
Interactively Learning the User’s Utility for Best-Arm
Identification in Multi-Objective Multi-Armed Bandits

Mathieu Reymond
Vrije Universiteit Brussel

Brussels, Belgium
mreymond@ai.vub.ac.be

Eugenio Bargiacchi
Vrije Universiteit Brussel

Brussels, Belgium
ebargiac@ai.vub.ac.be

Diederik M. Roijers
Vrije Universiteit Brussel

Brussels, Belgium
diederik.roijers@vub.be

Ann Nowé
Vrije Universiteit Brussel

Brussels, Belgium
ann.nowe@ai.vub.ac.be

ABSTRACT
Many real-world problems have multiple, conflicting objectives.
Without knowing the utility function of the decision maker, one
must extensively learn all Pareto-efficient trade-offs to make sure
that the true preferred policy is included in the learned set. Because
such thorough exploration can be expensive (especially in high-
dimensional multi-objective problems), a possible alternative is to
allow some form of interaction with the decision maker as to gain
some information about the utility function. In particular, in this
work we assume that limited queries can be made to the policy
maker to gather some information about the true utility function,
concurrently to the search process being carried out. Improving our
knowledge over the utility function narrows the search-space of the
optimal policy. In turn, this results in more relevant trade-offs used
to query the decision maker. Thus, correctly timing the queries
is crucial to maximize information gain. We refer to this setting
as fixed-budget best-arm identification for multi-objective multi-
armed bandits, which adds to the traditional arm-pull actions a
separate query-action that can be taken instead, where both actions
have fixed but separate budgets. We propose Monte-Carlo Bayesian
Utility Learning (MCBUL), a method based on Monte-Carlo plan-
ning that is able to optimize the timing of query-actions w.r.t. the
arm-pull actions. We show that MCBUL significantly improves the
chances of finding the optimal policy compared to baselines that
interact with the decision maker at fixed intervals.

KEYWORDS
Multi-objective multi-armed bandits; Interactive learning; best-arm
identification

ACM Reference Format:
Mathieu Reymond, Eugenio Bargiacchi, Diederik M. Roijers, and Ann Nowé.
2024. Interactively Learning the User’s Utility for Best-Arm Identification
in Multi-Objective Multi-Armed Bandits. In Proc. of the 23rd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2024),
Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 10 pages.

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

1 INTRODUCTION
Decision makers faced with real-world problems often need to
consider multiple objectives. Improving one objective often comes
at the cost of another, i.e., objectives are conflicting, and one must
find a compromise between them. For instance, using renewable
energy sources involves economical and environmental factors [24].
In the medical field, radiotherapy should generally maximize the
destruction of cancer cells while minimizing the damage to the
healthy surrounding tissue [28]. The optimal trade-offs may vary
on a case-by-case basis, as they depend on the preferences of the
decision maker.

When the preferences – or utility – of the decision maker are
known a priori, one may directly optimize on said utility and use
single-objective optimization methods [33]. However, human de-
cision makers find it challenging to express their preferences in
absolute terms, as using numbers to express preferences can be
unnatural and prone to errors [45]. In this case, they need to be
informed with the values of actual trade-offs to be able to take well-
informed decisions. Thus, explicitly multi-objective optimization
techniques are required.

In contrast to single-objective optimization, that directly learns
a single solution, multi-objective optimization methods learn the
set of all possible optimal trade-offs, called the Pareto front. Once
learned, the Pareto front stays fixed, since it does not depend on the
preferences of the decision maker. The decision maker can then use
the Pareto front to review all available policies, and use this knowl-
edge to select their preferred one [23]. As a principal downside,
searching for all these trade-offs requires extensive computational
cost. This makes it unsuitable for settings with fixed or limited
resources [3, 18].

Instead of letting the decision maker review the different trade-
offs a posteriori, we aim to make use of the reviewing process during
the learning phase, allowing is to steer the search based on the deci-
sion maker’s feedback. This approach presents several advantages.
First, we improve our knowledge over the utility function, which
narrows the search-space of the optimal policy with respect to the
user preferences. Thus, it becomes easier to refine and improve the
solution over time. Moreover, this interactivity allows for our esti-
mate of the utility function to be adapted to changing preferences
or circumstances. As the decision maker’s preferences evolve, the
policy can be updated to reflect these changes. Finally, in case the
decision maker is a person (or group of persons), their involvement

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1611

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/

in the learning process means they gain a better understanding
of how it works and how their preferences are being taken into
account. This can increase their trust in the system and make them
more willing to use it.

Given a fixed budget in computational resources, and a fixed
number of interactions with the decision maker, we propose to
optimize the timing of user-interactions to maximize our chances
of learning the optimal policy. We do this in the context of multi-
objective multi-armed bandits (MOMABs) using a a Bayesian ap-
proach, by learning a belief distribution over the preferences of
the decision maker. In this work, we propose Monte-Carlo Bayesian
Utility Learning (MCBUL), based on Monte-Carlo methods. At each
timestep, we perform rollouts based on our belief distributions to
recommend either an interaction or an arm-pull, and show that it
significantly improves the chances of finding the optimal policy
compared to interacting with the decision maker at fixed intervals.

2 BACKGROUND
2.1 Multi-objective multi-armed bandits
Formally, a multi-objective multi-armed bandit (MOMAB) [16] is a
tuple 𝐁 = ⟨R, 𝑢⟩, where R = {P𝜃1 , . . . , P𝜃𝐴 } is a set of parametric
multivariate stochastic reward functions P𝜃1 , . . . , P𝜃𝐴 , and 𝑢 :
R𝑛 → R is the utility function defining the preferences of the
decision maker. Given a 𝑛-dimensional vector as input, where 𝑛
represents the number of objectives, it returns a scalar preference
score. For MOMABs, each P𝜃𝑎 is a multivariate distribution with
the number of dimensions equal to the number of objectives.

The optimal policy, or optimal arm, is the arm resulting in the
maximal utility with respect to its multivariate mean:

𝜋∗ = argmax
𝑎∈A

𝑢 (𝝁𝑎), (1)

where 𝝁𝑎 is the mean of the multivariate distribution P𝜃𝑎 . In this
work, we focus on the best-arm identification setting [3] where,
given a fixed budget, the goal is to recommend the optimal arm.
This is a pure exploration setting, as there is no cost incurred when
spending budget on sub-optimal arms, as long as the optimal arm
is recommended after all the budget has been spent. Our budget
is two-fold. First, we have a computational budget, represented as
a fixed number of arm-pulls. Selecting an arm 𝑎 ∈ A results in a
sample 𝒓 ∼ P𝜃𝑎 . Second, there is an interaction budget, represented
as the number of times we ask the decision maker for feedback (i.e.,
the number of times we call 𝑢).

