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ABSTRACT
Large-language models (LLMs) can support a wide range of ap-

plications like conversational agents, creative writing or general

query answering. However, they are ill-suited for query answering

in high-stake domains like medicine because they are typically not

robust - even the same query can result in different answers when

prompted multiple times. In order to improve the robustness of

LLM queries, we propose using ranking queries repeatedly and to

aggregate the queries using methods from social choice theory. We

study ranking queries in diagnostic settings like medical and fault

diagnosis and discuss how the Partial Borda Choice function from

the literature can be applied to merge multiple query results. We

discuss some additional interesting properties in our setting and

evaluate the robustness of our approach empirically.
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1 INTRODUCTION
Large Language Models (LLMs) achieve state-of-the-art results in

various natural language processing (NLP) tasks. Formally, LLMs

represent a conditional probability distribution 𝑃 (𝑇𝑛+1 |𝑇1, . . . ,𝑇𝑛)
over tokens (character sequences) that predicts the next token given

a fixed context of previous tokens. To answer a query 𝑄 , 𝑄 is de-

composed into tokens 𝑇1, . . . ,𝑇𝑄 and used to sample the first token

𝐴1 of the answer from 𝑃 (𝐴1 |𝑇1, . . . ,𝑇𝑄 ). 𝐴1 can then be added to

the context 𝑇1, . . . ,𝑇𝑄 to sample the next answer token 𝐴2. This

process is repeated until a special end of text token is reached. Since
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finding an optimal sequence of answer tokens is hard, answer se-

quences are often computed by a heuristic search like Beam [8],

Top-K [4] or Nucleus [7] search that build up multiple promising

token sequences in parallel. The sampling process is controlled by

a temperature parameter. For temperature 0, the algorithms sam-

ples greedily. Increasing the temperature allows sampling tokens

with lower local probability. While some authors associate higher

temperatures with more creative answers, they can also result in

higher probability answers because greedy selection can exclude

high probability sequences that start with low probability tokens.

Given the success of LLMs in difficult NLP taks, they are increas-

ingly being used for general question answering tasks. This is a

natural application as it is reasonable to assume that LLMs picked

up a lot of interesting information during training. However, one

limitation of LLMs is that they will always produce an answer even

if they did not learn anything about the question. This problem is

referred to as hallucination in the literature [10]. The uncertainty of

an answer is hard to quantify. While every answer sequence can be

associated with a probability, this is merely the probability of the

text sequence and should not be confused with the probability that

the answer is correct (or that the LLM "believes" that the answer is

correct). Theoretically, LLMs can be asked to output probabilities

for their predictions, but it is hard to say how meaningful these

probabilities are since there is nothing in a typical LLM architecture

that would allow them to infer meaningful probabilities (unless

they picked up a particular probability from the training corpora).

Since query answering with LLMs is based on a heuristic search

for high probability token sequences rather than on reasoning, we,

in particular, have the following types of uncertainty:

(1) Query-Uncertainty: prompting the same query repeatedly

can result in different answers.

(2) Syntax-Uncertainty: semantically equivalent queries that

differ only syntactically can result in different answers.

(3) Distraction-Uncertainty: meaningless information added to

the query can result in a different answer.

Let us note that, in principle, query uncertainty can be eliminated

by setting the temperature parameter to 0. However, as outlined

above, the deterministic answer will be somewhat random because

it corresponds to some local optimum found by a heuristic search

algorithm. We therefore aim at allowing some randomness in the

answer, but increasing the robustness. The idea of robustness is

that similar queries should result in similar answers. In particular,
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the same query prompted multiple times can result in different

answers in our setting. However, we would like that these answers

are semantically similar. Similarly, we would like that syntactic

changes of a query do not change the semantics of the answer.

In this work, we will mainly focus on making LLMs robust

against query uncertainty, but we will also look at syntax uncer-
tainty in our experiments. We explore to which extent an answer

sampling strategy combined with social choice theory methods can

improve the robustness of LLMs. The idea is as follows: instead

of asking a query once, we ask it repeatedly (starting each time

from the original question context). Our assumption is that if the

LLM picked up the answer during training, then this answer should

occur in the majority of cases. On the other hand, if it did not pick

up information about the query and hallucinates an answer, we

expect that the different answers will be very random. We will

apply tools from social choice theory to aggregate the answers. We

expect that, if the LLM picked up meaningful information, then our

aggregation will result in a clear ranking of the different answers,

while it will be mostly indifferent between the answers otherwise.

Let us emphasize that the outcome should be interpreted with

care. If the LLM has been trained on a text corpora with false

information, we may find that an LLM gives a false answer with

high certainty. The probabilities that we derive should therefore be

understood as subjective probabilities that reflect the uncertainty

of the LLM and not as statistical probabilities. We view our method

as most useful when being applied to LLMs that were trained on

reliable literature (e.g., peer-reviewed articles and books) and not

on random text from the internet. While reliable pretrained models

like BioBert andMedBert exist [15, 21], they still require fine-tuning

to be usable as question answering systems. Since our resources are

limited, we will therefore use ChatGPT-turbo in our experiments,

which was trained on mixed data with varying reliability. However,

our experiments are only a proof of concept and the idea can directly

be transferred to LLMs trained on high quality domain-specific data.

In our investigation, we will focus on diagnostic problems, where

we try to identify the cause of a particular situation or condition.

The identified cause is called the diagnosis for the condition. Typical
examples are medical diagnosis (identify the medical condition that

causes a set of symptoms) or fault diagnosis (identify the defective

component in a technical system that causes malfunctions). The

query consists of a description of the situation and we ask for a

ranking of possible causes ordered by their plausibility. In order

to take account of uncertainty, we repeat the query multiple times

and collect the rankings. Tools from social choice theory can then

be applied to merge the rankings and to quantify the uncertainty

of the answer. To do so, we will build up on scoring-based voting

methods for partial preference orderings [3].

