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ABSTRACT

Existing approaches to fairness in stochastic multi-armed bandits
(MAB) primarily focus on exposure guarantee to individual arms.
When arms are naturally grouped by certain attribute(s), we propose
Bi-Level Fairness, which considers two levels of fairness. At
the first level, Bi-Level Fairness guarantees a certain minimum
exposure to each group. To address the unbalanced allocation of
pulls to individual arms within a group, we consider meritocratic
fairness at the second level, which ensures that each arm is pulled
according to its merit within the group. Our work shows that we can
adapt a UCB-based algorithm to achieve a Bi-Level Fairness by
providing (i) anytime Group Exposure Fairness guarantees and
(ii) ensuring individual-level Meritocratic Fairnesswithin each
group. We first show that one can decompose regret bounds into
two components: (a) regret due to anytime group exposure fairness
and (b) regret due to meritocratic fairness within each group. Our
proposed algorithm BF-UCB balances these two regrets optimally to
achieve the upper bound of 𝑂 (

√
𝑇 ) on regret; 𝑇 being the stopping

time. With the help of simulated experiments, we further show
that BF-UCB achieves sub-linear regret; provides better group and
individual exposure guarantees compared to existing algorithms;
and does not result in a significant drop in reward with respect to
UCB algorithm, which does not impose any fairness constraint.
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1 INTRODUCTION

The conventional stochastic multi-armed bandit (MAB) problem
considers the problem of a learner (or bandit) having a collection of
arms, where each arm is associated with an unknown probability
distribution governing the rewards. The objective is to devise an
arm-selection strategy that optimizes the cumulative expected re-
ward over a series of arm selections. Stochastic MABs find its use in
a wide range of applications like sponsored search auctions [28, 37],
crowdsourcing [7, 21, 23–25, 39], resource allocation [8, 9, 12, 22, 42],
question and answer (Q&A) forums [15] and many more.

This paper considers the problem of fair selection of arms in the
stochastic multi-armed bandit problem. The fairness in stochastic
MAB becomes important in applications where resources or op-
portunities are allocated over time among heterogeneous agents.
In this context, each agent represents an arm, and pulling the arm
corresponds to assigning a resource/opportunity to the selected
agent. An optimal policy, in this case, would end up providing the
tasks to the most rewarding agents, leaving other arms with signifi-
cantly less access to resources/opportunities. Therefore, it is crucial
to devise a policy that ensures sufficient exposure to each agent.

Current approaches towards fairness in stochastic MAB provide
individual fairness guarantees to each arm by either offering mini-

mum exposure to each arm [33] or assuringmeritocratic fairness, i.e.,
ensuring that each arm is pulled in accordance with its merit (func-
tion of reward it generates) [40]. In many real-world applications,
the number of arms is prohibitively large to guarantee exposure
fairness at the level of individual arms. In such settings, the arms
aka individual agents could be grouped based on certain attributes
(e.g., gender, ethnicity, etc.) which makes aggregate group-level fair-
ness a more natural notion [13]. However, just ensuring group-level
exposure fairness may lead to selecting only the best arm within
each group. In summary, there is a need for an apt fairness notion.

This paper introduces Bi-Level Fairness (BF) in the Multi-
Armed Bandit (MAB) problem. The first level of fairness guarantees
minimum exposure to each group of arms.We call this notion Group
Exposure Fairness, which stipulates that, at the end of each round
of decision-making, an arm from each group must be selected or
“pulled” for a minimum pre-defined fraction of times. Group fair-
ness is particularly relevant in settings such as crowdsourcing, job
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screening, and college admissions, where each protected group is de-
sired to be equitably represented [1]. For instance, in a crowdsourc-
ing setting where tasks need to be assigned to workers available
on the platforms, the workers are naturally grouped into different
groups, possibly based on gender or ethnicity. A crowdsourcing
platform may be considered discriminatory if marginalized groups
receive a much lesser number of tasks as opposed to the other
groups. The group fairness notion, ensuring each group receives a
minimum fraction of tasks, helps to mitigate this disparity.

A group fair policy, though fair at the group level, may still allo-
cate resources/opportunities to within group individuals/arms in a
skewed manner. That is, even within a group, it may disproportion-
ately favor one arm and hence may not give enough opportunity
to the arms within the group. In this paper, we consider the no-
tion of Meritocratic Fairness first proposed by Wang et al.
[40] to address the problem of within-group allocation guarantee
to individual arms. Meritocratic fairness ensures that each arm
within each group is pulled in proportion to its merit. For exam-
ple, in the credit scoring problem[4], a financial institute aims to
determine the creditworthiness of potential borrowers. Here, each
borrower acts as an arm and can be categorized into various groups
based on a sensitive attribute (gender/marital-status/age). Each bor-
rower’s returns follow a probability distribution, which needs to
be learned over time. A financial institute would like to diversify
its lending amount across the different groups of borrowers, i.e.,
Group Exposure Fairness, while simultaneously ensuring that
the amount is distributed in proportion to their financial capability,
i.e., Meritocratic Fairness within the group.

One way to achieve anytime Group Exposure Fairness guar-
antees while ensuring Meritocratic Fairness is to combine the
algorithms in [33] and [40]. Both the above works proposed upper
confidence bound (UCB) based algorithms. The algorithm presented
in [33] considers the minimum exposure guarantees to individual
arms. One can extend this algorithm to ensure minimum exposure
guarantees by applying the constraints to each group instead of
each arm. The algorithm enforcing the minimum exposure con-
straint on each group will output a group to be pulled at each time.
Once a group is selected, one can apply the algorithm presented
in [40] to ensure meritocratic fairness within each group. Our pro-
posed algorithm, Bi-Level Fair UCB, or BF-UCB in short, is primarily
motivated by the above approach. The main novelty of our work
lies in providing the regret guarantees for BF-UCB.

The regret of any online algorithm is defined as the difference
in the reward obtained with the optimal algorithm and that with
the online algorithm. The existing techniques from [33, 40] cannot
be used to provide regret guarantees as the regret term becomes
convoluted in terms of two fairness guarantees.We show that regret
can be split into two terms, namely, regret due to the extra number
of times a sub-optimal group is pulled and regret due to the learned
fair policy within a group. Even after decomposing regret into two
terms, there are two further challenges that need to be addressed
to obtain the regret guarantee. First, the optimal policy in [33] is
defined with respect to the best individual arm; however, here, we
have optimality with respect to the best group aka collection of
arms. Therefore, existing regret proof techniques in [33] that use
UCB regret [3] techniques will not work here. Since we are tackling
group-level fairness, our regret requires bounding the number of

pulls of the sub-optimal group as opposed to a single arm. Thus,
our setting requires extending the regret in [33] to combinatorial
bandits setting [10]. Second, the algorithm in [40] assumes that the
time horizon 𝑇 is known. However, since we provide meritocratic
fairness within a group, this constraint of known time horizon
would mean that the algorithm would know the number of times
each group is pulled before the algorithm begins. This is not possible
because the number of times a group will be pulled would depend
on how learning progresses and what group fairness constraints
were fed to the algorithm. We overcome these challenges and prove
that the proposed algorithm BF-UCB provides sub-linear regret
guarantees 𝑂 (

√
𝑇 ), 𝑇 being the arbitrary stopping time.