Most body of work in the MORL literature assumes that the
utility function is a linear scalarization over the objectives:

𝑢 (𝑽) = 𝒘⊤𝑽 , {𝒘 ∈ S𝑛−1}, (2)

with S𝑛−1 the 𝑛 − 1 dimensional simplex, resulting in a weighted
sum over the objectives.

For this work, we assume the reward distributions are nor-
mally distributed, as this is often the case in the bandit litera-
ture [8, 34, 36]. We assume no correlation between the random
variables of P𝜃 , as this does not affect the multivariate mean,
i.e., P𝜃𝑎 = {N (𝜇1𝑎, 𝜎1𝑎), . . . ,N(𝜇𝑛𝑎 , 𝜎𝑛𝑎)}. Thus, 𝜃𝑎 = ⟨𝝁𝑎,𝝈𝑎⟩, with
𝝁𝑎 = [𝜇1𝑎, . . . , 𝜇𝑛𝑎], 𝝈𝑎 = [𝜎1𝑎, . . . , 𝜎𝑛𝑎] as the multivariate mean,
standard deviation for arm 𝑎, respectively.

2.2 Top-two Thompson sampling
A well-known Bayesian algorithm for best arm identification in
single-objective multi-armed bandits is called Top-two Thompson
Sampling (TTTS) [37]. The primary goal of TTTS is to distinguish
the best arm from the second-best arm. The stronger this distinc-
tion, the highest confidence it has that the estimated best arm is
indeed the optimal arm. Since the other arms are worse than the
second-best arm, their ordering does not matter, so we should avoid
spending our budget on them.

To distinguish arms, TTTS maintains a belief distribution over
each reward distribution P𝜃𝑎 , 𝑎 ∈ A. That is, TTTS estimates the
parameters 𝜃𝑎 based on the history of observed samples H𝑎,𝑡 =

{𝑟0, . . . , 𝑟𝑡−1} from P𝜃𝑎 .
We would like to compute the probability distribution P(𝜃𝑎 |

H𝑎,𝑡) over the possible distribution parameters, given the history
H𝑎,𝑡 . This is called the posterior distribution. Initially, when our
history H𝑎,𝑡 is empty, we are uncertain about 𝜃𝑎 and use default
parameters 𝜙𝑎 . The distribution P(𝜃𝑎 | 𝜙𝑎) is called the prior
distribution. We refer to Appendix A for further details on the
posterior distribution of a Normal distribution.

At time 𝑡 , TTTS samples from a Bernoulli distribution (typically
with 𝑝 = 0.5 of success) 𝑏 ∼ B(𝑝) to decide if it should pull the
best arm. The ordering of arms is decided by sampling from each
of the belief distributions, and sorting the arms according to their
associated sample. When 𝑏 is a success, we pull the best arm. Oth-
erwise, we aim to pull the second-best arm. The second-best arm is
decided by saving the sampled best arm, and then resampling from
each belief distribution until the resampled best arm is different
from the saved best arm. That arm is then pulled.

At 𝑡 = 0, when our beliefs have no information about the re-
ward distributions, each arm is equally likely to be selected as best.
However, as we pull arms, our belief distributions become increas-
ingly informative, and the likelihood of the highest ranked arm
corresponding to the optimal arm increases as well.

We repeat this process until the budget has been exhausted. At
this point, the arm associated with the belief distribution with the
highest mean is identified as the best arm.

3 BELIEF DISTRIBUTION OF THE UTILITY
FUNCTION

An important aspect of MOMABs is the inclusion of the utility
function 𝑢. This function is initially unknown. To find the best arm,
we need to have an understanding of 𝑢. Similarly as for arms, we
keep a belief distribution over 𝑢, which we improve over time by
interacting with the decision maker. Using this belief distribution,
we can sample utility function estimates𝑢 and rank the multivariate
samples coming from the arm belief distributions. This allows us
to pull arms following the same strategy as the TTTS algorithm.

While the utility function could be a formal process return-
ing an absolute score, in many real-world problems, the decision
maker is human. Humans find it challenging to express their prefer-
ences in absolute terms (e.g., "I like this movie 0.4 much"), as using
numbers to express preferences can be unnatural and prone to er-
rors [45]. Additionally, values may change [40] depending on the
user’s mood, which can be influenced by seemingly trivial factors
like the weather [17, 42]. On the other hand, expressing preferences

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1612

in relative terms (e.g., "I prefer movie A over B") is easier for hu-
mans and tends to be more consistent over time [45, 56]. Therefore,
we focus on learning the utility function using relative feedback.
We can translate this process as a binary classification task where,
given two propositions, the goal is to predict if the first proposition
is preferred over the second one. Formally, given two propositions
𝒓0, 𝒓1, we define ≻ : R𝑛 × R𝑛 → {1, 0} as the binary preference
operator, where 𝒓0 ≻ 𝒓1 outputs 1 when the decision maker prefers
𝒓0 over 𝒓1, and 0 otherwise. Thus, we define each interaction with
the decision maker as a pair, where the first element is the two
propositions to compare, and the second element is the decision
maker’s answer:

⟨⟨𝒓0, 𝒓1⟩, 𝒓0 ≻ 𝒓1⟩. (3)
We keep each interaction in an interaction historyH𝑞 , which is

used to update the belief distribution over 𝑢.
We propose to use particle filtering [15, 21] as a belief distribution

over the utility function. Particle filtering uses a set of particles to
represent a distribution, where each particle is weighted according
their likelihood given the datapoints. Sampling from this belief
distribution then amounts to sampling a particle according to their
likelihood. Formally, given a set of particles 𝑥0, . . . , 𝑥𝑃 , where 𝑃 is
the total number of particles, each 𝑥𝑖 is associated with a particle
weight 𝝎𝑖 , whose value is:

𝝎𝑖 = P(𝑥𝑖 | H𝑞). (4)
The mean of the particle distribution is then the weighted aver-

age of the particles:

𝝁 =

𝑃∑︁
𝑖=0

𝝎𝑖𝑥𝑖 . (5)

Since we can freely choose how we define our particles, one ad-
vantage of particle filtering is that it can approximate distributions
of arbitrary shapes. Thus, we can represent 𝑢 by its weights (see
Equation 2). Since the weights from 𝑢 belong to S𝑛−1, we sample
our particles from it. However, as a downside, the number of par-
ticles required to accurately represent the 𝑛 − 1 simplex increases
exponentially with the number of objectives.

