy we propose (the Algorithm we are describing)

is to select them jointly with (𝑎e𝑡 , 𝑎m𝑡 ) = argmax𝑎e,𝑎m {𝑄e + 𝑄m}.
Intuitively, the agentwould try tomaximize the sum of both rewards

simultaneously. As shown in Figure 7, while able to learn an optimal

policy in the Simple and Penalty Mon-MDPs, this variant fails in

the Button Mon-MDP. Interestingly, the policy correctly avoids

penalty cells, turns OFF the monitor, and goes to the goal in all

states but in the top-left cell when the monitor is ON. This is due
to conflicting Q-values. 𝑄e

wants to go DOWN and follow the safe

path to the goal. On the contrary, 𝑄m
wants to go RIGHT, step over

the penalty cells (𝑄m
does not accumulate 𝑟e𝑡 = −10), and end the

episode (to stop receiving 𝑟m𝑡 = −0.2). The sum of the Q-values,

however, favors neither DOWN nor RIGHT, but UP and LEFT. After all,
the max operator of the greedy policy is not linear,

6
thus summing

the two Q-functions does not guarantee maximizing both (and,

indeed, a single action may not maximize both Q-functions).

4.2.4 Algorithm 4: Two Q-functions (Sequential Greedy Pol-

icy). To avoid conflicting Q-values, we modify the action selec-

tion so that the agent selects first 𝑎e𝑡 = argmax𝑎e 𝑄
e
and then

𝑎m𝑡 = argmax𝑎m 𝑄
m |𝑎e𝑡 . Thus, this agent prioritizes 𝑄

e
, as maxi-

mizing 𝑄m
is subject to the greedy environment action. The policy

in Figure 8 still fails in the Button Mon-MDP, as the agent does not

turn OFF the monitor on its way to the goal. This happens because

6
Given two functions 𝑓 (𝑥 ), 𝑔 (𝑥 ) ,max𝑥 (𝑓 (𝑥 ) +𝑔 (𝑥 ) ) ≠ max𝑥 𝑓 (𝑥 ) +max𝑥 𝑔 (𝑥 ) .

(a) Simple ✓ (b) Penalty ✓ (c) Button ✗

Figure 8: Using a sequential policy, instead, the agent does

not turn OFF monitoring in the Button Mon-MDP.
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Move Move (Monitor is ON)Move (Ask to be Monitored)

(a) Simple ✓ (b) Penalty ✓ (c) Button ✓

Figure 9: With a reward model, the agent learns the optimal

policy in all three Mon-MDPs.

there are no explicit monitor actions and the agent must use envi-

ronment actions to turn it OFF. Yet, going DOWN in the bottom-right

cell to press the button is not optimal for 𝑄e
. Since 𝑎e is selected

greedily using 𝑄e
, the agent goes to the goal ignoring the button.

4.2.5 Algorithm 5: Learn a Reward Model. The agent replaces

𝑟e𝑡 = ⊥ with the reward predicted by a model. In discrete Mon-

MDPs, the model is a table like the Q-function that stores the run-

ning mean of the environment rewards as it observes 𝑟e𝑡 = 𝑟e𝑡 (see

Section 4.3 for more details). This algorithm converges to an opti-

mal policy in all Mon-MDPs, as shown in Figure 9. Intuitively, the

reward model allows the agent to know the current reward 𝑟e𝑡 even

without observing it. We note, however, that this algorithm works

because all three Mon-MDPs satisfy the conditions of Proposition 1.

In Section 4.3, we formally prove the convergence to an optimal

policy of Algorithm 5 according to Proposition 1.

4.2.6 Remarks. We emphasize that Algorithms 3, 4, and 5 (Joint,

Sequential, Reward Model) solve the Penalty Mon-MDP because

they can reason about the environment independently from the

monitor. As discussed in Section 2.2, because the monitor and the

environment are decoupled, the agent learns that the monitor does

not change the environment reward, and that walking on penalty

cells is undesirable even if not monitored. If the agent walks on

penalty cells while monitored (a similar action to spilling water

with the owner at home) and observes a negative reward, it will

learn that the reward would still be negative even when the monitor

(the owner) is not providing it. Joint and Sequential decouple envi-

ronment and monitor with two Q-functions, Reward Model with

a reward model that depends only on the environment. However,

Joint and Sequential fail in the Button Mon-MDP. In Appendix C,

we discuss about stricter conditions of convergence for Sequential,

and about the lack of guarantees of convergence for Joint.

4.3 Proof of Proposition 1

We return now to prove Proposition 1 from Section 3.2, and use

Q-Learning with a reward model as the candidate algorithm that

can solve all finite Mon-MDPs satisfying Properties 1, 2, and 3.