2 RELATEDWORK
Prior research on uncertainty quantification of LLMs focused on in-

vestigating the probabilities of token sequences [6, 11]. However, as

discussed before, the probability of the token sequence should not

be confused with the probability that the token sequence expresses

a valid claim. In particular, the same claim can be expressed by

different (semantically equivalent) token sequences that obtain dif-

ferent probabilities. [14] address this issue by first clustering claims

with the same semantic meaning and summing their probabilities

to calculate a "semantic entropy". Other work involves training or

fine-tuning the LLMs to quantify uncertainty [12, 17, 18]. However,

due to lack of transparent training specifics, these approaches might

be difficult to reproduce in addition to being expensive.

Despite the demand for uncertainty quantification without re-

lying on model fine-tuning or accessing the proprietary informa-

tion of LLMs, there is little work in this area and much remains

unexplored. To our best knowledge, only [24, 25] quantify uncer-

tainty based on the verbalized confidence given by LLMs or self-

consistency of the claims. The significance of verbalized confidence

is unclear since there is nothing in a typical LLM architecture that

would allow it to infer meaningful probabilities. Our approach ag-

gregates answers and quantifies the uncertainty using methods

from social choice theory. Moreover, We study queries that give

a rank with multiple possible answers rather than one single an-

swer as an output, no approach from existing work can be directly

applied in our case.

The recent neuro-symbolic theorem prover LINC [19] uses LLMs

as a semantical parser to translate natural language reasoning prob-

lems into first-order logic that can then be processed by a symbolic

theorem prover. To decrease the risk of parsing errors, the authors

parse and process the inputs repeatedly and apply majority voting

to determine the outcome. This may be another interesting domain

for applications of more sophisticated voting methods.

The notion of robustness that we consider here (similar inputs

should result in similar outputs) follows the terminology in Explain-
able AI [1, 5, 16] and should not be confused with statistical [9]

or adversarial [23] robustness. From an explanation point of view,

our scoring method is interpretable in the sense that the scores can

be explained from the LLM’s responses to the repeated prompts.

The responses can be further explained by the LLM’s sampling

procedure and the output probabilities of the transformer. However,

understanding the output probabilities of transformers is difficult

and a topic of current research [27].

3 SOCIAL CHOICE THEORY BACKGROUND
Social choice theory deals with aggregating individual preferences

of different agents towards a collective choice [2]. The agents are

often seen as voters who can express their preferences in different

ways. For example, they may be able to vote for a single candidate,

for multiple candidates or report a preference ordering over the

candidates. We will focus on the latter setting here. Formally, we

consider a finite set of voters 𝑁 = {1, . . . , 𝑛} and a finite set of

outcomes 𝑂 = {𝑜1, . . . , 𝑜𝑚}. A partial order ⪰ over 𝑂 is a binary

relation over 𝑂 that is reflexive, anti-symmetric and transitive. We

do not assume that it is complete, that is, there can be outcomes

𝑜𝑖 ≠ 𝑜 𝑗 such that neither 𝑜𝑖 ⪰ 𝑜 𝑗 nor 𝑜 𝑗 ⪰ 𝑜𝑖 . As usual, we write
• 𝑜 ≻ 𝑜′ iff 𝑜 ⪰ 𝑜′ and 𝑜′ ⪰̸ 𝑜 ,
• 𝑜 ∼ 𝑜′ iff 𝑜 ⪰ 𝑜′ and 𝑜′ ⪰ 𝑜 .

If 𝑜 ≻ 𝑜′, we say that 𝑜 is strictly preferred to 𝑜′ and if 𝑜 ∼ 𝑜′,
we say that we are indifferent between the two. A profile 𝑝 = [⪰1
, . . . , ⪰𝑛] contains one partial order for every voter and captures

the preferences expressed by them.

The process of aggregating the voters’ preferences can be for-

malized in different ways. A social choice function is a mapping 𝑓
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from the set of all profiles to a non-empty subset of the outcomes.

Intuitively, 𝑓 (𝑝) should contain the outcomes that are maximally

preferred by the voters. Ideally, 𝑓 (𝑝) contains only a single element,

but there are cases where a unique choice cannot be made with-

out any ad-hoc assumptions (like chosing a random outcome or a

lexicographically minimal one).

Social choice research often focuses on total orderings, where

agents express preferences over all possible outcomes [2]. In our

application, the outcomes are possible diagnoses, and the different

answers do not necessarily contain the same diagnoses. We will

therefore focus on preferences expressed by partial orderings. Since

we are interested in quantifying the uncertainty of an answer (based

on the variance in the rankings), scoring-based voting methods are

a natural choice. We recall some ideas about aggregating partial

preferences by scoring-based voting methods from [3].

To begin with, a scoring procedure 𝑠𝑝 : 𝑂 → R is a mapping from

outcomes to numerical values that is parametrized by a profile 𝑝

[3]. Intuitively, 𝑠𝑝 (𝑜) is the score of outcome 𝑜 with respect to the

preferences expressed by the profile 𝑝 . Every scoring procedure

induces a social choice function by letting

𝑓 (𝑝) = argmax

𝑜∈𝑂
𝑠𝑝 (𝑜) . (1)

A weighting procedure 𝑤⪰ : 𝑂 → R maps outcomes to numeri-

cal values and is parametrized by a partial order ⪰ [3]. Intuitively,

𝑤⪰ (𝑜) is the score of outcome 𝑜 with respect to the preferences ex-

pressed by ⪰. We can construct a scoring procedure from a weight-

ing procedure by letting [3]

𝑠𝑝 (𝑜) =
𝑛∑︁
𝑖=1

𝑤⪰𝑖 (𝑜), (2)

where we assume 𝑝 = [⪰1, . . . , ⪰𝑛].
A weighting procedure, in turn, can be based on howmany other

outcomes are less preferred and how many are incomparable. To do

so, we can consider functions Down⪰ : 𝑂 → 2
𝑂
and Inc⪰ : 𝑂 →

2
𝑂
defined as follows [3]:

Down⪰ (𝑜) = |{𝑜′ ∈ 𝑂 | 𝑜 ≻ 𝑜′}|, (3)

Inc⪰ (𝑜) = |{𝑜′ ∈ 𝑂 | 𝑜 and 𝑜′ are incomparable}|, (4)

where, for a set 𝑆 , |𝑆 | denotes its cardinality. That is, Down⪰ (𝑜)
is the number of outcomes ranked lower than 𝑜 and Inc⪰ (𝑜) is
number of outcomes incomparable to 𝑜 .