At the beginning of training, we assume that we do not possess
any knowledge over 𝑢. Thus, initially all particles are weighted
equally. However, with each new datapoint, the likelihood of each
particle is updated. Intuitively, we give a high likelihood to all
particles that match the decision maker’s answers to past queries,
and a low likelihood to the other particles. Given our historyH𝑞

of relative queries, the weight 𝝎 of particle 𝑥 is defined as:

𝝎 =
∏

ℎ∈H𝑞

| (𝒓0
ℎ
≻ 𝒓1

ℎ
) − 𝜂 | (𝝎⊤𝒓0

ℎ
≥ 𝝎⊤𝒓1

ℎ
), (6)

where 𝜂 accounts for potential mistakes, or change of preference
from the decision maker. Thus, when 𝜂 = 0, only the particles of
weights for which all answers of the decision maker correspond to
the solution with the highest utility have a non-zero probability of
being sampled. Moreover, these particles are equally likely.

3.1 Selecting queries for the decision maker
Although pairwise comparisons are more reliable in terms of hu-
man answers, they provide less information than absolute scores,

and are thus less effective to estimate 𝑢. It is thus important that
the pairwise comparisons are informative and realistic. For the
comparisons to be realistic, we select the solution pairs based on
our current belief distributions over arms. Moreover, since our goal
is to distinguish the top-two arms, we aim to provide queries that
further discriminate the top-two arms in terms of utility.

Inspired by Interactive Thompson Sampling (ITS) [36], an algo-
rithm for regret minimization for MOMABs, we base our query-
selection mechanism on Thompson sampling [46]. First, we sample
a utility function estimate 𝑢 from our belief distribution. Next, for
each belief distribution over arms, we sample a vectorial reward
𝒓𝑎 ∼ P

𝜃𝑎
with 𝜃𝑎 ∼ P(𝜃𝑎 | H𝑎,𝑡). For each arm 𝑎, we compute

its utility 𝑢 (𝒓𝑎) using the corresponding sampled rewards and the
sampled weights. We can then rank the arms according to their
computed utility. We give the samples corresponding to the top-two
ranked arms as a query to the decision maker. This allows us to
have varied queries (as they are based on samples), that focus on
a narrow region of the utility-space (the region that distinguishes
the first and the second arm). We compare the performance of our
proposed query-selection mechanism with the one used in ITS in
Appendix B, and show that this results in more pertinent queries.

4 MCBUL FOR QUERY OPTIMIZATION
Learning the utility function is tied with learning the optimal policy,
as our query-selection mechanism depends on our belief distribu-
tion over arms. Thus, we argue that we can optimize the timing of
querying the decision maker.

We propose, to the best of our knowledge, the first algorithm for
best arm identification in the multi-objective setting. Our algorithm,
Monte-Carlo Bayesian Utility Learning (MCBUL), takes inspiration
from Partially Observable Monte-Carlo Planning (POMCP) [41],
which effectuates Monte-Carlo sampling to break the curse of di-
mensionality of large search-spaces. Moreover, POMCP can cope
with partial observability of MDPs, by keeping and updating beliefs
over states. This makes POMCP compatible with our setting, as we
keep belief distributions over the arms and utility function, which
are updated with each pull, and query, respectively. Finally, since
POMCP is a planning algorithm based on tree-search, it is made
for episodic settings. This is the case for our best-arm identifica-
tion setting, where the pulling budget and query budget define the
number of timesteps that can be executed.

POMCP is an online algorithm for action-recommendation. In its
essence, it is an extension of Monte-Carlo tree search (MCTS) [13]
for partially observable MDPs (POMDPs). Although, contrary to
MDPs and POMDPs, MOMABs do not have states, we will see in
Section 4.1 that we can use the same concept behind these algo-
rithms differently in MOMABs, by considering the whole process
towards finding the best arm as a sequential decision process.

We first explain the main idea behind MCTS, as it is essentially
the same as for POMCP. At each timestep 𝑡 , MCTS performs a num-
ber of simulations, or rollouts, using a model of the environment.
All rollouts start from the current state 𝑠𝑡 and are assigned a score.
Based on these simulated rollouts, it estimates the average score 𝜇𝑎
for each action𝑎 of 𝑠𝑡 . It then recommends executing the actionwith
the highest estimated 𝜇𝑎 in the environment. This leads to a new
state 𝑠𝑡+1, at which point the process repeats: recommending an

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1613

a
b c d

e

f
g

Figure 1: Illustration of MCBUL on a 3-arm, 2-objective MOMAB. Top-left depicts the original MOMAB, with its three arms
P𝜃𝑎 , 𝑎 ∈ A and their true means in solid blue, orange and red. The black dotted ellipses represent our current arm estimates
P(𝜃𝑎 | H𝑎,𝑡), with the hollow dots our mean estimates 𝝁𝑎 . Bottom-left shows the utility weight space S. The solid colors
represent the sections of S where a given arm is truly optimal (blue is always suboptimal), and the solid green line represents
the decision maker’s true preference. Thus, the optimal recommendation for this MOMAB is 𝑏1. The dotted line shows our
belief distribution over 𝑢 as weighted particles with in dashed green the currently estimated mean. — a) Sampled MOMAB from
the current belief distribution. Note that the solid lines represent the ground truth in this sampled new MOMAB, while our
dashed estimates are unchanged — b-c-d) A single MCTS-like rollout is performed, using UCB within the tree and MOTTTS
outside. — e) Our updated branch estimates are used to score the rollout (R1 = 1, as the recommended arm is also the best arm of
the sampled MOMAB). — f) We update the values of the traversed nodes with the score. — g) After multiple executions of a-f, we
pull the arm with the highest value at MCBUL’s root-node on the real MOMAB, update our estimates, and repeat the process.

action to execute in 𝑠𝑡+1, based on simulated rollouts starting from
𝑠𝑡+1. The main particularity of POMCP, compared to MCTS, is that
POMCP does not actually know the state 𝑠𝑡 (or 𝑠𝑡+1) it is currently
in. It has only a limited view on the state, and a belief distribution
P on what this state could be. For each rollout, POMCP samples
an estimated state 𝑠𝑡 , and starts the simulation from there. The
recommended action is then based on the aggregated 𝜇𝑎 estimates
over all 𝑠𝑡 samples.

4.1 Transition model for simulated rollouts
POMCP requires a model of the environment to make simulations.
We propose to create a such a model, entirely based on our belief
distributions over arms and utility function.