In addition to theoretical analysis, the paper includes an empiri-
cal assessment of BF-UCB against conventional bandit algorithms
and their fair variants. As baseline approaches, we consider the
UCB algorithm without any fairness constraint, a group exposure
fair algorithm by extending the algorithm in [33] to groups, and
the meritocratic fair algorithm in [40]. In particular, we show that
BF-UCB achieves sub-linear regret, and that a simple extension
of [33] to group fairness may lead to biases within a group, while
simple meritocratic fairness [40] does not provide enough exposure
to the groups. Our contributions can be summarized as follows.

Contributions.

(1) We, for the first time, introduce the notion of Group Exposure
Fairness in stochastic MABs.

(2) We provide Bi-Level Fairness notion in multi-armed ban-
dits, which ensures not only group fairness but also merito-
cratic fairness within a group.

(3) Inspired from UCB-based algorithms in [33] and [40], we
meld them perspicaciously to build BF-UCB. BF-UCB ensures
Bi-Level Fairness, i.e., it satisfies anytime group fairness
constraint and learns meritocratic fair policy within groups.

(4) We show that regret in our setting can be decomposed into
two parts, allowing BF-UCB to achieve a regret of 𝑂 (

√
𝑇 ),

where 𝑇 is the total number of rounds.
(5) We finally validate our results via extensive experiments.

2 RELATEDWORK

In the realm of multi-armed bandits (MAB), fairness has emerged
as a significant concern. Joseph et al. [27] introduced the concept
of meritocratic fairness, ensuring that arms with higher rewards
have a higher probability of being selected. Liu et al. [32] empha-
sized calibrated fairness, where arms are selected in proportion
to their probability of being the best candidate, rather than based
solely on average quality. Gillen et al. [16] explored individual fair-
ness, advocating for similar arms to be treated similarly in terms
of selection probabilities. Patil et al. [33] considered external con-
straints, designing algorithms that minimize regret while ensuring
each arm is pulled a minimum fraction of rounds. Wang et al. [40]
proposed Fair UCB and Fair Thompson Sampling algorithms, defin-
ing fairness regret based on the minimum merit of arms and the
bounded Lipschitz constant of the merit function. All the above
works ensure arm-level fairness, i.e., some exposure guarantees to
each arm. So far, no works have tackled the issue of group fairness
in a multi-armed bandit setting.
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There have been some works in the setting known as group
bandits, which categorize the arms into several groups. For exam-
ple, Jedor et al. [26] considered partial ordering over the groups
and analyzed dominance among categories. Wang and Scarlett [41]
introduced the idea of identifying groups with the highest mean
reward for the worst arm. Gabillon et al. [14] focused on the qual-
ity identification of arms within each bandit under a fixed budget
constraint. Scarlett et al. [35] tackled best-arm identification in over-
lapping groups. While all the papers above focus only on pulling the
optimal group in some sense, Schumann et al. [36] addressed the
potential biases in arm selection. In this context, fairness extends
beyond the individual arm to group dynamics. This paper consid-
ers the case where pulling an arm from a particular group may
inherently possess biases. It assumes that, in general, the rewards
of the groups are equal and tries to mitigate the bias by learning the
biases in each group. The paper does not consider any constraints
required to pull from each group. Further, in real-world, the assump-
tion of rewards coming from the same distribution for two groups
may not hold. In addition to these works, contextual multi-armed
bandits and clustering in multi-armed bandits have been widely
explored with fairness considerations by Chen et al. [11], Grazzi
et al. [17]. Closer to our work is [17], where authors propose to
provide exposure fairness according to the relative ordering of the
arm, which is dependent on the group it belongs to. However, the
paper does not consider any group fair exposure constraints.

When it comes to multi-agent, multi-armed bandit settings,
agent-side fairness is emerging as an alternative perspective, where
the goal is not merely to identify the best arm but to distribute the
arms fairly among multiple agents [31]. Concepts such as Nash
welfare solutions [5, 20] have been developed to ensure fairness
amongst agents. Our setting works in a single-agent, multi-armed
bandit setting, and hence, we primarily focus on arm-side fairness.

3 MODEL AND PRELIMINARIES

A traditional stochastic multi-armed bandit (MAB) problem has a
set of 𝑛 arms denoted as A, where each arm 𝑖 , when pulled, yields
a reward following an unknown distribution with a mean reward
of 𝜇𝑖 . Initially, these mean rewards are concealed from the designer,
and the primary objective is to learn these reward values within a
specified time horizon denoted by 𝑇 . In standard MAB algorithms,
the central aim is to identify the optimal arm that generates the
highest mean reward. In our setting, the set of armsA is partitioned
into 𝑚 groups, with 𝑚 << 𝑛. We denote the set of groups by 𝐺 .
The policy employed by the algorithm is denoted by 𝜋 = {𝜋𝑡 }𝑇

𝑡=1,
where 𝜋𝑡 (𝑖) denotes the probability of pulling an arm 𝑖 at time 𝑡 by
the algorithm. Let 𝐼𝑡 ∈ 𝑔𝑡 be the arm that the learner pulls at round
𝑡 where 𝑔𝑡 ∈ 𝐺 be the group pulled at round 𝑡 . Let us denote the
number of pulls for each arm 𝑖 till time 𝑡 as 𝑁𝑖,𝑡 and for the group
𝑔 ∈ 𝐺 as 𝑁𝑔,𝑡 =

∑
𝑖∈𝑔 𝑁𝑖,𝑡 .

3.1 Group Exposure Fairness
Minimum pull guarantee for each arm was first introduced by Li
et al. [30] with asymptotic guarantees, which was later extended
to anytime fairness guarantee by Patil et al. [33]. In this work, the
individual fairness constraints are exogenously specified by a pre-
defined vector 𝛼 = (𝛼1, 𝛼2, . . . , 𝛼𝑛) such that

∑
𝑖∈[𝑛] 𝛼𝑖 < 1, with

𝛼𝑖 denoting the minimum fraction of times arm 𝑖 needs to be pulled
by the algorithm. This leads to the following definition:

Definition 1 (Patil et al. [33]). Given a fairness constraint vector

𝛼 = (𝛼𝑖 )𝑖∈[𝑛] , we call a strategy 𝜋 fair if E𝜋 [𝑁𝑖,𝑡 ] ≥ ⌊𝛼𝑖𝑡⌋ ∀𝑖 ∈
[𝑛] ∀𝑡 ≥ 1.

We next extend the notion of fairness in Definition 1 to the group
setting in the below definition.

Definition 2 (𝛽−Group Exposure Fairness). Let a given fairness

constraint vector be 𝛽 = (𝛽𝑔)𝑔∈[𝑚] such that 𝛽𝑔 ∈ (0, 1
𝑚 ] for all

𝑔 ∈ 𝐺 and

∑
𝑔∈[𝑚] 𝛽𝑔 < 1. A policy 𝜋 is said to satisfy 𝛽-Group

Exposure Fairness (𝛽-GEF) if E𝜋 [𝑁𝑔,𝑡 ] ≥ ⌊𝛽𝑔𝑡⌋ ∀𝑔 ∈ 𝐺 ∀𝑡 ≥ 1.