The following two properties of weighting procedures have been

proposed in [3]:

Linearity: There exist constants 𝛼, 𝛽,𝛾 ∈ R such that

𝑤⪰ (𝑜) = 𝛼 · Down⪰ (𝑜) + 𝛽 · Inc⪰ (𝑜) + 𝛾 . (5)

Constant Total Weight: There exists a constant 𝛿 such that∑
𝑜∈𝑂 𝑤⪰ (𝑜) = 𝛿 for all partial orders.

Partial Borda Weighting (PBW) [3]𝑤PBW
⪰ is the linear weighting

procedure defined by letting

𝛼 = 2, 𝛽 = 1, 𝛾 = 0 (6)

in (5).

Definition 3.1 (PBW Weighting). The PBW weighting procedure

is defined as

𝑤PBW
⪰ (𝑜) = 2 · Down⪰ (𝑜) + Inc⪰ (𝑜) . (7)

One can show the following.

Theorem 3.2 ([3]). 𝑤PBW
⪰ satisfies Linearity and Constant

Total Weight and every other weighting procedure that satisfies
these two properties is an affine transformation of PBW.

We refer to [3, Theorem 1] for more details about this result.

The partial Borda choice function 𝑓 PBW is the social choice func-

tion induced by 𝑤PBW
⪰ based on equations (1) and (2). It can be

characterized as follows.

Theorem 3.3 ([3]). The partial Borda choice function is the unique
social choice function that satisfies the following properties.

Consistency: If 𝑝1, 𝑝2 are disjoint profiles and 𝑓 (𝑝1) ∩ 𝑓 (𝑝2) ≠
∅ then 𝑓 (𝑝1) ∩ 𝑓 (𝑝2) = 𝑓 (𝑝1 ∪ 𝑝2).

Faithfulness: If 𝑝 = [⪰1] and 𝑏 ⪰1 𝑎, then 𝑎 ∉ 𝑓 (𝑝).
Neutrality: 𝑓 is invariant with respect to permutations of 𝑂

(renaming the outcomes will not affect the result), that is,
𝑓 (𝜎 (𝑝)) = 𝜎 (𝑓 (𝑝)) for all bijective mappings 𝜎 : 𝑂 → 𝑂 .

Cancellation: If for all outcomes 𝑜1 ≠ 𝑜2, the number of voters
who rank 𝑜1 above 𝑜2 equals the number of voters who rank
𝑜2 above 𝑜1, then 𝑓 (𝑝) = 𝑂 .

We refer to [3, Theorem 2] for more details about this result.

4 IMPROVING THE ROBUSTNESS OF LLM
QUERIES WITH PBW

As we saw in the previous section, aggregating partial preferences

with PBW gives us several desirable analytical guarantees. We will

now use PBW to improve the robustness of LLM ranking queries.

The basic idea is to ask the LLM for the most plausible explanations

of a situation repeatedly and to use PBW to aggregate the answers.

4.1 From Queries to Rankings
In order to obtain ranking answers from LLMs, we consider queries

of a special form that we call ranking queries. We refrain from

a formal definition and just explain the intuitive idea. Roughly

speaking, a ranking query consists of

• a condition description,
• answer instructions.

Example 4.1. As a running example, we will use a medical sce-

nario with the following ranking query:

"A 20 year old professional runner suffers from
a stinging pain in the forefoot. The foot is
swollen and stiff. What are the most plausi-
ble explanations? Please keep the answer short
and order by decreasing plausibility."

The first two sentences describe the condition, the last two sen-

tences give the answer instructions. A typical answer provided by

ChatGPT looks as follows:

The most plausible explanations for a 20-year-old pro-

fessional runner experiencing a stinging pain, swelling,

and stiffness in the forefoot, ordered by decreasing

plausibility, could be:
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• Overuse Injury: Repetitive stress from running may

have led to an overuse injury such as metatarsalgia

or stress fracture.

• Tendonitis: Inflammation of tendons in the forefoot,

like extensor tendinitis, could cause these symp-

toms.

• Ligament Sprain: A sprained ligament, like in the

metatarsophalangeal joint, could result in pain, swelling,

and stiffness.

• Footwear Issues: Poorly fitting or worn-out run-

ning shoes may contribute to foot problems and

discomfort.

• Infection or Insect Bite: Infection or an insect bite

should be considered but is less likely without spe-

cific signs like redness and fever.

In order to obtain our rankings, we run the prompt 5 times, each

time starting from an empty context. The possible causes provided

in the 5 answers, define our set of outcomes 𝑂 . We summarize

and normalize the answers such that synonyms and syntactic dif-

ferences do not lead to different outcomes. Given an answer list

𝑜1, . . . , 𝑜𝑞 for one prompt, we associate it with the partial ordering

𝑜1 ≻ · · · ≻ 𝑜𝑞 ≻ {𝑜1, . . . , 𝑜𝑞}, (8)

where for every subset 𝑆 ⊆ 𝑂 , 𝑆 = 𝑂 \𝑆 denotes the complement of

𝑆 and 𝑜 ≻ 𝑆 is short for 𝑜 ≻ 𝑜′ for all 𝑜′ ∈ 𝑆 . That is, the outcomes

occuring in the answer are preferred according to their order of

appearance and they all are preferred to those outcomes that have

not occured. The outcomes that did not occur are incomparable

with respect to this ranking.