Although the MOMAB’s true parameters ⟨𝝁𝑎,𝝈𝑎⟩, 𝑎 ∈ A and
the true utility function 𝑢 are unknown, our belief distribution
allows us to sample a virtual MOMAB by sampling an estimated
mean, standard deviation 𝝁𝑎, �̂�𝑎 ∼ P(· | H𝐴

𝑎,𝑡), 𝑎 ∈ A for each arm,
and sampling a utility function 𝑢 ∼ P(· | H𝑞

𝑡).
Moreover, we can interact with this virtual MOMAB as we would

with the real MOMAB, by pulling its arms and observing rewards
𝒓 ∼ N(𝝁𝑎, �̂�𝑎), and asking queries that will be answered by 𝑢.
Thus, the total number of actions is 𝐴 + 1: 𝐴 actions to pull arms
𝑎1, . . . , 𝑎𝐴 , and 1 action to query the decision maker, using the
querying strategy explained in Section 3.1. The resulting observa-
tions can be added toH𝐴

𝑡 andH𝑞
𝑡 , which respectively update the

belief distribution over arms and utility function. The total number
of interactions 𝑇 with this virtual MOMAB (and thus the length of
an episode and maximal depth of the search tree built by POMCP) is
defined by the sum of the leftover query budget and pulling budget.

4.2 Simulating rollouts
Recommending an action is based on simulated rollouts. To identify
with the highest confidence possible which action to recommend,
the rollouts use a targeted exploration of the availablemodel defined
in Section 4.1. This is done by building a tree of the possible action-
sequences, and following the most promising branches of this tree.

Initially, our tree consists of a root-node (Figure 1a), correspond-
ing toH𝐴

𝑡 andH𝑞
𝑡 .This belief-node has one child-node per possible

action, called action-node. Executing the corresponding action on
the available model results in an updated belief H𝐴

𝑡+1,H
𝑞

𝑡+1. Thus,
the tree alternates between belief-nodes and action-nodes.

Each node keeps track of the number of times it has been visited
(the visitation count), as well as the average return of all rollouts
passing through that node (the value of that node).

A rollout is split in 4 phases. In the first phase, we walk down our
current tree (Figure 1b). At each belief-node, we select an action-
node based on the Upper Confidence Bound [4], as is done in MCTS
and POMCP. We execute the action in the virtual MOMAB, leading
us to an updated belief distribution. If this belief does not correspond
to a child-node of the selected action-node, we go to the next phase.
Otherwise, we walk to that child-node, and repeat the process.

Thus, the second phase starts from an action-node that leads to a
belief that has not been encountered before. We create a new belief-
node, and add it as a child of the current action-node (Figure 1c).
Since this occurs at every rollout, each rollout creates one belief-
node. The tree-size is thus proportional to the number of rollouts.

Next, the third phase starts from the newly created node, and
executes a fixed policy in the virtual MOMAB until all leftover
budget has been used (Figure 1d). We then assess the performance

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1614

of the rollout using a scoring function (i.e., the rollout’s return,
Figure 1e), which we explain in more detail in Section 4.4.

Finally, the return is backpropagated, updating the visitation
count and value of each visited node during this rollout (Figure 1f).

For each rollout, we sample a different virtual MOMAB. This
ensures that the recommended action at the root-node is the best
one across our whole belief distribution. However, this comes with
some challenges. Mainly, the quality of the estimated values at the
root-node are significantly impacted by the branching factor of
the tree, as a larger branching factor requires exponentially more
simulations. We note 2 different branching factors, one for the
belief-nodes, and another for the action-nodes. Each belief-node
has one child for each possible action. Thus, the branching factor
increases with the number of possible arms. Hence, we expect a
decrease of performance for MOMABs with a large number of arms.
This is a known problem for tree-search approaches such as MCTS
and POMCP, and multiple approaches have been proposed to cope
with large action-spaces, typically by keeping a small subset of
candidate-actions [9, 11, 12, 20].

Analogously, action-nodes have a branching factor that depends
on the number of subsequent encountered beliefs. However, each
H𝐴

𝑡+1,H
𝑞

𝑡+1 is unique, as pulling an arm in our virtual MOMAB
results in a continuous reward-vector. As such, the branching fac-
tor for belief-nodes is infinite, bounding the tree-depth to 3: the
root-node, the actions executable from it, and finally an endlessly
growing number of next-belief-nodes. To ensure a meaningful tree-
search, we need to cope with this infinite branching factor.

4.3 Aggregating belief-nodes together
A straightforward way of dealing with continuous state-spaces is
to discretize the states. For our setting, this amounts to splitting the
range of possible reward values in a fixed number of bins. We can
decide on the branching factor by choosing the number of bins. A
higher number of bins increases the accuracy of the discretization,
at the cost of a higher branching factor.

We use an adaptive binning mechanism, based on the belief
distribution over the arm we are currently pulling. As the belief
distribution becomes more accurate, due to the additional samples,
then the bins become increasingly precise. Since, in our setting, the
reward-distributions follow a Normal distribution, its conjugate
prior is a Normal-gamma distribution (see Equation 12 in Appen-
dix A). We use the estimated mean and standard deviation from the
conjugate prior to produce the boundaries between each bin.

Concretely, we compute a range of possible values [𝜇−𝑐𝜎, 𝜇+𝑐𝜎],
where 𝑐 is a constant defining up to how many standard deviations
we can be away from the estimated mean, that we partition equally
between the chosen number of bins. We set, using prior hyperpa-
rameters 𝛼 = 1

2 , 𝛽 = 0.1:

𝜇 = 𝜇,with 𝜇 the sample mean,

𝑘 = 𝛼 + 𝑁

2 ,with 𝑁 the number of samples,

𝜏 =
(𝛽 + 𝑁

2 �̂�
2)−1, with �̂� the sample standard deviation,

assuming a zero-prior,

0.2
0.4
0.6
0.8
1

𝑜 1

0.4 0.6 0.8 10.2
0.4
0.6
0.8
1

𝑜0

𝑜 1

0.4 0.6 0.8 1
𝑜0

Figure 2: Example of produced bins, depending on the num-
ber of samples. As the number of samples increases, our
belief distribution becomes more precise, which means the
bins better match the reward distribution.

𝜎 =

√︂
1
𝑘𝜏

, since 𝑘𝜏 is the mean of a Gamma distribution.

Figure 2 shows an illustration of our binning method depending
on the number of samples, using 10 bins per objective-dimension.
It displays, in orange, the bivariate normal distribution (up to 2
standard deviations) from which the samples (in blue) are drawn.
The grid (in black) represent the different bins. As the number of
samples increase, so does the confidence of the belief distribution
in its estimation of the mean and standard deviation. The bins
increasingly concentrate around the true distribution.

Our adapted binning allows for an automatic segmentation of the
sampled rewards. However, the number of bins required to split the
state-space increases exponentially with the number of objectives.
Still, we argue that, when the number of objectives are limited,
binning is a reasonable approach, as it is conceptually simple and
adaptive to each individual belief distribution.