As standard in the literature, we also assume, 𝛽𝑔 ≤ 1/𝑚 ∀𝑔. Note
that, this extension to group-level fairness is inspired by a large body
of work in the literature [1, 13, 18] that focuses on equitable fairness
across groups of individuals. This aggregate guarantee is motivated
by social justice and legal norms that require several protected
groups to have sufficient access or exposure to opportunities and
resources. Satisfying only group fairness may still lead to individual-
level biases within a group, for example, by always pulling a single
arm whenever a group is selected. To address this, we need to
introduce equity fairness within the groups. To this, we now explain
Meritocratic Fairness within groups.

3.2 Meritocratic Fairness within Groups

While GEF ensures that each group of arms gets enough exposure,
fair algorithms may still lead to a skewed distribution of opportuni-
ties within groups in favor of high-performing arms. We address
this problem by imposing an additional constraint of Meritocratic
Fairness (MF) within each group. MF ensures that each arm is pulled
proportionately to its merit, defined by a merit function, and de-
pends on the mean rewards. To define this fairness, we assume that
there is a global merit function 𝑓 that maps true means to the merit
values. This merit function is considered to be the same for all the
arms and is provided as an input to the algorithm. Before we define
MF, we first state the following assumption of Lipschitz continuity
of 𝑓 [40].
Assumption 1.We assume that the merit function 𝑓 is Lipschitz
continuous, i.e., |𝑓 (𝜇𝑎) − 𝑓 (𝜇′𝑎) ≤ 𝐿 |𝜇𝑎 − 𝜇′𝑎 | ∀𝜇𝑎, 𝜇′𝑎 .
Assumption 2 (Minimum merit assumption). There exists 0 <

𝛾1 < 𝛾2 < ∞ such that 0 < 𝛾1 ≤ 𝑓 (𝜇) ≤ 𝛾2 for all feasible expected
rewards 𝜇.

We can then define the Meritocratic Fairness within the
group as follows.

Definition 3 (Meritocratic Fairness). A policy 𝜋𝑡𝑔 (𝑖) is said to

satisfy Meritocratic Fairness iff

𝜋𝑡
𝑔 (𝑖 )

𝜋𝑡
𝑔 ( 𝑗 )

=
𝑓 (𝜇𝑖 )
𝑓 (𝜇 𝑗 ) ∀𝑖, 𝑗 ∈ 𝑔. Here,

𝜋𝑡𝑔 (𝑖) represents the probability of pulling an arm 𝑖 conditioned on

the event that group 𝑔 is selected.

The above definition is an extension of the definition in [40] to the
individual groups. Let 𝜋∗𝑔 represent a fair optimal policy, then it can

be shown [40] that 𝜋∗𝑔 (𝑖) =
𝑓 (𝜇𝑖 )∑

𝑗 ∈𝑔 𝑓 (𝜇 𝑗 ) . Hence, if the 𝜇’s are known,
the algorithm will follow 𝜋∗𝑔 for all rounds 𝑡 ∈ {1, . . . ,𝑇 }. However,
since the 𝜇’s are not known, the goal is to learn a policy 𝜋𝑡𝑔 which
eventually converges to 𝜋∗𝑔 over a period of time.
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3.3 Bi-Level Fairness
We now introduce Bi-Level Fairness, which guarantees the fair-
ness of exposure to arms as groups, and within a group, meritocratic
fairness.

Definition 4 (𝛽−Bi-Level Fairness). Given a fairness constraint

vector 𝛽 = (𝛽𝑔)𝑔∈[𝑚] , we say that a policy 𝜋 is said to satisfy

𝛽−Bi-Level Fairness iff

(1) 𝜋 satisfies 𝛽−Group Exposure Fairness, i.e., E𝜋 [𝑁𝑔,𝑡 ] ≥
⌊𝛽𝑔𝑡⌋ ∀𝑔 ∈ 𝐺,∀𝑡 ≥ 1, and

(2) 𝜋𝑡𝑔 converges to 𝜋∗𝑔 for each group 𝑔, i.e.,

lim𝑁𝑔,𝑇→∞
1

𝑁𝑔,𝑇

∑
𝑡 :𝑔𝑡=𝑔

∑
𝑖∈𝑔 |𝜋𝑡𝑔 (𝑖) − 𝜋∗𝑔 (𝑖) | = 0 ∀𝑔 ∈ 𝐺 .

Bi-Level Fairness notion essentially ensures 𝛽−Group Exposure
Fairness at group level and ensures that the group level policy
converges to fair optimal group level policy. Let us now see how
an optimal policy with the knowledge of 𝜇’s, maximizing the total
reward while satisfying 𝛽−Bi-Level Fairness, looks like. Since
the probability of choosing an arm 𝑖 within a group 𝑔 is given by
𝜋∗𝑔 (𝑖), the optimal group 𝑔∗ will be the one with the maximum

expected reward, i.e., 𝑔∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑔∈𝐺
{∑

𝑖∈𝑔
𝑓 (𝜇𝑖 )∑

𝑗 ∈𝑔 𝑓 (𝜇 𝑗 ) 𝜇𝑖
}
. We

begin by observing that in any optimal fair policy, a sub-optimal
group gets precisely ⌊𝛽𝑔𝑇 ⌋ pulls, whereas the optimal group is
pulled the remaining number of times; this leads to the following
simple proposition.

Observation 1. A policy 𝜋∗ satisfying 𝛽-Bi-Level Fairness is

said to be optimal iff it satisfies the following conditions at all time

instances 𝑡 :

(1) For all 𝑔 ≠ 𝑔∗ such that 𝛽𝑔 = 0, we have 𝑁𝑔,𝑡 = 0. That is,
𝑁𝑖,𝑡 = 0 for all 𝑖 ∈ 𝑔.

(2) For all 𝑔 ≠ 𝑔∗ such that 𝛽𝑔 > 0, we have 𝑁𝑔,𝑡 = ⌊𝛽𝑔𝑡⌋ and
𝜋∗𝑔 (𝑖) =

𝑓 (𝜇𝑖 )∑
𝑗 ∈𝑔 𝑓 (𝜇 𝑗 ) .

(3) 𝑁𝑔∗,𝑡 = 𝑡 −
∑
𝑔≠𝑔∗ ⌊𝛽𝑔𝑡⌋ and 𝜋∗𝑔∗ (𝑖) =

𝑓 (𝜇𝑖 )∑
𝑗 ∈𝑔∗ 𝑓 (𝜇 𝑗 )

.

The performance of any online policy is measured by its regret
– the difference in the reward obtained by the optimal policy and
that by the online policy. In order to find the regret, let us first find
the reward by the optimal policy 𝜋∗ which is given as:

𝑅∗
𝛽
(𝑇 ) =

∑︁
𝑔∈𝐺

⌊𝛽𝑔𝑇 ⌋ ©­«
∑︁
𝑖∈𝑔

𝑓 (𝜇𝑖 )∑
𝑗∈𝑔 𝑓 (𝜇 𝑗 )

𝜇𝑖
ª®¬

+ ©­«𝑇 −
∑︁
𝑔∈𝐺

⌊𝛽𝑔𝑇 ⌋
ª®¬ ©­«

∑︁
𝑖∈𝑔∗

𝑓 (𝜇𝑖 )∑
𝑗∈𝑔∗ 𝑓 (𝜇 𝑗 )

𝜇𝑖
ª®¬

(1)

We will assume that 𝑔∗ is unique for ease of explanation. However,
this is not a necessary assumption for the regret guarantees to hold.
We now define regret for a policy satisfying Bi-Level Fairness.