Example 4.2. For our running example, we obtained the follow-

ing outcomes after manual normalization:

(1) bu: bursitis,

(2) fi: footwear issues,

(3) go: gout,

(4) in: infection,

(5) mn: Morton’s neuroma,

(6) msr: metatarsal stress reaction,

(7) ni: neurological issue,

(8) oi: overuse injury,

(9) pf: plantar fasciitis,

(10) sf: stress fracture,

(11) te: tendonitis,

(12) tr: trauma.

The 5 answers for our running example correspond to the following

partial oderings:

oi ≻1 fi ≻1 tr ≻1 in ≻1 ni ≻1 {oi, fi, tr, in, ni},

oi ≻2 pf ≻2 fi ≻2 in ≻2 go ≻2 tr ≻2 {oi, pf, fi, in, go, tr},

oi ≻3 tr ≻3 fi ≻3 in ≻3 {oi, tr, fi, in},

sf ≻4 pf ≻4 mn ≻4 msr ≻4 bu, ≻4 {sf, pf,mn,msr, bu}

oi ≻5 te ≻5 fi ≻5 in ≻5 {oi, te, fi, in}.

We constructed the partial orders in our running example man-

ually. In our experiments, we will use a more automated process

that works as follows:

(1) Determine Base-Outcomes: Query the LLM for a list of po-

tential causes that we call base-outcomes.
(2) Determine Rankings: Repeatedly ask the LLM for the most

plausible causes and to rank them by their plausibility. We

call these outcomes ranking-outcomes.
(3) Normalize Rankings: Normalize the rankings by matching

ranking-outcomes with base-outcomes. We use word embed-

dings (Sentence-BERT[22]) to map the ranking-outcomes to

the most similar base-outcomes. If the similarity of a ranking-

outcome to all base-outcomes is smaller than 0.5, it will be

discarded (and reported).

One can think of other methodologies to compute rankings from

LLMs. To abstract from the details, let us assume that we have a

transformation method 𝑇 (𝑄, 𝑁, 𝑡) of the following form.

Definition 4.3. A transformation method 𝑇 (𝑄, 𝑁, 𝑡) takes a rank-
ing query as input, prompts it 𝑁 times and produces a profile

[⪰1, . . . , ⪰𝑁 ] from the answer rankings. The parameter 𝑡 repre-

sents the time at which the query has been prompted.

The time parameter 𝑡 is only a technical device to take account

of the fact that the output of LLMs is non-deterministic. It can

also be seen as the (unknown) random seed of the LLM. The time

parameter allows us talking about potentially different outputs

when aggregating repeatedly for the same input. For example, say

we aggregate the answers for𝑄 five times and then again five times,

then we can denote the two results by𝑇 (𝑄, 5, 𝑡1) and𝑇 (𝑄, 5, 𝑡2). We

will use this notation for the discussion of the consistency property

later. The notation is also useful to make the idea of robustness

more precise. Assume that we have an aggregation method 𝐴 that

aggregates the profiles obtained from a transformation method𝑇 in

some way. Roughly speaking, we say that a pair (𝑇,𝐴) consisting
of a transformation method 𝑇 and an aggregation method 𝐴 is

query-robust if the answers obtained for one query 𝑄 from

𝐴(𝑇 (𝑄, 𝑁, 𝑡1)) and 𝐴(𝑇 (𝑄, 𝑁, 𝑡2)) are "similar" when 𝑁 is

chosen sufficiently large,

syntax-robust if the answers for two syntactically different,

but semantically similar queries𝑄1, 𝑄2 from𝐴(𝑇 (𝑄1, 𝑁 , 𝑡1))
and 𝐴(𝑇 (𝑄2, 𝑁 , 𝑡2)) are "similar" when 𝑁 is chosen suffi-

ciently large.

The choice of the similarity measure depends on the application.

Correlation measures seem to be a natural choice for measuring

similarity between rankings. Measuring similarity between queries

is more difficult. For experiments, one simple way to generate

similar queries is to make purely syntactical changes to a base

query to obtain (almost) semantically equivalent queries.

In our application, our aggregation method 𝐴𝑃𝐵𝑊 ranks the

diagnoses from the given profile by their PBW score. We will use

correlation measures to determine the similarity of these rankings

for 𝑁 = 5 in our experiments.

4.2 Answer Aggregation
In order to quantify the plausibility of different answers, we apply

the PBW score. The larger the score, the more plausible the answer.
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Table 1: PBW scores for running example: first column shows,
the outcomes, columns 2-6 show the partial PBW scores per
ranking, column 7 shows the PBW scores and column 8 the
normalized PBW scores rounded to two digits.

𝑂 ≻1 ≻2 ≻3 ≻4 ≻5 𝑠PBW (𝑜) 𝑠PBW (𝑜)
bu 6 5 7 14 7 39 0.06

fi 20 18 18 6 18 80 0.12

go 6 14 7 6 7 40 0.06

in 16 16 16 6 16 70 0.10

mn 6 5 7 18 7 43 0.07

msr 6 5 7 16 7 41 0.06

ni 14 5 7 6 7 39 0.06

oi 22 22 22 6 22 94 0.14

pf 6 20 7 20 7 60 0.09

sf 6 5 7 22 7 47 0.07

te 6 5 7 6 20 44 0.07

tr 18 12 20 6 7 63 0.10

To make the interpretation of the scores easier, we normalize them

such that all values are between 0 and 1. We let

𝑠PBW (𝑜) = 𝑠PBW (𝑜)∑
𝑜 ′∈𝑂 𝑠PBW (𝑜′)

(9)

Table 1 shows the PBW scores for our running example.