4.4 Evaluating rollouts
Since we can cope with the infinite branching of belief-nodes, we
can execute simulated rollouts that each will increase the size and
depth of the search tree. At the end of a rollout, we need to assess
its quality. Since our aim is to provide the best arm within a fixed
budget, we would like our algorithm to recommend the action that
maximally increases our chances to find this best arm. As such, our
scoring function should reflect this.

Since we can best assess the quality of a rollout after it has been
executed, and the score is backpropagated through the tree, we
only provide a score at the end of each simulation. This score is
computed using the posterior belief over arms and over the utility
function, since they define our estimate over the best arm.

To assess the importance of the scoring function compared to
the number of rollouts, we have analyzed 2 alternative scoring
mechanisms. As a first scoring function, we compute our estimated
utility of each arm, by using the estimated mean of the posterior
belief over the utility function and the estimated mean of each arm.
If the arm with the highest estimated utility, i.e., the proposed best

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1615

arm, matches the best arm from the simulated bandit generated at
the root node of our tree, the simulation is considered a success,
and returns a score of 1. Otherwise, the simulation is considered a
failure, and the returned score is 0:

R1 =

{
1 if 𝑎∗ = 𝑎∗ 𝑎∗ = argmax𝑎∈𝐴 𝝁⊤𝑢 𝝁𝑎
0 otherwise,

(7)

where 𝑎∗ is the proposed best arm. This is the same way we would
recommend the best arm to the real decision maker (and not the
simulated utility function in our algorithm). Since each node keeps
track of the average score from all simulations passing through
that node, the scores of the action-nodes at the root represent the
probability of recommending the best arm to the decision maker.

Not only is this scoring function aligned with the goal of our
problem setting, it has also the advantage of being computationally
inexpensive, which allows us to spend the computational budget
on additional simulations, thus improving the accuracy of the esti-
mated probabilities at the root’s action-nodes. However, due to its
binary nature, this scoring function is sparse. Moreover, since the
success depends on our initial belief over the MOMAB, it can be
noisy. Thus, many simulations are required for accurate best arm
identification probabilities at the root node.

The first scoring function requires many simulations for accurate
best arm identification probabilities at the root node. When the
branching factor becomes too large, this can become an issue. Thus,
we envisage a second, less sparse and more informative scoring
function. We take inspiration from TTTS which, to identify the best
arm, aims to discriminate the best and second-best arm as much
as possible. Similarly, we estimate the confidence of our posterior
belief at the end of the simulation in recommending the best arm.

To compute this confidence score, we sample weights and arm-
rewards multiple times from our posterior belief over the MOMAB.
For each arm, we count the number of times it is recommended as
best. This gives us a recommendation percentage for each arm. The
returned score is the highest recommendation percentage.

More formally, assume we sample 𝑁 times, for each arm 𝑎, its
estimated mean 𝝁𝑎 ∼ P(· | H𝐴

𝑎), and a utility function 𝑢 ∼ P(· |
H𝑞). Let us call the 𝑛-th samples 𝝁𝑛𝑎 and 𝑢𝑛 respectively. Then we
have:

R2 = max
𝑎

𝑁∑︁
𝑛=0

𝛿 (𝑎, 𝑛) (8)

𝛿 (𝑎, 𝑛) =
{
1, if 𝑢𝑛 (𝝁𝑛𝑎) > 𝑢𝑛 (𝝁𝑛

𝑏
) ∀𝑏 ∈ 𝐴−𝑎,

0, otherwise.
(9)

Since the recommendation percentage depends on the number
of times we sample from our posterior belief, it is more compu-
tationally expensive. However, it might be a beneficial trade-off
depending on the properties of the bandit (e.g., number of arms,
number of objectives).

5 EXPERIMENTS
WithMCBUL, our aim is to optimize the timing of the query process.
To assess the impact of this timing, we propose a baseline algorithm
that uses fixed timings to query the decisionmaker.We use different
variants of this baseline, that have different timings.

5.1 Multi-objective TTTS
For single-objective optimization, TTTS is an efficient algorithm
for best-arm identification. We propose to extend it to the multi-
objective setting, by learning multivariate belief distributions over
the arms. We call this algorithm multi-objective top-two Thompson
sampling (MOTTTS).

If learning the utility function and learning the optimal arm are
separate, disjoint processes, we can do one process followed by the
other one. Thus, our first variant asks all queries first, based on the
initial belief distributions over arms, then learns the optimal policy
using the learned utility function. This variant is MOTTTS-start.

Analogously, our second variant first learns the belief distribu-
tions over the arms, then asks all the queries based on these learned
beliefs. We call this variant MOTTTS-end.

Finally, to assess the impact of combining both processes to-
gether, we propose a third variant, where the timing of each query
is spread out equally over the arm-pulling budget. We call this
variant MOTTTS-interleaved.

5.2 Experimental setup
All our experiments are performed on randomly generatedMOMABs.
So that learning the optimal policy is challenging, i.e., it is not pos-
sible to reliably find the optimal policy by randomly pulling arms,
we enforce some properties on the generated bandits. For example,
so there can be different optimal arms depending on the utility
function, we ensure a percentage of arms are non-dominated (40%
in our experiments). More details are provided in Appendix C.

To provide further insights on the generated bandits, we include
additional baselines that serve as upper and lower bounds on the
probability of identifying the optimal arm. As an upper bound, we
assume knowledge of the utility function, and apply TTTS on the
utility of the sampled multi-objective rewards, which is equivalent
to MOTTTS without having to learn the utility function. We call
this upper bound MOTTTS-cheat.

As a lower bound, we use a round-robin strategy, i.e., the arm-
pulling budget is split equally for each arm. After pulling each arm
the same number of times, all queries are asked to learn the utility
function. This strategy avoids pulling arms in a smart way and does
not take advantage of the learned belief distributions over arms.

We generate 30, 2-objective MOMABs, and perform 1000 ex-
periments on each MOMAB. We use 100 particles equally-spaced
over the 𝑛− 1 simplex, initialized with uniform probability-weights.
We set the UCB exploration factor 𝛽 to 0.1. We set the noise 𝜂
accounting for mistaken answers by the decision maker to 0.05.