Definition 5. Given a fairness constraint 𝛽𝑔, for all 𝑔 ∈ 𝐺 , the
regret of a policy 𝜋 satisfying Bi-Level Fairness is defined as:

ℜ
𝛽
𝜋 (𝑇 ) = 𝑅∗𝛽 (𝑇 ) −

∑︁
𝑔∈𝐺

∑︁
𝑖∈𝑔
E𝜋 [𝑁𝑖,𝑇 ]𝜇𝑖 (2)

In Section 5, we will show that the regret can be decomposed into
two parts: (i) regret due to extra pull of a non-optimal group and

(ii) regret due to suboptimal learning of policy within each group.
We now propose BF-UCB in the next section, an upper confidence
bound (UCB) based algorithm, satisfying Bi-Level Fairness.

4 BF-UCB: PROPOSED ALGORITHM

In this section, we propose our algorithm that ensures group ex-
posure fairness (GEF) guarantees while maintaining meritocratic
fairness (MF) within a group. The detailed algorithm is presented
in Algorithm 1. As a standard practice in any MAB algorithm, our
algorithm starts by pulling each arm once to get some estimates
of 𝜇𝑖 ’s ∀𝑖 ∈ 𝑁 . Note that a simple round-robin arm-pulling strat-
egy breaks GEF if some of the groups have a lot more arms than
other groups. In order to prevent this, we use the fact that each
𝛽𝑔 ≤ 1/𝑚, and therefore, we select the groups in round-robin fash-
ion until each arm in each group is pulled at least once. This is
depicted in line numbers 3 to 13 of Algorithm 1. If, for a group, all
the arms are completely exhausted, we start pulling the arms based
on maintaining exposure fairness (line number 10 of Algorithm 1).

Once all the arms are pulled at least once, the algorithm (i) first
selects a group from which arm is to be pulled (Group Selection
Strategy) and then (ii) chooses the arm to pull within the group
(Arm within Group Selection Strategy).

Group Selection Strategy

Motivated from [33], we propose an algorithm that provides any-
time GEF guarantees. As described above, Initialization Phase does
not violate GEF. For the remaining rounds, we use a similar ap-
proach as used by Patil et al. [33], but on the groups instead of arms.
At each time 𝑡 , the algorithm maintains a set 𝑈𝐹𝐺_𝑆𝑒𝑡 (𝑡), which
denotes the set of groups that are on the verge of violating GEF (Line
16). If at all there exists a group in𝑈𝐹𝐺_𝑆𝑒𝑡 (𝑡), Algorithm 1 selects
a group 𝑔 ∈ 𝑎𝑟𝑔𝑚𝑎𝑥 𝛽𝑔 (𝑡 − 1) − 𝑁𝑔,𝑡−1 to ensure group fairness in
the next round. If 𝑈𝐹𝐺_𝑆𝑒𝑡 (𝑡) is empty, the idea is to select the
group with the maximum expected reward. Since the maximum
expected reward is unknown beforehand, the function 𝐿𝑒𝑎𝑟𝑛(·)
returns the group which helps in learning these estimates better.
One could use the 𝐿𝑒𝑎𝑟𝑛(·) function based on Upper Confidence
Bound (UCB) based algorithm [2, 29] or Thompson sampling-based
algorithms [38]. For completeness, we have given a UCB-based
algorithm in Subroutine 3. Theorem 2 in Section 5 shall show that
the algorithm satisfies Group Exposure Fairness.

Arm within Group Selection Strategy

Once the group is chosen, the algorithm’s arm selection strategy
basically selects the arm based on Group Exposure Fairness. Our
Exposure subroutine, given in Subroutine 2, looks similar to the
algorithm provided by Wang et al. [40] with one key distinction.
The algorithm in [40] assumes that 𝑇 is known to the algorithm.
Since we aim to ensure exposure fairness within each group, each
group 𝑔 is not chosen𝑇 number of times but is chosen 𝑁𝑔,𝑇 number
of rounds, which is a random variable. Therefore, wemust design an
algorithm without information about how often a group is selected.
To tackle this challenge, we replace parameter𝑤0 with the value√︁
2 ln(4𝑁𝑔,𝑡𝑘𝑔/𝛿) instead of

√︁
2 ln(4𝑇𝐾/𝛿) in [40]. Here, 𝑘𝑔 = |𝑔|

denotes the number of arms in group 𝑔. In the next section, we
prove that this change still provides sub-linear regret guarantees
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Algorithm 1 BF-UCB

Initialize: [𝑛], Group Partition 𝐺 = {𝑔1, . . . , 𝑔𝑚}, Fairness param-
eter {𝛽𝑔}𝑔∈𝐺 , Learning Function 𝐿𝑒𝑎𝑟𝑛(.)

1: Initialization Phase
2: 𝑁𝑔,0 = 0 ∀𝑔 ∈ 𝐺 , where 𝑁𝑔,𝑡 is the number of times a group is

chosen till time 𝑡
3: 𝑆𝑖,0 = 0 ∀𝑖 ∈ [𝑛], where 𝑆𝑖,𝑡 denotes the reward of arm 𝑖 till

time 𝑡
4: 𝑚𝑎𝑥𝑠𝑖𝑧𝑒 = argmax𝑗∈[1,...,𝑚] |𝑔 𝑗 |
5: for 𝑘 ∈ [1, ...,𝑚𝑎𝑥𝑠𝑖𝑧𝑒 ] do
6: for 𝑔 ∈ [1, ...,𝑚] do
7: if ∃𝑖 ∈ 𝑔 such that 𝑁𝑖,𝑡 = 0 then
8: Pull arm 𝐼𝑡 = 𝑖

9: else

10: 𝐼𝑡 = 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑔, 𝑡, 𝑓 , {𝑁𝑖,𝑡 }𝑖∈𝑔, {𝑆𝑖,𝑡 }𝑖∈𝑔)
11: end if

12: Update 𝑁𝐼𝑡 ,𝑡 = 𝑁𝐼𝑡 ,𝑡 +1, 𝑁𝑔,𝑡 = 𝑁𝑔,𝑡 +1, and update 𝑆𝐼𝑡 ,𝑡
based on reward

13: end for

14: end for

15: 𝑡𝑖𝑛𝑖𝑡 =𝑚 ·𝑚𝑎𝑥𝑠𝑖𝑧𝑒
16: for 𝑡 ∈ [𝑡𝑖𝑛𝑖𝑡 + 1, ...,𝑇 ] do
17: 𝑈𝐹𝐺_𝑆𝑒𝑡 (𝑡) = {𝑔 | 𝛽𝑔 (𝑡 − 1) − 𝑁𝑔,𝑡−1 > 0}
18: if 𝑈𝐹𝐺_𝑆𝑒𝑡 (𝑡) ≠ 𝜙 then

19: 𝑔 = argmax𝑘∈𝑈𝐹𝐺_𝑆𝑒𝑡 (𝑡 ) {𝛽𝑘 (𝑡 − 1) − 𝑁𝑘,𝑡−1}
20: 𝐼𝑡 = 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑔, 𝑡, 𝑓 , {𝑁𝑖,𝑡 }𝑖∈𝑔, {𝑆𝑖,𝑡 }𝑖∈𝑔)
21: else

22: 𝑔 = 𝐿𝑒𝑎𝑟𝑛(𝐺, 𝑡, 𝑓 , {𝑁𝑖,𝑡 }𝑖∈[𝑛] , {𝑆𝑖,𝑡 }𝑖∈[𝑛] )
23: 𝐼𝑡 = 𝐸𝑥𝑝𝑜𝑠𝑢𝑟𝑒 (𝑔, 𝑡, 𝑓 , {𝑁𝑖,𝑡 }𝑖∈𝑔, {𝑆𝑖,𝑡 }𝑖∈𝑔)
24: end if

25: Update 𝑁𝐼𝑡 ,𝑡 = 𝑁𝐼𝑡 ,𝑡 + 1, 𝑁𝑔,𝑡 = 𝑁𝑔,𝑡 + 1 and update 𝑆𝐼𝑡 ,𝑡
based on reward

26: end for

without knowledge of 𝑇 . Theorem 3 in Section 5 shall show that
the algorithm satisfies Meritocratic Fairness.