4.3 Properties
We now discuss some analytical guarantees of our approach. Let

us note that the normalized PBW score 𝑠PBW is just a rescaling of

the PBW score 𝑠PBW. Therefore, the outcomes with maximal score

and their relative order remains unchanged. To begin with, let us

reinterpret the properties from Theorem 3.3 in our setting.

Consistency: Let𝑄 be a ranking query and let 𝑝1 = 𝑇 (𝑄, 𝑁1, 𝑡1),
𝑝2 = 𝑇 (𝑄, 𝑁2, 𝑡2). If 𝑜 has maximum score with respect to

both 𝑠PBW (𝑝1) and 𝑠PBW (𝑝2), then 𝑜 also has maximum score

with respect to 𝑠PBW (𝑝1 ∪ 𝑝2).
Faithfulness: If we prompt the query only once, then the high-

est ranked outcome obtains the maximum score.

Neutrality: The score of outcomes is independent of their

identity.

Cancellation: If for all outcomes 𝑜1 ≠ 𝑜2, the number of rank-

ings that rank 𝑜1 above 𝑜2 equals the number of rankings

that rank 𝑜2 above 𝑜1, then all outcomes get the same score.

As explained before, the above properties are sufficient to character-

ize PBW scoring [3]. That is, there is no other scoring function that

satisfies all these properties (up to affine transformations). Since all

properties seem desirable in our setting, 𝑠PBW is a natural choice.

In the following proposition, we note some additional desirable

properties of 𝑠PBW and 𝑠PBW in our setting. The properties also hold

for other instantiations of (5) as long as 𝛼 > 𝛽 remains satisfied.

Proposition 4.4. Let 𝑄 be a query that was prompted 𝑁 times
and resulted in the outcomes 𝑂 and profile 𝑝 = [≻1, . . . , ≻𝑁 ].

Partial Agreement: If there are 𝑜1, 𝑜2 ∈ 𝑂 such that 𝑜1 ≻𝑖 𝑜2
for all 1 ≤ 𝑖 ≤ 𝑁 , then 𝑠PBW (𝑜1) > 𝑠PBW (𝑜2).

Full Agreement: If prompting the query repeatedly resulted in
the same rankings, that is, ≻𝑖 = ≻𝑗 for all 1 ≤ 𝑖 < 𝑗 ≤ 𝑁 ,
then 𝑠PBW (𝑜1) > 𝑠PBW (𝑜2) if and only if 𝑜1 ⪰𝑖 𝑜2.

Domination: If there is an 𝑜∗ ∈ 𝑂 such that 𝑜∗ ≻𝑖 𝑜 for all 1 ≤
𝑖 ≤ 𝑁 and 𝑜 ∈ 𝑂 \ {𝑜∗}, then argmax𝑜∈𝑂 𝑠

PBW (𝑜) = {𝑜∗}.

Proof. 1. The assumptions imply that Down⪰𝑖 (𝑜1) > Down⪰𝑖 (𝑜2)
and therefore 𝑤PBW

≻𝑖 (𝑜1) > 𝑤PBW
≻𝑖 (𝑜2) for all 1 ≤ 𝑖 ≤ 𝑁 . Hence,

𝑠PBW (𝑜1) > 𝑠PBW (𝑜2). The same is true for 𝑠PBW because it is just

a rescaling of 𝑠PBW.

2. Since all rankings are equal, the outcomes are totally ordered

by ⪰=⪰1 in our setting. Hence, if 𝑂 = {𝑜1, . . . , 𝑜𝑚} and 𝑜1 ⪰ 𝑜2 ⪰
· · · ⪰ 𝑜𝑚 , then 𝑤PBW (𝑜𝑖 ) = 2 · Down⪰ (𝑜𝑖 ) = 2 · (𝑚 − 𝑖). Hence,
𝑠PBW (𝑜𝑖 ) > 𝑠PBW (𝑜 𝑗 ) if and only if 𝑜𝑖 is ranked higher than 𝑜 𝑗 . The
same is true for 𝑠PBW because it is just a rescaling of 𝑠PBW.

3. Partial agreement implies that 𝑠PBW (𝑜∗) > 𝑠PBW (𝑜) for all
𝑜 ∈ 𝑂 \ {𝑜∗}, which implies the claim. □

5 EXPERIMENTS
To assess the effectiveness of our approach, we conduct experiments

on three sets of ranking queries from manufacturing, finance, and

medicine. We first describe our methodology for generating rank-

ing queries and extracting responses in a semi-automatic manner

(Algorithm.1 provides an overview of the generation process). Sub-

sequently, we will introduce the selected baseline approaches and

the metrics used to assess the robustness of the aggregated answers.

Code is available at https://github.com/boschresearch/RobustLLM/.

5.1 Generation of Ranking Queries
5.1.1 Generate Symptom-CauseMatrices. To generate ranking queries
for our experiments, we first generate symptom-cause matrices,

which contain information about a list of underlying critical prob-

lems and the possible symptoms we could observe.

We generate those matrices with ChatGPT. In the first step, we

ask ChatGPT for a list of critical problems (causes) C in a specific

domain with the following prompts:

"In manufacturing, what are the critical problems that can
severely impact the health and overall performance of the
factory? Output a list of those problems and rank them based
on degree of risk to factory."

"What are the critical financial problems that can severely
impact the health and overall performance of a company?
Output a list of those problems and rank them based on
degree of risk to company."

"What are common diseases with similar symptoms?"

The first step, gives us the possible diagnoses for the domain. In

the second step, we generate symptoms for each diagnosis with the

following prompt:
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"What can we observe in factory/company/human body to
identify the underlying problem <the specific problem>? Out-
put a list of indicators and rank them based on your confi-
dence."