5.3 Baseline results
Results for the baselines are displayed in Table 1. For each baseline,
we report the best arm identification percentage (BAI%) averaged
over all MOMABs. Since the generated MOMABs are different, it is
more difficult to find the optimal arm for some than for others. This
means the BAI% inherently varies across MOMABs. As such, we
did not find any insight in including the standard deviation. Instead,
we report the percentage of MOMABs for which each query-timing
outperforms the others in terms of BAI% (i.e., WIN%1 in the Table).
1These percentages do not exactly sum to 100, due to the rare occurrences where
performance is equal.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1616

MORobin-end MOTTTS-start MOTTTS-end MOTTTS-interleaved MOTTTS-cheat
BAI% 66.96% 72.70% 67.80% 75.07% 83.29%
WIN% N/A 13.53% 0.11% 86.38% N/A

Table 1: Comparisons between our MOTTTS-based baselines. The round-robin strategy and the "cheat" version of MOTTTS
which uses the true utility function are shown on the side as lower and upper bounds respectively. We show the best-arm-
identification percentage (BAI%) for each strategy, based on 100000 experiments on 10000MOMABs. We do not show the standard
deviation, as the different MOMABs exhibit different properties. In its place, the WIN% value represents the proportion of
MOMABs in which each variant has the highest BAI%. We see that MOTTTS-interleaved performs best in both metrics.

103 104 105 106

70

80

90

rollouts

BA
I%

MOTTTS-cheat
MOTTTS-interleaved

MCBULR1
MCBULR2

103 104 105 106
0

50

100

rollouts
W
IN
%

Figure 3: Best-arm-identification percentage (BAI%) of MCBUL depending on the number of rollouts. MCBULR1 uses the binary
scoring function, while MCBULR2 estimates the posterior confidence with 1000 samples. We note that MCBULR1 needs one
order of magnitude more rollouts than MCBULR2 to reach similar performance in BAI%. However, since the binary scoring
function is less expensive to compute, the wall-time is similar. We observe that, given enough rollouts, the timing of the queries
proposed by MCBUL results in a higher BAI% than the MOTTTS-interleaved baseline. Moreover, for similar wall-time, using
the second scoring function results in a higher BAI% than using the binary scoring function.

First, we notice that, as expected the round-robin strategy per-
forms worst, as it does not use targeted exploration. Second, we
observe that knowing 𝑢 does indeed result in better performances,
as the MOTTTS-cheat upper-bound baseline performs best. Next,
we observe that asking all queries before pulling arms results in a
better performance than asking all queries after having used up the
pulling budget. Since, at the start of training, we use uninformative
belief distributions, our query-selection strategy (see Section 3.1)
samples different utility functions, and random vectorial rewards,
resulting in diverse queries. While not realistic, these queries allow
to narrow down the range of possible utility functions, resulting in
a more reliable ranking of arms during the arm-selection steps.

In contrast, having no information on the utility function means
each non-dominated arm is potentially optimal. Thus, for all these
arms, an accurate belief distribution is required, resulting in the
pulling budget being split across more arms than necessary. Even
if, afterwards, the queries are realistic, the uncertainty on the belief
distributions over arms might be too high to accurately select the
best arm. Indeed, we observe that the performance of MOTTTS-end
is similar to the lower-bound, MORobin-end, as the exploration has
been spread over too many arms.

Across all the query-selection timings, MOTTTS-interleaved
performs best. This indicates that improving knowledge over the
utility function and improving knowledge over the policy’s search

space are intertwined processes. As an additional analysis, we ob-
serve using the WIN% that on 86.38% of the MOMABs, MOTTTS-
interleaved has a higher BAI% than both theMOTTTS-start baseline
and the MOTTTS-end one. This supports our conclusion about the
intertwined processes.

Finally, although MOTTTS-interleaved has the highest BAI%
across the query-selection variants, there is still a large gap with
the upper-bound performance, which reaches 83.29%. We believe
that, by further optimizing the timing at which the queries are
asked, we can close this gap.

5.4 MCBUL results
Results are shown in Figure 3. We show MCBUL using the 2 scor-
ing functions. MCBULR1 uses the binary scoring function, while
MCBULR2 estimates the posterior confidence with 1000 samples.
We analyze the effect of the number of rollouts on MCBUL’s perfor-
mance, by repeating the experiments with an increasing number of
rollouts. We note that, since MCBULR1 uses a less computationally
expensive scoring function than MCBULR2 , it can perform more
rollouts for similar wall-times (in this case, one order of magni-
tude more). This is why we perform experiments with 104, 105, 106
rollouts for MCBULR1 , and 103, 104, 105 rollouts for MCBULR2 .

In general, the BAI% increases with the number of rollouts. Pro-
vided enough rollouts, MCBUL beats theMOTTTS-interleaved base-
line, for both scoring functions. However, for similar wall-times,

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1617

MCBULR2 systematically outperforms MCBULR1 . Thus, it seems
that using a more informative scoring function has a higher impact
on performance than increasing the number of rollouts. MCBULR2
with 105 rollouts reaches a BAI% of 78.38%, compared to 74.48% for
MOTTTS-interleaved and 85.26% for the upper bound, MOTTTS-
cheat. Since we can maximally improve the BAI% by 10.78% com-
pared to the baseline, the 3.9% improvement byMCBULR2 represent
a substantial increase in performance. Moreover, looking at the cor-
responding WIN% value on Figure 3, we see that MCBULR2 has a
higher BAI% than MOTTTS-interleaved on 100% of the generated
MOMABs, showing that it reliably optimizes the timing of queries,
regardless of the MOMABs’ properties. In contrast, MCBULR1 with
106 rollouts has a higher average BAI%, but is better than MOTTTS-
interleaved on 73.33% of the generated MOMABs. Moreover, we
expect the WIN% and BAI% to increase as we increase the number
of rollouts. Since the best-arm-identification setting is not neces-
sarily an online setting, we expect this to be possible depending on
the problem at hand. Thus, our MCBUL algorithm learns different
timings depending on the MOMAB, pulling arms more efficiently
with respect to the estimated utility, resulting in a higher chance of
finding the best arm than when using a fixed timing for queries.

6 RELATEDWORK
While, to the best of our knowledge, we are the first to propose an
algorithm for best arm identification in the multi-objective setting,
this setting is related to different areas of work.

MOMABs [16] have been studied to learn the set of Pareto op-
timal policies [19, 30]. Yahyaa et al. [52, 53] assume Bernoulli dis-
tributions over the rewards, and additionally aim for a fair pulling
of all Pareto-efficient arms. These methods minimize the regret
using a multi-objective performance metric. For example, Daulton
et al. [14] learn the set of Pareto-efficent arms using a fast approxi-
mation of the expected hypervolume improvement, while Belakaria
et al. [5] select the action that maximizes information gained about
the Pareto front. Also, the Pareto front can be learned by sampling
different scalarization functions, based on the hypervolume [54].

In contrast to these methods that do not assume knowledge over
𝑢, MOMABs have been used for known utility functions in con-
strained optimization, either optimizing a single objective subject to
predefined linear constraints [29], or non-linear constraints [43, 44].
For MABs, this has been used in the context of clinical trials, by
identifying dosages that satisfy toxicity constraints [39].