Subroutine 2 Exposure(𝑔, 𝑡, 𝑓 , {𝑁𝑖,𝑡 }𝑖∈𝑔, {𝑆𝑖,𝑡 }𝑖∈𝑔)

1: 𝜇𝑖,𝑡 =
𝑆𝑖,𝑡
𝑁𝑖,𝑡

,∀ 𝑖 ∈ 𝑔
2: 𝑤

𝑔
𝑡 =

√︁
2 ln(4𝑁𝑔,𝑡𝑘𝑔/𝛿)

3: 𝑤𝑖,𝑡 =
𝑤

𝑔

𝑡√
𝑁𝑖,𝑡

,∀ 𝑖 ∈ 𝑔
4: 𝐶𝑅𝑡 = (𝜇 : ∀ 𝑖 ∈ 𝑔, 𝜇𝑖 ∈ [𝜇 −𝑤𝑖,𝑡 , 𝜇 +𝑤𝑖,𝑡 ])
5: 𝜇̃

𝑔
𝑡 = argmax𝜇∈𝐶𝑅𝑡

∑
𝑖∈𝑔

𝑓 (𝜇𝑖 )∑
𝑖′ ∈𝑔 𝑓 (𝜇𝑖′ ) 𝜇𝑖

6: 𝜋𝑖,𝑡 =
𝑓 (𝜇̃𝑖,𝑡 )∑

𝑖′ ∈𝑔 𝑓 (𝜇̃𝑖′,𝑡 ) , ∀ 𝑖 ∈ 𝑔
7: 𝐼𝑡 ∼ 𝜋𝑡
8: Return 𝐼𝑡

5 THEORETICAL RESULTS

This section presents three main results of the paper, namely,
(1) Bi-Level Fairness Guarantees of BF-UCB: The policy output

by Algorithm 1 satisfies 𝛽−Bi-Level Fairness (Definition 4).

Subroutine 3 Learn(𝐺, 𝑡, 𝑓 , {𝑁𝑖,𝑡 }𝑖∈[𝑛] , {𝑆𝑖,𝑡 }𝑖∈[𝑛] )

1: 𝜇𝑖,𝑡 =
𝑆𝑖,𝑡
𝑁𝑖,𝑡

,∀ 𝑖 ∈ [𝑛]
2: 𝑤

𝑔
𝑡 =

√︁
2 ln(4𝑁𝑔,𝑡𝑘𝑔/𝛿) ,∀ 𝑔 ∈ 𝐺

3: 𝑤𝑖,𝑡 =
𝑤

𝑔

𝑡√
𝑁𝑖,𝑡

,∀ 𝑖 ∈ 𝑔,∀ 𝑔 ∈ 𝐺

4: 𝐶𝑅
𝑔
𝑡 = (𝜇 : ∀ 𝑖 ∈ 𝑔, 𝜇𝑖 ∈ [𝜇𝑖 −𝑤𝑖,𝑡 , 𝜇𝑖 +𝑤𝑖,𝑡 ]),∀ 𝑔 ∈ 𝐺

5: 𝜇̃
𝑔
𝑡 = argmax𝜇∈𝐶𝑅𝑔

𝑡

∑
𝑖∈𝑔

𝑓 (𝜇𝑖 )∑
𝑖′ ∈𝑔 𝑓 (𝜇𝑖′ ) 𝜇𝑖 ,∀ 𝑔 ∈ 𝐺

6: 𝑗 = argmax𝑔∈𝐺
∑
𝑖∈𝑔

𝑓 (𝜇̃𝑔
𝑖,𝑡
)∑

𝑖′ ∈𝑔 𝑓 (𝜇̃𝑔
𝑖′,𝑡 )

𝜇̃
𝑔

𝑖,𝑡

7: Return 𝑗

(2) Regret Decomposition Result: The regret in Definition 5 can be de-
composed into two parts, namely, Group Exposure Fairness
regret and Meritocratic Fairness regret.

(3) Sub-linear Regret: The regret achieved by our algorithm is𝑂 (
√
𝑁𝑇 ).

5.1 Bi-Level Fairness Guarantees of BF-UCB

We show that BF-UCB satisfies Bi-Level Fairness, in two parts.
First, it satisfies GEF, and second, it satisfies MF.

Theorem 2. Algorithm 1 satisfies anytime GEF guarantees, i.e.,

⌊𝛽𝑔𝑡⌋ ≤ 𝑁𝑔,𝑡 for all 𝑡 ≥ 1 and for all groups 𝑔 ∈ 𝐺 . We have

𝛽𝑔 > 0 and for any 𝛽−Bi-Level Fairness algorithm 𝛽𝑔 ∈ (0, 1
𝑚 ]

for all 𝑔 ∈ [𝑚] and ∑
𝑔∈𝑚 𝛽𝑔 < 1.

Proof. Let 𝑡𝑖𝑛𝑖𝑡 =𝑚 ·𝑚𝑎𝑥𝑠𝑖𝑧𝑒 , and up to this round, each group
is pulled in a round-robin fashion. Consequently, for all groups
𝑔 ∈ 𝐺 , the number of times group g is pulled, denoted as 𝑁𝑔,𝑡 ,
satisfies the inequality 𝑁𝑔,𝑡 ≥ ⌊𝑡/𝑚⌋ ≥ 𝛽𝑔𝑡 . The last inequality is
derived from the fact that for all groups 𝑔 ∈ 𝐺, 𝛽𝑔 ≤ 1/𝑚.
For all 𝑡 ≥ 𝑡𝑖𝑛𝑖𝑡 , the correctness proof follows analogous steps as
outlined in [33] by establishing a mapping between each group in
our setting and an arm in their setting. □

Theorem 3. Algorithm 1 satisfies MF, i.e.,

lim
𝑁𝑔,𝑇→∞

1
𝑁𝑔,𝑇

∑︁
𝑡 :𝑔𝑡=𝑔

∑︁
𝑖∈𝑔

|𝜋𝑡𝑔 (𝑖) − 𝜋∗𝑔 (𝑖) | = 0 ∀𝑔 ∈ 𝐺.