Similar to Section 4.1, we summarize and normalize the symp-

toms into a list denoted as S, eliminating redundancy arising from

synonyms and syntactic variations. Subsequently, we generate ma-

trices as presented in [20, Appendix A.1].

5.1.2 Sample Symptom Sets. In real-world scenarios, we have to

make a diagnosis based on a set of symptoms. Given a list of symp-

toms S and diagnosesD for a particular domain, we let 𝑠𝑞 ⊆ S be a

subset of the symptoms, which is used in the condition description

of a ranking query. For example, {Unplanned maintenance, Increased
rework and scrap, Increased product recalls, Increase cost, Increased
carrying costs} is a subset of size 5 for the manufacturing domain.

We let 𝑠𝑑 denote the set of all possible symptoms that we could

observe for one specific diagnosis 𝑑 ∈ D.

The number of all potentially possible symptom sets (all subsets

ofS) is too large for our experiments. To find a set of reasonable size,

we first quantify the uncertainty of symptom sets and then sample

a subset of symptom sets based on their uncertainty. Intuitively,

the uncertainty of a symptom set is lowest if it uniquely identifies a

diagnosis. The uncertainty is highest if all diagnoses are compatible

with the symptom set.

We use the Jaccard similarity to measure the similarity between

a symptom set 𝑠𝑞 and the symptoms 𝑠𝑑 associated with diagnosis 𝑑 :

𝑆𝑖𝑚(𝑠𝑞, 𝑠𝑑 ) =
|𝑠𝑞 ∩ 𝑠𝑑 |
|𝑠𝑞 ∪ 𝑠𝑑 |

(10)

We normalize it such that, for every symptom set 𝑠𝑞 , the similarity

values to different diagnoses sum up to 1:

𝑆𝑖𝑚(𝑠𝑞, 𝑠𝑑 ) =
𝑆𝑖𝑚(𝑠𝑞, 𝑠𝑑 )∑

𝑑∈D 𝑆𝑖𝑚(𝑠𝑞, 𝑠𝑑 )
(11)

Finally, we quantify the uncertainty of symptom set 𝑠𝑞 by calcu-

lating the normalized entropy of the similarity distribution:

𝑈 (𝑠𝑞) = −
1

log
2
( |D|)

∑︁
𝑑∈D

𝑆𝑖𝑚(𝑠𝑞, 𝑠𝑑 ) log2 (𝑆𝑖𝑚(𝑠𝑞, 𝑠𝑑 )) (12)

Note that the entropy is always between 0 and log
2
( |D|)), hence

our normalized entropy is always between 0 and 1.

In order to investigate our method in lower/higher uncertainty

settings, we sample two types of symptom sets for each query set

based on 𝑈 (𝑠𝑞). Since the majority of symptom sets is in the high

uncertainty region, we pick the 1000 lowest uncertainty symptom

sets for the low uncertainty query set. For the high uncertainty

set, we focus on sets with uncertainty between 0.7 and 0.8. More

precisely, the two symptom sets have been computed as follows:

• low uncertainty symptom sets - 𝑆𝑙𝑜𝑤 : we sort the potential

symptom sets by normalized entropy and select the 1000

symptom sets with minimum normalized entropy.

• high uncertainty symptom sets - 𝑆ℎ𝑖𝑔ℎ : we randomly select

1000 symptom sets with normalized entropy in the range of

0.7 to 0.8.

"Given we observe <symptom 1>, <symptom 2>, ... what
critical problems might exist in factory? Please output top
5 possible issues ranked by confidence without additional
text."

"Given we observe <symptom 1>, <symptom 2>, ... what
critical financial issue might we have in our company?
Please output top 5 possible issues ranked by confidence
without additional text."

"Given following symptoms: <symptom 1>, <symptom 2>,
... what disease might the patient have? Please output top 5
possible issues ranked by confidence without additional text."

Figure 1: Query templates for evaluating query uncertainty

Variant 1: "Given we detect <symptom 1>, <symptom 2>, ...
what essential issues might exist in factory? Please output
top 5 possible issues ranked by confidence without additional
text."

Variant 2: "What potentially serious problems in the manu-
facturing may there be if we notice <symptom 1>, <symptom
2>, ... ? Please output top 5 possible issues ranked by confi-
dence without additional text."

Figure 2: Syntactic variants of the manufacturing query.

We visualize the uncertainty distribution of 𝑆𝑙𝑜𝑤 and 𝑆ℎ𝑖𝑔ℎ with

histograms in [20, Appendix A.2].

5.2 From Symptom Sets to Ranking Queries
We study robustness with respect to query and syntax uncertainty

in our experiments. To evaluate query uncertainty, we convert

symptom sets to ranking queries using the template in Figure 1. To

evaluate syntax uncertainty, we designed two query variants to in-

vestigate the effect of syntactic query changes that are semantically

meaningless. In the first variant, we only replace part of the words

with synonyms without changing the structure of the queries (e.g.

we replace "observe" with "detect" and replace "critical problems"

with "essential issues"). In the second variant, we also change the

structure of the query. An an example, Figure 2 shows the variants

of the manufacturing ranking template stated before.

5.3 Evaluation Protocol
We evaluate the robustness of our approach over three batches of

ranking queries i.e. manufacturing, finance and medical queries,

compared with two baseline approaches.