Proof 1. Consider Q-Learning on a finite Mon-MDP that replaces

the observed reward 𝑟e𝑡 with the running average of observed proxy

reward stored in a table 𝑅(𝑠e, 𝑎e), i.e.,

𝑄 (𝑠𝑡 , 𝑎𝑡 ) BE[
∑∞
𝑖=𝑡 γ

𝑖−𝑡 (𝑅(𝑠e
𝑖
, 𝑎e

𝑖
) + 𝑟m

𝑖

)
| 𝜋,P, 𝑠𝑡 , 𝑎𝑡 ]

𝑁𝑘+1 (𝑠e𝑡 , 𝑎e𝑡 ) ←𝑁𝑘 (𝑠e𝑡 , 𝑎e𝑡 ) + 1 if 𝑟e𝑡 ≠ ⊥

𝑅𝑘+1 (𝑠e𝑡 , 𝑎e𝑡 ) ←
(
𝑁𝑘+1 (𝑠e𝑡 , 𝑎e𝑡 ) − 1

)
𝑅𝑘 (𝑠e𝑡 , 𝑎e𝑡 ) + 𝑟e𝑡

𝑁𝑘+1 (𝑠e𝑡 , 𝑎e𝑡 )
if 𝑟e𝑡 ≠ ⊥

𝑄𝑘+1 (𝑠𝑡 , 𝑎𝑡 ) ←(1 − α𝑡 )𝑄𝑘 (𝑠𝑡 , 𝑎𝑡 ) +
α𝑡

(
𝑅𝑘+1 (𝑠e𝑡 , 𝑎e𝑡 ) + 𝑟m𝑡 + γmax

𝑎
𝑄𝑘+1 (𝑠𝑡+1, 𝑎)

)
(4)

where 𝑘 denotes the 𝑘-th update, and 𝑁 (𝑠e𝑡 , 𝑎e𝑡 ) is a count that in-

creases every time the agent observes a reward, i.e., if 𝑟e𝑡 ≠ ⊥. Then,
this algorithm converges to an optimal policy in Eq. (1) if (a) the

policy is greedy in the limit with infinite exploration (GLIE), and (b)

the learning rate α𝑡 satisfies the Robbins-Monro conditions [34].

(I) Under a GLIE policy, the agent will visit every state infinitely

often (Property 1), will observe a reward for every state (Prop-

erty 2), and the observed reward will be the environment reward

(Property 3). Therefore, the agent will observe the environment

reward for every environment state-action pair infinitely often.

(II) Under (I) and by the central limit theorem,

lim𝑘→∞ 𝑅𝑘 (𝑠e, 𝑎e) = E
[
𝑟e | 𝜋,Pe

]
(III) Given (II) and because of linearity of expectation, maximizing

the Q-function learned using rewards from 𝑅(𝑠e, 𝑎e) approaches
the original optimization problem of Eq. (2), i.e.,

𝑄𝑘 (𝑠𝑡 , 𝑎𝑡 ) B E[∑∞𝑖=𝑡 γ𝑖−𝑡 (𝑅𝑘 (𝑠e𝑖 , 𝑎e𝑖 ) + 𝑟m𝑖 ) | 𝜋,P, 𝑠𝑡 , 𝑎𝑡 ]
=

𝑘→∞
E[∑∞𝑖=𝑡 γ𝑖−𝑡 ( E [𝑟e𝑖 | 𝜋,Pe

]
+ 𝑟m

𝑖

)
| 𝜋,P, 𝑠𝑡 , 𝑎𝑡 ]

= E[∑∞𝑖=𝑡 γ𝑖−𝑡 (𝑟e𝑡 + 𝑟m𝑖 ) | 𝜋,P, 𝑠𝑡 , 𝑎𝑡 ]
C 𝑄 (𝑠𝑡 , 𝑎𝑡 )

(IV) Given (III), Eq. (3) and (4) are equivalent in the limit. Under a

GLIE policy and if the learning rate α𝑡 satisfies the Robbins-

Monro conditions, Eq. (3) converges to the Q-function of an opti-

mal greedy policy [7, 9, 24].
7

4.4 Empirical Rate of Convergence

One assumption needed in Proof 1 is that Q-Learning uses a GLIE

policy. This, together with Mon-MDP ergodicity (Property 1) guar-

antees that the agent will visit every state-action pair and observe

every reward. But how hard is exploration in Mon-MDPs? The

agent will not observe the environment reward all the time, and

cannot learn an optimal policy until it has seen them all sufficiently

often. How does this affect the rate of convergence to an optimal

policy? Intuitively, if some rewards are unobservable learning will

be slower, more so if the environment reward function is noisy.

In this section, we empirically investigate the rate of convergence

of “Q-Learning with Reward Model” presented in Section 4.2.5

against an “Oracle” Q-Learning. The Oracle executes monitor ac-

tions and receives monitor rewards, but always observes 𝑟e𝑡 = 𝑟e𝑡 .

For each Mon-MDP, we consider also a version where the envi-

ronment reward has Gaussian noise with standard deviation 0.05.

For all details about the experiments, more plots and table, and an

additional evaluation on harder Mon-MDPs, refer to Appendix D.2.