Proof. Let us consider a set 𝑇𝑔 = {𝑡1, 𝑡2, . . . , 𝑡𝑁𝑔,𝑇
} which de-

notes the time steps when the group 𝑔 is pulled. It is easy to see
from Hoeffding’s inequality [19] that,

P(𝜇𝑖 ∈ 𝐶𝑅𝑡 ) ≥ 1 − 𝛿2

8𝑁 2
𝑔,𝑡𝑘𝑔

∀𝑡 > 𝑡𝑘𝑔 , 𝑖 ∈ [𝑔] (3)

We also know that the sequence
√︁
1/𝑁𝑖𝑡 ,𝑡 − E𝑖∈𝜋𝑡

𝑔

√︁
1/𝑁𝑖,𝑡 is a mar-

tingale difference sequence ∀𝑡 > 𝑡𝑘𝑔 . Thus, we have���√︁1/𝑁𝑖𝑡 ,𝑡 − E𝑖∈𝜋𝑡
𝑔

√︁
1/𝑁𝑖,𝑡

��� ≤ 1.We can apply theAzuma-Hoeffding’s
inequality to get that with probability at least 1 − 𝛿/2,������∑︁𝑡 ∈𝑇𝑔 E𝑖∈𝜋𝑡

𝑔

√︁
1/𝑁𝑖,𝑡 −

∑︁
𝑡 ∈𝑇𝑔

√︁
1/𝑁𝑖𝑡 ,𝑡

������ ≤ √︃
2𝑁𝑔,𝑡 ln(4/𝛿) (4)
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Thus, for any group 𝑔, we have:∑︁
𝑡 ∈𝑇𝑔

∑︁
𝑖∈𝑔

|𝜋∗𝑔 (𝑖) − 𝜋𝑡𝑔 (𝑖) | ≤
∑︁
𝑡 ∈𝑇𝑔

2
∑
𝑖∈𝑔

𝑓 (𝜇̃𝑖,𝑡 )
𝑓 (𝜇̃𝑖,𝑡 ) |𝑓 (𝜇̃𝑖,𝑡 ) − 𝑓 (𝜇𝑖 ) |∑

𝑗∈𝑔 𝑓 (𝜇̃𝑖,𝑡 )

(By following steps of proof of Theorem 3.2.1 from [40])

≤
∑︁
𝑡 ∈𝑇𝑔

2𝐿
∑
𝑖∼𝜋𝑡

𝑔
|𝜇̃𝑖,𝑡 − 𝜇𝑖 |
𝛾1

(From Assumptions 1 and 2)

≤
∑︁
𝑡 ∈𝑇𝑔

2𝐿
∑
𝑖∼𝜋𝑡

𝑔
𝑤𝑖,𝑡

𝛾1
, w.p.

(
1 − 𝛿2

8𝑁 2
𝑔,𝑡𝑘𝑔

)
(From Equation (3))

≤
∑︁
𝑡 ∈𝑇𝑔

2𝐿
∑
𝑖∼𝜋𝑡

𝑔

√︂
2 ln(4𝑘𝑔𝑁𝑔,𝑡 /𝛿 )

𝑁𝑖,𝑡

𝛾1
, w.p.

(
1 − 𝛿2

8𝑁 2
𝑔,𝑡𝑘𝑔

)

≤
2𝐿

√︁
2 ln(4𝑘𝑔𝑁𝑔,𝑇 /𝛿)

𝛾1

∑︁
𝑡 ∈𝑇𝑔
E𝑖∈𝜋𝑡

𝑔

√︄
1
𝑁𝑖,𝑡

(∵ 𝑁𝑔,𝑡 ≤ 𝑁𝑔,𝑇 )

≤
2𝐿

√︁
2 ln(4𝑘𝑔𝑁𝑔,𝑇 /𝛿)

𝛾1

©­«
√︃
2𝑁𝑔,𝑇 ln(4/𝛿) +

∑︁
𝑡 ∈𝑇𝑔,𝑡≥𝑡𝑘𝑔

√︄
1

𝑁𝑖𝑡 ,𝑡

ª®¬
≤

2𝐿
√︁
2 ln(4𝑘𝑔𝑁𝑔,𝑇 /𝛿)

𝛾1

(√︃
2𝑁𝑔,𝑇 ln(4/𝛿) + 2

√︃
𝑁𝑔,𝑇𝑘𝑔

)
The last inequality follows from AM-GM inequality. The fact that∑
𝑡 :𝑔𝑡=𝑔

∑
𝑖∈𝑔 |𝜋𝑡𝑔 (𝑖) − 𝜋∗𝑔 (𝑖) | is sub-linear in 𝑁𝑔,𝑇 completes the

proof. □

It is to be noted that
∑
𝑡 ∈𝑇𝑔

∑
𝑖∈𝑔 |𝜋∗𝑔 (𝑖) − 𝜋𝑡𝑔 (𝑖) | is also referred

to as fairness regret 𝐹𝑅𝑇 in [40]. Theorem 3 says that fairness
regret due to Meritocratic Fairness is sublinear, i.e., 𝑂 (

√
𝑇 ).

The fairness regret due to Group Exposure Fairness will be zero
since we provide anytime Group Exposure Fairness guarantees.

5.2 Regret Decomposition Theorem

Our next result shows that the regret of any algorithm satisfying
Bi-Level Fairness can be decomposed into GEF regret and MF
regret. Let 𝑅∗𝑔 =

∑
𝑖∈𝑔 𝜋

∗
𝑔 (𝑖)𝜇𝑖 denote the optimal expected reward

of group 𝑔. Further, define 𝑅𝑡𝑔 =
∑
𝑖∈𝑔 𝜋

𝑡
𝑔 (𝑖)𝜇𝑖 to be the expected

reward generated from policy 𝜋𝑡𝑔 . Also, Δ𝑔 = 𝑅∗
𝑔∗ − 𝑅

∗
𝑔 and Δ𝑡𝑔 =

𝑅∗𝑔 − 𝑅𝑡𝑔 . Then, we have the following theorem.

Theorem 4 (Regret decomposition Theorem). The reward regret,

ℜ
𝛽
𝜋 (𝑇 ), can be decomposed into two parts, namely, the regret due

to extra pull of non-optimal group and the regret due to suboptimal

learning of policy within each group, i.e.,

ℜ
𝛽
𝜋 (𝑇 ) =

∑︁
𝑔∈𝐺

(
E𝜋 [𝑁𝑔,𝑇 ] − ⌊𝛽𝑔𝑇 ⌋

)
Δ𝑔 +

𝑇∑︁
𝑡=1

∑︁
𝑔∈𝐺

1 (𝑔𝑡 = 𝑔) Δ𝑡𝑔 . (5)

Here, 𝑔𝑡 denotes the group that is selected by the algorithm at time 𝑡 .

Proof.