5.3.1 Baselines.
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Algorithm 1 The pseudocode of ranking query generation

/* generate symptom-cause matrices */

D ← query ChatGPT

for 𝑑 ∈ D do
𝑠𝑞 ← query ChatGPT

add 𝑠𝑞 to a list: L𝑠 .append(𝑠𝑞)
end for
Symptom-Cause matrix← summarize and normalize L𝑠

/* sample symptom sets */

for 𝑠𝑞 ∈ 𝑆𝑞 do

calculate Jaccard similarity: 𝑆𝑖𝑚(𝑠𝑞, 𝑠𝑑 ) ←
|𝑠𝑞∩𝑠𝑑 |
|𝑠𝑞∪𝑠𝑑 |

normalization: 𝑆𝑖𝑚(𝑠𝑞, 𝑠𝑑 ) ←
𝑆𝑖𝑚 (𝑠𝑞 ,𝑠𝑑 )∑
𝑐∈C 𝑆𝑖𝑚 (𝑠𝑞 ,𝑠𝑑 )

calculate normalized entropy:

𝑈 (𝑠𝑞) ← − 1

log
2
( | C | )

∑
𝑐∈C 𝑆𝑖𝑚(𝑠𝑞, 𝑠𝑑 ) log2 (𝑆𝑖𝑚(𝑠𝑞, 𝑠𝑑 ))

add𝑈 (𝑠𝑞) to the list: List of indicator entropy.append(𝑈 (𝑠𝑞))
end for
Rank the 𝑆𝑞 based on the normalized entropy (from largest to

smallest).

𝑆𝑙𝑜𝑤 ← the last 1000 indicator sets.

𝑆ℎ𝑖𝑔ℎ ← randomly select 1000 symptom sets with normalized

entropy in the range of 0.7 to 0.8.

/* generate ranking queries from symptom sets */

Convert symptom sets into ranking queries using query template.

• Without Aggregation: we do not aggregate rank answers

and directly evaluate the robustness of single answers.

• Average Rank: we treat each rank preference equally and

aggregate the ranks by simply averaging the ranks. Given

𝑁 ranks 𝑟1 . . . 𝑟𝑁 to be aggregated, the aggregation function

is defined as 𝐴(𝑟1 . . . 𝑟𝑁 ) = 1

𝑁

∑𝑁
𝑖=1 𝑟𝑖 in this case.

5.3.2 Evaluation Metrics. We use Kendall’s rank correlation coef-

ficient (𝑅𝜏 ) [13] and Spearman’s rank correlation coefficient (𝑅𝑠 )

[26] to evaluate the robustness of the aggregated ranks.

Let 𝑛 be the number of items to be ranked. Kendall’s rank corre-

lation coefficient is defined as follows:

𝑅𝜏 =
𝐶 − 𝐷(𝑛

2

) =
2(𝐶 − 𝐷)
𝑛(𝑛 − 1) , (13)

where𝐶 is the number of concordant pairs (pairs that have the same

order in predicted and ground truth ranks) and 𝐷 is the number of

discordant pairs (pairs that have different order in both ranks). A

higher 𝑅𝜏 value indicates a better match between the predicted and

true ranks.

Spearman’s rank correlation coefficient is defined as follows:

𝑅𝑠 =
𝑐𝑜𝑣 (𝑟𝑎𝑛𝑘1, 𝑟𝑎𝑛𝑘2)
𝜎𝑟𝑎𝑛𝑘1 · 𝜎𝑟𝑎𝑛𝑘2

, (14)

where 𝑐𝑜𝑣 (.) is the covariance between two variables and 𝜎 is

the standard deviation. Similar to Kendall’s tau, a higher 𝑅𝑠 value

indicates a better match between the predicted and true ranks.

Algorithm.2 illustrates our approach to evaluating ranking queries.

Algorithm 2 The pseudocode of ranking query evaluation

/* Evaluate query robustness*/

Require: 𝑄
for 𝑖 ← 1 . . . 𝐾 do

𝑝𝑖 ← 𝐴(𝑇 (𝑄, 𝑁, 𝑡𝑖 ))
add 𝑝𝑖 to a list: 𝑃 .append(𝑝𝑖 )

end for
𝑅𝑄 = 1

2(𝐾
2
)
∑
𝑝1,𝑝2∈𝑃,𝑝1≠𝑝2 𝑠𝑐𝑜𝑟𝑒 (𝑝1, 𝑝2)

/* Evaluate syntax robustness*/

Require: 𝑄1 . . . 𝑄𝐾
for 𝑖 ← 1 . . . 𝐾 do

𝑝𝑖 ← 𝐴(𝑇 (𝑄𝑖 , 𝑁 , 𝑡𝑖 ))
add 𝑝𝑖 to a list: 𝑃 .append(𝑝𝑖 )

end for
𝑅𝑄 = 1

2(𝐾
2
)
∑
𝑝1,𝑝2∈𝑃,𝑝1≠𝑝2 𝑠𝑐𝑜𝑟𝑒 (𝑝1, 𝑝2)

5.4 Experiment Settings
In our experiments, we evaluate the robustness of the answer

with respect to repeated queries (query uncertainty) and syntactic

changes (syntax uncertainty). Algorithm 2 explains briefly how we

evaluate the robustness of the aggregated ranks.

5.4.1 Evaluation of Query Uncertainty. To evaluate the robustness

with respect to repeated queries, we query ChatGPT 𝑁 times with

ranking query 𝑄 at time 𝑡1 . . . 𝑡𝐾 and aggregate the answers with

aggregation function 𝐴 to get 𝐾 aggregated answers. Note in our

experiment, we specifically set 𝐾 = 3 and 𝑁 = 5 (𝑁 = 1 when

𝐴 is "without aggregation", since we do not aggregate answers in

this baseline). The overall robustness of the query 𝑅𝑞 is evaluated

by calculating pairwise Kendall’s and Spearman’s rank correlation

coefficient (we use 𝑠𝑐𝑜𝑟𝑒 (𝑥,𝑦) to denote the calculation of both

coefficients) and averaging the coefficients. The mean values and

standard deviation of all 𝑅𝑞 is reported in our results.