Instead of constraints, another approach is to provide an order
of preferences over the different objectives, and incorporate that
into a multi-objective Bayesian optimisation framework [1].

More closely related to our setting, Paria et al. [32] minimize the
regret of MOMABs by randomly sampling utility functions. The
sampling strategy can incorporate prior knowledge over 𝑢, thus
fine-tuning the set of optimal arms. While they do not incorporate
a way to choose or update this prior, they argue their method is
compatible with potential updates of information over preferences
during the optimization process.

One other work that considers interactive preference learning for
MOMABs is [2]. Like in our work, they incorporate pairwise relative
queries, and they use parametric utility functions. Moreover, on top
of linear utility functions, they consider quadratic and exponential

utility functions. However, they focus on regret minimization, and
ask queries at fixed intervals, like ITS [36].

Our query-strategy is based on Thompson sampling so we can
quickly propose queries. Alternative strategies based on volume
removal maximization [38], information gain [6, 7, 22, 48] or re-
gret [49] have been proposed to efficiently learn 𝑢.

Finally, preference learning has been considered in contextual
MABs [26] and RL [50, 51]. However, while they use relative queries,
they use partial trajectories, or states, instead of multi-objective
trade-offs [10, 27]. Interestingly, [55] consider both pairwise relative
preferences and ranking preferences, by ordering 4 samples.

7 CONCLUSION AND FUTUREWORK
Wehave shown that learning both the utility function and the policy
requires an intertwined approach, as demonstrated by MOTTTS-
interleaved which performs the best out of all baselines. Because
MOTTTS-interleaved suffers from a significant performance gap
with respect to the (unachievable) multi-objective TTTS oracle
upper bound, we argued that its strategy can still be significantly
improved. For this reason, we propose MCBUL2, a Bayesian ap-
proach towards query-timing optimization for best-arm identifi-
cation. Given enough simulated rollouts, MCBUL can accurately
estimate which action maximally improves its belief over the best
arm in terms of utility. As an additional feature, MCBUL only re-
quires information about the utility function in the form of relative
queries, which are easier to gather from human decision makers.
We showed how MCBUL achieves higher identification scores in
multiple generated mo-bandits than the competing baselines.

While the concept of the MCBUL algorithm can be applied di-
rectly on many multi-objective problems, the implementation we
demonstrated in this work has twomain limitations. The first is that
our work showcases MCBUL only on MOMABs with linear util-
ity functions. While particle filtering should be adaptable to more
complex settings, for example those using non-linear parametric
scalarization functions [47], the number of particles required to
cover the parametric space increases exponentially with the num-
ber of objectives. As an alternative, MCBUL could be adapted to use
Gaussian Processes (GPs) to model non-linear utility functions [35].

The second limitation is that, due to the fact that computing the
return of a single rollout is (in relative terms) a fairly expensive
operation, MCBUL finds it difficults to deal with settings with large
number of arms and/or objectives. In these cases, the top branches
cannot be explored enough without an excessive computational
cost, which limits MCBUL’s applications. A possible way to deal
with this issue is to apply adaptive particle filtering techniques that
allow to only resample filters in more interesting regions of the
weight space [25, 31]. We could similarly scale our experiments to
MOMABs with more arms, by using, e.g., progressive widening [9,
12] on the actions in MCBUL’s search tree.

ACKNOWLEDGMENTS
This research was supported by funding from the Fonds voorWeten-
schappelijk Onderzoek (FWO) through the grant of E.B. (#1SA2820N)
and from the Flemish Government under the “Onderzoekspro-
gramma Artificiële Intelligentie (AI) Vlaanderen” program.
2code available at https://github.com/mathieu-reymond/MCBUL

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1618

https://github.com/mathieu-reymond/MCBUL

REFERENCES
[1] Majid Abdolshah, Alistair Shilton, Santu Rana, Sunil Gupta, and Svetha Venkatesh.

2019. Multi-objective Bayesian optimisation with preferences over objectives.
In Advances in Neural Information Processing Systems, H. Wallach, H. Larochelle,
A. Beygelzimer, F. d'Alché-Buc, E. Fox, and R. Garnett (Eds.), Vol. 32. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2019/file/
a7b7e4b27722574c611fe91476a50238-Paper.pdf

[2] Raul Astudillo and Peter Frazier. 2020. Multi-attribute Bayesian optimization
with interactive preference learning. In International Conference on Artificial
Intelligence and Statistics. PMLR, 4496–4507.

[3] Jean-Yves Audibert, Sébastien Bubeck, and Rémi Munos. 2010. Best arm identifi-
cation in multi-armed bandits.. In COLT. 41–53.

[4] Peter Auer, Nicolo Cesa-Bianchi, and Paul Fischer. 2002. Finite-time analysis of
the multiarmed bandit problem. Machine learning 47 (2002), 235–256.

[5] Syrine Belakaria, Aryan Deshwal, Nitthilan Kannappan Jayakodi, and Janard-
han Rao Doppa. 2020. Uncertainty-aware search framework for multi-objective
Bayesian optimization. In Proceedings of the AAAI Conference on Artificial Intelli-
gence, Vol. 34. 10044–10052.

[6] Erdem Biyik and Malayandi Palan. 2019. Asking Easy Questions: A User-Friendly
Approach to Active Reward Learning. In Proceedings of the 3rd Conference on
Robot Learning.

[7] Urszula Chajewska, Daphne Koller, and Ronald Parr. 2000. Making Rational
Decisions Using Adaptive Utility Elicitation. In Proceedings of the Seventeenth
National Conference on Artificial Intelligence and Twelfth Conference on Innovative
Applications of Artificial Intelligence. AAAI Press, 363–369.

[8] Olivier Chapelle and Lihong Li. 2011. An empirical evaluation of thompson
sampling. Advances in neural information processing systems 24 (2011).

[9] Guillaume M Jb Chaslot, Mark HMWinands, H Jaap van den Herik, Jos WHM
Uiterwijk, and Bruno Bouzy. 2008. Progressive strategies for Monte-Carlo tree
search. New Mathematics and Natural Computation 4, 03 (2008), 343–357.

[10] Paul F Christiano, Jan Leike, Tom Brown, Miljan Martic, Shane Legg, and Dario
Amodei. 2017. Deep Reinforcement Learning from Human Preferences. In Ad-
vances in Neural Information Processing Systems, I. Guyon, U. Von Luxburg, S. Ben-
gio, H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett (Eds.), Vol. 30. Cur-
ran Associates, Inc. https://proceedings.neurips.cc/paper_files/paper/2017/file/
d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf

[11] Adrien Couëtoux, Jean-Baptiste Hoock, Nataliya Sokolovska, Olivier Teytaud,
and Nicolas Bonnard. 2011. Continuous upper confidence trees. In Learning and
Intelligent Optimization: 5th International Conference, LION 5, Rome, Italy, January
17-21, 2011. Selected Papers 5. Springer, 433–445.