Figure 10 shows that the Oracle always converges faster to an

optimal policy, up to ×2 faster with noisy rewards. While 𝑅 com-

pensates for the unobservability of rewards, the agent still needs to

7
A greedy optimal policy always exists for MDPs with finite states and actions, sta-

tionary reward and transition functions, bounded rewards, and γ ∈ [0, 1) [32].
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(a) Simple (b) Penalty (c) Button (d) Simple (Noisy) (e) Penalty (Noisy) (f) Button (Noisy)

Figure 10: Episode return

∑𝑇
𝑡=1 γ

𝑡−1 (𝑟e𝑡 + 𝑟m𝑡 ) of greedy policies averaged over 100 seeds (shades denote 95% confidence interval).

observe the rewards sufficiently often — especially if they are noisy

— for the model to be accurate. In Appendix D.2, we show results on

Mon-MDPs with larger monitor spaces and richer dynamics, where

the gap between the Oracle and Reward Model is even larger.

5 FUTUREWORK

Throughout the paper, we discussed how Mon-MDPs relate to prior

work, and our empirical study has highlighted important challenges

that would benefit from existing RL techniques. Below, we describe

some of the most interesting directions of future research that this

work opens up, and connect them to existing areas of research such

as meta RL, model-based RL, cautious RL, and intrinsic motivation.

Convergence, Bounds, and Connection to Partial Moni-

toring. Mon-MDPs are a new framework and therefore open to

further theoretical analysis. First and foremost, we have presented

a set of sufficient conditions for convergence, but these may not be

necessary. For instance, the monitor may not need to be truthful, as

suggested by prior work on reward shaping [28]. Relaxing these

conditions will likely pose an additional challenge that could be

addressed by having a belief over the reward [22]. Furthermore,

it would be interesting to investigate the convergence bounds of

monitored algorithms. For example, similar research proved regret

bounds for many partial monitoring bandits [2, 3, 18].

Generalization, Train-And-Deploy, and Meta RL. In this

work, we considered finite Mon-MDPs and assumed properties

on the Mon-MDP that may not hold in real-world problems, e.g.,

monitor ergodicity and truthfulness. Can the agent learn an optimal

policy even when these properties are not satisfied?

Consider the agent in Figure 1, but this time it can never be mon-

itored while watering plants and — if it spills water it will never

receive a negative feedback. However, the agent can be monitored

when cleaning dishes. Can it learn that spilling water is undesirable

by receiving negative feedback for spilling water while cleaning

dishes? This requires 1) reasoning over the monitor and the envi-

ronment independently — spilling water is undesirable regardless

of the monitor state — and 2) generalization across environment

states and actions — spilling water in the kitchen and spilling water

is equally undesirable. In Section 2.2, we argued that the Mon-MDP

framework already allows the former reasoning. For the latter, we

need to incorporate generalization and go beyond finite Mon-MDPs.

More generally, Mon-MDPs can be further extended to consider

situations where the agent must act in unmonitored environments

— where rewards are never observable — after being trained in a

monitored environment. This is closely related to train-and-deploy

and meta RL settings [23, 42], and requires the ability to general-

ize knowledge about rewards across states — possibly of different

environments — to compensate for their unobservability.

Unsolvable Mon-MDPs. What if the agent cannot learn an

optimal policy because some rewards are never observable? While

it may be impossible to act optimally with respect to environment

rewards, the agent should still act “optimally” according to what it

can observe. In this regard, it is interesting to consider algorithms

that can tackle unsolvable Mon-MDPs, i.e., can learn “useful” policies

in Mon-MDPs where it is impossible to learn an optimal policy due

to unobservability of the rewards. In Appendix B, we formally

discuss the notion of solvability from a theoretical point of view

and set the stage for future directions of research. For example,

the best way to act in situations of uncertainty is still a matter of

dispute in RL and relates to cautious and risk-averse RL [26, 47].

Exploration. In Section 4.4, we showed that unobservable re-

wardsmake exploration significantly harder. Clearly, naive Y-greedy

exploration does not exploit the complexity of Mon-MDPs, and we

believe there are exciting potential improvements. In particular,

as discussed in Section 2.2, explicitly reasoning on monitor and

environment separately facilitates better exploration and more

advanced behaviors. For example, the agent could use intrinsic

motivation [27, 29] to prefer environment states for which it has

not observed the reward yet. At the same time, it could try new

actions in states where it knows it will be monitored.

6 CONCLUSION

MDPs offer a framework to tackle decision-making problems, but

the assumption of reward observability is not descriptive of all

real-world problems. To account for situations where the agent

cannot observe the rewards generated by the environment to judge

its actions, we presented Monitored MDPs. We discussed the theo-

retical and practical consequences of unobservable rewards, and

presented toy environments and algorithms to illustrate subsequent

challenges. While prior work on active RL and partial monitoring

has addressed partially observable rewards, this is — to the best

of our knowledge — the first work that presents a generic formal-

ism allowing for sequential decision-making without requiring the

monitor to have explicit binary monitoring actions.

In the same way that RL built its foundation starting from theo-

retical analyses on discrete MDPs and the empirical investigations of

chainworlds and gridworlds, with this work we aim to set the stage for

future research ranging from theoretical analysis of stronger guaran-

tees of convergence, development of better algorithms, and practical

applications of Mon-MDPs to real-world problems.
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