5.4.2 Evaluation of Syntax Uncertainty. We also evaluate the ro-

bustness with respect to syntactic changes, the process is very

similar to evaluation of query uncertainty. The only difference is

that in this case, instead of repeatedly aggregating outputs for the

same𝑄 , we use 𝐾 different ranking queries with the same semantic

meaning but different syntax. In our experiment, 𝐾 = 3.

5.5 Evaluation of Query Uncertainty
Table 2 presents results for query uncertainty. Our approach con-

sistently outperforms both baselines, "without aggregation" and

"average rank," across all three ranking query sets, demonstrating

its superiority in both high and low uncertainty scenarios.

5.6 Evaluation of Syntax Uncertainty
Table 2 provides an overview of the outcomes pertaining to syntax

uncertainty. Our approach outperform both baseline methods in the

majority of scenarios examined. We observe a substantial reduction

of both Kendall’s and Spearman’s coefficients compared to Table 3.

This suggests that syntactic variants introduce more variability.
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Table 2: Evaluation of query uncertainty: we submit the same ranking query to ChatGPT-turbo five times and then aggregate
the results. We repeat this process three times and evaluate the robustness of the three aggregated results. The temperature is
set to 1, which is the default setting in the web version of ChatGPT.

High uncertainty ranking queries Low uncertainty ranking queries
without aggregation average rank PBW (our) without aggregation average rank PBW (our)

Dataset Kendall Spearman Kendall Spearman Kendall Spearman Kendall Spearman Kendall Spearman Kendall Spearman
Manufacturing 0.29 (0.29) 0.34 (0.33) 0.63 (0.14) 0.76 (0.13) 0.78 (0.09) 0.84 (0.08) 0.33 (0.3) 0.38 (0.34) 0.62 (0.13) 0.74 (0.13) 0.75 (0.09) 0.81 (0.09)

Finance 0.49 (0.45) 0.53 (0.46) 0.74 (0.2) 0.82 (0.18) 0.81 (0.11) 0.86 (0.09) 0.57 (0.43) 0.6 (0.44) 0.75 (0.18) 0.82 (0.16) 0.79 (0.11) 0.84 (0.1)
Medical 0.54 (0.44) 0.59 (0.46) 0.75 (0.28) 0.81 (0.27) 0.83 (0.14) 0.88 (0.13) 0.56 (0.6) 0.58 (0.61) 0.67 (0.53) 0.7 (0.54) 0.84 (0.23) 0.85 (0.23)

Table 3: Evaluation of syntax uncertainty: we submit the same ranking query to ChatGPT-turbo five times and then aggregate
the results. We repeat this process for three syntactic variants and evaluate the robustness of the three aggregated results. The
temperature is set to 1, which is the default setting in the web version of ChatGPT.

High uncertainty ranking queries Low uncertainty ranking queries
without aggregation average rank PBW (our) without aggregation average rank PBW (our)

Dataset Kendall Spearman Kendall Spearman Kendall Spearman Kendall Spearman Kendall Spearman Kendall Spearman
Manufacturing 0.25 (0.2) 0.29 (0.23) 0.27 (0.19) 0.32 (0.22) 0.43 (0.18) 0.46 (0.19) 0.31 (0.23) 0.35 (0.25) 0.31 (0.2) 0.37 (0.23) 0.46 (0.2) 0.49 (0.21)

Finance 0.56 (0.32) 0.62 (0.31) 0.57 (0.25) 0.63 (0.25) 0.66 (0.17) 0.71 (0.18) 0.61 (0.34) 0.67 (0.32) 0.55 (0.25) 0.62 (0.25) 0.66 (0.16) 0.72 (0.16)
Medical 0.64 (0.28) 0.71 (0.26) 0.71 (0.22) 0.78 (0.2) 0.8 (0.16) 0.84 (0.15) 0.83 (0.26) 0.85 (0.24) 0.84 (0.22) 0.87 (0.19) 0.85 (0.18) 0.86 (0.18)
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Figure 3: Robustness with respect to the number of answers
used for aggregation.

5.7 Evaluation of Sample Efficiency
Another important question is how many answers do we need to

aggregate? That is, how should we choose the parameter 𝑁 for our

transformation method 𝑇 (𝑄, 𝑁, 𝑡). Figure 3 shows the robustness
with respect to the number of answers used for aggregation. We

can see that even aggregating only two answers with our approach

can already significantly increase the robustness. Note that figure 3

shows the robustness in case of query uncertainty (high uncertainty

version) and only Kendall’s tau is reported. However, we observed

similar trends for other settings.

6 CONCLUSIONS
To improve the robustness of the answers from LLMs, we suggest

to sample answers repeatedly and to aggregate the answers using

social choice theory. Our approach is based on the Partial Borda

Choice function as it gives several interesting analytical guarantees.

Our investigation primarily focuses on the application of rank-

ing queries within diagnostic contexts, such as medical and fault

diagnosis. Our experiments show that our approach significantly

improves the robustness against both query and syntax uncertainty.

Queries that ask for a single most plausible answer can be un-

derstood as a degenerated special case of our ranking queries. This

is because an answer 𝑜 can be understood as the partial preference

𝑜 ≻ 𝑂 \ 𝑜 (the provided answer is ranked above all other answers

and the ranking is indifferent about all other answers). In this spe-

cial case, our average rank baseline corresponds to majority voting.

One interesting venue for future work is to compare partial Borda

voting in the single-answer setting to other nonranking voting

methods. One may also interpret the ranking as an expression of

approval (the answer approves of a diagnosis if it is mentioned) and

to aggregate the answers by using approval voting methods.

Uncertainty in LLM outputs can also be caused by meaningless

information or adversarial attacks injected into the queries. In future

work, we aim to investigate whether social choice theory methods

can also be applied to effectively improve the robustness of LLM

outputs in the presence of such perturbations.
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