ℜ
𝛽
𝜋 (𝑇 ) =

∑︁
𝑔∈𝐺

⌊𝛽𝑔𝑇 ⌋𝑅∗𝑔 +
©­«𝑇 −

∑︁
𝑔∈𝐺

⌊𝛽𝑔𝑇 ⌋
ª®¬𝑅∗𝑔∗ −

∑︁
𝑔∈𝐺

∑︁
𝑖∈𝑔
E𝜋 [𝑁𝑖,𝑇 ]𝜇𝑖

(From Equation (1))

=
∑︁
𝑔∈𝐺

⌊𝛽𝑔𝑇 ⌋𝑅∗𝑔 +
©­«𝑇 −

∑︁
𝑔∈𝐺

⌊𝛽𝑔𝑇 ⌋
ª®¬𝑅∗𝑔∗ −

∑︁
𝑡 ∈𝑇

∑︁
𝑔∈𝐺

1(𝑔𝑡 = 𝑔)𝑅𝑡𝑔

(By the definition of 𝑅𝑡𝑔)

= 𝑇𝑅∗𝑔∗ −
∑︁
𝑔∈𝐺

⌊𝛽𝑔𝑇 ⌋
(
𝑅∗𝑔∗ − 𝑅

∗
𝑔

)
−

∑︁
𝑡 ∈𝑇

∑︁
𝑔∈𝐺

1(𝑔𝑡 = 𝑔)𝑅𝑡𝑔

(Rearranging terms)

= 𝑇𝑅∗𝑔∗ −
∑︁
𝑔∈𝐺

⌊𝛽𝑔𝑇 ⌋Δ𝑔 −
∑︁
𝑡 ∈𝑇

∑︁
𝑔∈𝐺

1(𝑔𝑡 = 𝑔)𝑅𝑡𝑔

From the definition of Δ𝑔 and Δ𝑡𝑔 , we have, 𝑅𝑡𝑔 = 𝑅∗𝑔 − Δ𝑡𝑔 = 𝑅𝑔∗ −
Δ𝑔 − Δ𝑡𝑔 . Substituting the same in the last term of regret, we get:∑︁

𝑡 ∈𝑇

∑︁
𝑔∈𝐺

1(𝑔𝑡 = 𝑔)𝑅𝑡𝑔 =
∑︁
𝑡 ∈𝑇

∑︁
𝑔∈𝐺

1(𝑔𝑡 = 𝑔) (𝑅∗𝑔∗ − Δ𝑔 − Δ𝑡𝑔)

= 𝑇𝑅∗𝑔∗ −
∑︁
𝑔∈𝐺
E𝜋 [𝑁𝑔,𝑇 ]Δ𝑔 −

∑︁
𝑡 ∈𝑇

∑︁
𝑔∈𝐺

1(𝑔𝑡 = 𝑔)Δ𝑡𝑔

Substituting the same in the regret, we get:ℜ𝛽
𝜋 (𝑇 ) =

∑
𝑔∈𝐺 (E𝜋 [𝑁𝑔,𝑇 ]−

⌊𝛽𝑔𝑇 ⌋)Δ𝑔 +
∑
𝑡

∑
𝑔∈𝐺 1(𝑔𝑡 = 𝑔)Δ𝑡𝑔 . □

The first term in Equation (5), i.e.,
∑
𝑔∈𝐺 (E𝜋 [𝑁𝑔,𝑇 ] − ⌊𝛽𝑔𝑇 ⌋)Δ𝑔 ,

represents the cumulative regret due to extra number of times
suboptimal group is pulled above the minimum guaranteed pulls
⌊𝛽𝑔𝑇 ⌋ required to satisfy group-fairness constraints. The second
term,

∑
𝑡

∑
𝑔∈𝐺 1(𝑔𝑡 = 𝑔)Δ𝑡𝑔 , represents the regret due to choosing

a suboptimal policy for arm pulls within the group. For a group
𝑔, the optimal policy gives the expected reward of 𝑅∗𝑔 , whereas
choosing a policy 𝜋𝑡 , gives the reward of 𝑅𝑡𝑔 . We call this difference
the regret due to choosing a non-optimal policy.

5.3 Regret of BF-UCB

The regret of BF-UCB can be bounded by bounding each term
separately. We now provide these bounds here (proofs provided in
the extended version of the paper [34]).

Bounding Regret due to Sub-optimal group selection. In order to
bound this, we show that if we have pulled a sub-optimal group
enough number of rounds, we will be able to distinguish the sub-
optimal group from the optimal group with high probability and
therefore, we will never select that group further. This leads to the
following lemma.

Lemma 5. Under Assumption 2,∑︁
𝑔∈𝐺
E𝜋 ( [𝑁𝑔,𝑇 ] − ⌊𝛽𝑔𝑇 ⌋)Δ𝑔 ≤

(
1 + 𝜋

2

3

) ∑︁
𝑔∈𝐺

Δ𝑔

+
∑︁
𝑔∈𝐺

©­«
𝑘𝑔 𝑓 (𝛾2)
𝑓 (𝛾1)

©­«
8𝐿21

(Δ𝑚𝑖𝑛)2
ln

( 4𝑁𝑔,𝑇𝑘𝑔
𝛿

)
+

√︄
𝑁𝑔,𝑇 ln(𝑘𝑔/𝛿)

2
ª®¬ − 𝛽𝑔𝑇 ª®¬Δ𝑔

Here, Δ𝑚𝑖𝑛 = min𝑔≠𝑔∗ 𝑅∗𝑔∗ − 𝑅∗𝑔 denotes the minimum difference

between expected reward between the optimal and sub-optimal group

with known rewards. Here, 𝐿1 is a Lipschitz’s constant that satisfies
|𝑅𝑔 (𝜇)−𝑅𝑔 (𝜇′) | ≤ 𝐿1 |𝜇−𝜇′ |. Lipschitz continuity on reward function
follows from Lipschitz continuity of merit function 𝑓 (·).

We provide the proof in the extended version [34] which es-
sentially follows similar steps to that of UCB by making use of a
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(a) For high number of arms (b) For low number of arms

Figure 1: For the BF-UCB algorithm: Comparison of Reward

Regret over time for different values of 𝛽

few additional results such as Lipschitz continuity on the reward
function, minimum number of pulling an arm when a group is
selected. Once we have these results, we can prove that if a group
is pulled sufficient number of times, then each arm in that group is
also pulled sufficient number of times due to meritocratic fairness.
Since the reward function is Lipschitz continuous, this leads to a
distinction of sub-optimal group from the optimal group.

Bounding regret due to fairness of exposure within each group. In
order to bound the second term of the regret, the difference in
policy is considered for the time periods when a group 𝑔 is selected.
The proof follows similar steps as that in [40] after replacing 𝑇
with 𝑁𝑔,𝑡 (number of times a group 𝑔 is pulled till time 𝑡 in the
confidence region). Thus, the second part of the regret is given by
the following lemma.

Lemma 6. The second part of the regret is𝑂

(∑
𝑔∈𝐺

√︁
𝑁𝑔,𝑇𝑘𝑔

)
with

probability at least 1 − 𝛿 .

Thus, combining the results above leads to the following bound
on the reward regret.

Theorem 7. The reward regret (Group-Merit RR) of BF-UCB is given

as:

ℜ
𝛽
𝜋 (𝑇 ) =

(
1 + 𝜋

2

3

) ∑︁
𝑔∈𝐺

Δ𝑔 +
∑︁
𝑔∈𝐺

√︃
𝑁𝑔,𝑇𝑘𝑔 (1 − 𝛿) + 𝛿𝑇

+
∑︁
𝑔∈𝐺

©­«
𝑘𝑔 𝑓 (𝛾2)
𝑓 (𝛾1)

©­«
8𝐿21

(Δ𝑚𝑖𝑛)2
ln

( 4𝑁𝑔,𝑇𝑘𝑔
𝛿

)
+

√︄
𝑁𝑔,𝑇 ln(𝑘𝑔/𝛿)

2
ª®¬ − 𝛽𝑔𝑇 ª®¬Δ𝑔

Substituting 𝛿 to be Ω(1/
√
𝑇 ), we get the regret of 𝑂 (

√
𝑇𝑛).

6 EXPERIMENTS

In this section, we analyze our algorithm for regret and fairness
via simulated experiments. The goal is to study the effect of the
number of arms on regret and fairness guarantees, and also, how
(i) GEF and (ii) MF guarantees of BF-UCB compares with that of
UCB [2], [33] and [40]. We first start by explaining these baselines,
followed by our experimental setup and results.

6.1 Baselines

6.1.1 UCB. This baseline is a conventional UCB algorithm [29]
that aims to maximize the total reward obtained by pulling any arm
without any fairness constraints.

(a) For high number of arms (b) For low number of arms

Figure 2: For the BF-UCB algorithm: Comparison of Merito-

cratic Fairness Regret over time across the different groups

6.1.2 Meritocratic Fair Algorithm (MF). The MF algorithm ensures
meritocratic fairness across all arms independent of the groups [40]
in which they are present.

6.1.3 Group Exposure Fair Algorithm (GEF). This algorithm is an
adaption from [33] to group exposurewherewhen a group is chosen,
the arm with the highest reward is preferred instead of ensuring
meritocratic fairness within the group.

6.2 Experimental Setup

We have considered two groups, inline with majority and minority
groups in the group fair literature. We ran 50 random runs of each
of the experiments for a total time 𝑇 = 107 to generate plots 1. We
have further considered two settings:
(1) Low number of arms: In this setting, we consider the number

of arms in minority and majority groups to be five and ten,
respectively. The mean rewards of the arms from both groups
are generated uniformly from [0.6, 0.85]. In this setting, there
is very little separability amongst the rewards of the arms, and
thus, each run may lead to a different optimal group. The arm
probabilities are generated afresh in each run.

(2) High number of arms: Here, the minority and majority groups
contain ten and fifty arms, respectively. The mean rewards of
arms from the majority and minority groups are generated
uniformly from [0.7, 1] and [0.5, 0.8] respectively. This setting
has clear separability amongst the optimal and sub-optimal
group where majority group is optimal for all the rounds.
These threshold on number of arms is motivated by real-world

examples such as the Adult dataset [6], where a typical ratio be-
tween two group values (sensitive attribute race) is typically 1:8
and in gender attributes, the typical ratio is 1:2. We consider merit
function 𝑓 (𝜇) = 𝜇 and 𝛿 = .01. The merit function is chosen thus
as it can be shown that the maximum value of the reward function
with the above merit function is always achieved at the highest
value of 𝜇 when all 𝜇𝑖 ’s are greater than 0.5. The proof of this result
is provided in the extended version of the paper [34]. Therefore,
such a merit function allows us to directly use the upper confidence
value of 𝜇 without explicitly computing the optimal value. It is also
to be noted that the regrets will not be affected much by different
merit functions. We now explain the results of BF-UCB on different
performance measures in comparison with the baselines.
1The source code is available at: https://github.com/MultiFair-Bandits/Stochastic_Fair_
Bandits/
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(a) Total Reward (w.r.t. UCB) (b) Group Exposure (c) Exposure across Arms (within minority group)

Figure 3: Comparison of BF-UCB, GEF and MF on different performance measures for the setting involving high number of arms

6.3 Experimental Results

For all the comparisons, we consider 𝛽 = (0.4, 0.4) except for the
comparison of regret, where we plot the total regret against all
three different 𝛽 values, namely, (0.2, 0.2), (0.3, 0.3), and (0.4, 0.4).

6.3.1 Reward Regret. Figures 1a and 1b show the reward regret for
the two settings, namely, high and low number of arms, respectively,
for different values of 𝛽 . As only BF-UCB maintains Bi-Level
Fairness, the regret of only BF-UCB is plotted. It can be seen from
both the figures that the regret is sub-linear. A higher value of 𝛽
puts more constraint on the group exposure guarantee, leading to
lower regret due to the sub-optimal group pull. For instance, when
𝛽 = (0.5, 0.5), both BF-UCB and the optimal algorithm will end
up pulling both the groups in a round-robin fashion, thus leading
to a regret of zero in the first term. The high variance for a lower
number of arms setting is due to non-separability in rewards of the
arms. This leads to a change in the optimal group over different
runs, leading to high variance.

6.3.2 Meritocratic Fairness Regret. Figures 2a and 2b show
the policy regret for the different groups, i.e., |𝜋∗𝑔 − 𝜋𝑡𝑔 | in the two
settings, respectively. It can be seen from the figures that policy
regret eventually converges to zero. It should be noted that though
one would expect the policy regret of the majority group, which is
optimal in almost all cases, in Figure 2a to converge faster, we do
not see such a trend here. This is primarily due to the large number
of arms in the majority group, which makes it difficult to converge
faster. On the other hand, when we have low number of arms, we
see this convergence much faster in Figure 2b.

6.3.3 Total Reward. Figure 3a compares the total reward of BF-
UCB with different baselines for the higher number of arms setting.
The rewards of different baselines are normalized with respect to
the reward of UCB. As can be seen from the figure, the rewards
of different algorithms initially increase with respect to UCB and
then decrease gradually with time. The initial increase is due to the
exploration phase of all the algorithms leading to similar rewards
in the initial rounds. After a few rounds, UCB will start picking the
arm with maximum reward, whereas other algorithms will have
to satisfy the fairness constraint and hence, they will receive a
lesser reward as compared to UCB. Since GEF still picks the best
arm in the group whereas MF has to ensure exposure fairness across
all the arms, the reward of GEF is higher than that of MF. It must
be noted that the normalized rewards are not too far from 1 and
the difference in the rewards across various baselines is not much.

As expected, BF-UCB receives the least reward amongst all the
algorithms as it needs to satisfy the strictest fairness notion.

6.3.4 Group Exposure. Figure 3b compares the number of times
each group is pulled across different algorithms for the higher
number of arms setting. As can be seen, BF-UCB and GEF give
the most balanced exposure to the two groups. UCB gives the
least exposure. On the other hand, since MF provides the exposure
guarantees across all arms, it still ends up pulling themajority group
a significantly larger number of times as compared to the minority
group. This figure shows that just ensuring exposure fairness across
individual arms does not guarantee enough exposure to the groups.

6.3.5 Exposure across Arms. Figure 3c plots the exposure of dif-
ferent arms only from the minority group for the higher number
of arms setting. It shows that MF gives the least exposure to these
arms, as there is a high number of arms in the majority group, thus
leading to low exposure of arms in the minority group. The expo-
sure to the arms is best when employing BF-UCB. GEF algorithm,
though it seems to be giving good exposure, it should be noted
that it has high variance because at each run, the optimal arm will
be different and GEF aims to pull the optimal arm. UCB algorithm
gives the least exposure to the arms present in the minority group.
This figure shows that BF-UCB not only ensures group exposure
but also ensures individual arm exposure within each group.

7 CONCLUSION

In summary, our novel fair Multi-Armed Bandit (MAB) frame-
work, BF-UCB, ensures both Meritocratic Fairness and Group
Exposure Fairness. Through rigorous regret decomposition anal-
ysis and from Bi-Level Fairness guarantee, we established its
theoretical foundation. Our experimental results demonstrated com-
petitiveness in achieving normalized rewards relative to UCB, in
comparison to MF and GF. We also showcased its practical utility
in achieving fair exposure to the arms within minority groups. In
conclusion, our Bi-Level FairnessMAB algorithm, BF-UCB, is
the first to give a robust solution for achieving Bi-Level Fairness
with sublinear regret.
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