[12] Rémi Coulom. 2007. Computing “elo ratings” of move patterns in the game of go.
ICGA journal 30, 4 (2007), 198–208.

[13] Rémi Coulom. 2007. Efficient selectivity and backup operators in Monte-Carlo
tree search. In Computers and Games: 5th International Conference, CG 2006, Turin,
Italy, May 29-31, 2006. Revised Papers 5. Springer, 72–83.

[14] Samuel Daulton, Maximilian Balandat, and Eytan Bakshy. 2020. Differentiable
expected hypervolume improvement for parallel multi-objective Bayesian opti-
mization. Advances in Neural Information Processing Systems 33 (2020), 9851–9864.

[15] Arnaud Doucet, Simon Godsill, and Christophe Andrieu. 2000. On sequential
Monte Carlo sampling methods for Bayesian filtering. Statistics and computing
10 (2000), 197–208.

[16] MadalinaMDrugan and Ann Nowe. 2013. Designingmulti-objective multi-armed
bandits algorithms: A study. In The 2013 international joint conference on neural
networks (IJCNN). IEEE, 1–8.

[17] Joseph P Forgas. 1995. Mood and judgment: the affect infusion model (AIM).
Psychological bulletin 117, 1 (1995), 39.

[18] Victor Gabillon, Mohammad Ghavamzadeh, Alessandro Lazaric, and Sébastien
Bubeck. 2011. Multi-bandit best arm identification. Advances in Neural Informa-
tion Processing Systems 24 (2011).

[19] Eduardo C Garrido-Merchán and Daniel Hernández-Lobato. 2019. Predictive
entropy search for multi-objective bayesian optimization with constraints. Neu-
rocomputing 361 (2019), 50–68.

[20] Sylvain Gelly and David Silver. 2011. Monte-Carlo tree search and rapid action
value estimation in computer Go. Artificial Intelligence 175, 11 (2011), 1856–1875.

[21] Neil J Gordon, David J Salmond, and Adrian FM Smith. 1993. Novel approach to
nonlinear/non-Gaussian Bayesian state estimation. In IEE proceedings F (radar
and signal processing), Vol. 140. IET, 107–113.

[22] Shengbo Guo and Scott Sanner. 2010. Real-time Multiattribute Bayesian Prefer-
ence Elicitation with Pairwise Comparison Queries. In Proceedings of the Thir-
teenth International Conference on Artificial Intelligence and Statistics (Proceedings
of Machine Learning Research, Vol. 9), Yee Whye Teh and Mike Titterington (Eds.).
PMLR, Chia Laguna Resort, Sardinia, Italy, 289–296.

[23] Conor F Hayes, Roxana Rădulescu, Eugenio Bargiacchi, Johan Källström,Matthew
Macfarlane, Mathieu Reymond, Timothy Verstraeten, Luisa M Zintgraf, Richard
Dazeley, Fredrik Heintz, et al. 2022. A practical guide to multi-objective rein-
forcement learning and planning. Autonomous Agents and Multi-Agent Systems
36, 1 (2022), 26.

[24] Conor F Hayes, Mathieu Reymond, Diederik M Roijers, Enda Howley, and Patrick
Mannion. 2023. Monte Carlo tree search algorithms for risk-aware and multi-
objective reinforcement learning. Autonomous Agents and Multi-Agent Systems
37, 2 (2023), 26.

[25] Jeroen D Hol, Thomas B Schon, and Fredrik Gustafsson. 2006. On resampling
algorithms for particle filters. In 2006 IEEE nonlinear statistical signal processing
workshop. IEEE, 79–82.

[26] Alihan Hüyük, Daniel Jarrett, and Mihaela van der Schaar. 2022. Inverse Contex-
tual Bandits: Learning How Behavior Evolves over Time. In Proceedings of the
39th International Conference on Machine Learning (Proceedings of Machine Learn-
ing Research, Vol. 162), Kamalika Chaudhuri, Stefanie Jegelka, Le Song, Csaba
Szepesvari, Gang Niu, and Sivan Sabato (Eds.). PMLR, 9506–9524.

[27] Borja Ibarz, Jan Leike, Tobias Pohlen, Geoffrey Irving, Shane Legg, and Dario
Amodei. 2018. Reward learning from human preferences and demonstrations in
atari. Advances in neural information processing systems 31 (2018).

[28] Ammar Jalalimanesh, Hamidreza Shahabi Haghighi, Abbas Ahmadi, Hossein
Hejazian, and Madjid Soltani. 2017. Multi-objective optimization of radiotherapy:
distributed Q-learning and agent-based simulation. Journal of Experimental &
Theoretical artificial intelligence 29, 5 (2017), 1071–1086.

[29] Anmol Kagrecha, Jayakrishnan Nair, and Krishna Jagannathan. 2023. Constrained
regret minimization for multi-criterion multi-armed bandits. Machine Learning
(2023), 1–28.

[30] Marco Laumanns and Jiri Ocenasek. 2002. Bayesian optimization algorithms for
multi-objective optimization. In Parallel Problem Solving from Nature—PPSN VII:
7th International Conference Granada, Spain, September 7–11, 2002 Proceedings 7.
Springer, 298–307.

[31] Tiancheng Li, Miodrag Bolic, and Petar M Djuric. 2015. Resampling methods
for particle filtering: classification, implementation, and strategies. IEEE Signal
processing magazine 32, 3 (2015), 70–86.

[32] Biswajit Paria, Kirthevasan Kandasamy, and Barnabás Póczos. 2020. A flexible
framework for multi-objective bayesian optimization using random scalarizations.
In Uncertainty in Artificial Intelligence. PMLR, 766–776.

[33] Mathieu Reymond, Conor F. Hayes, Denis Steckelmacher, Diederik M. Roijers,
and Ann Nowe. 2023. Actor-critic multi-objective reinforcement learning for
non-linear utility functions. Autonomous Agents and Multi-Agent Systems 37, 2
(23 April 2023). https://doi.org/10.1007/s10458-023-09604-x

[34] Jason Rhuggenaath, Alp Akcay, Yingqian Zhang, and Uzay Kaymak. 2019. Opti-
mizing reserve prices for publishers in online ad auctions. In 2019 IEEE Conference
on Computational Intelligence for Financial Engineering & Economics (CIFEr). IEEE,
1–8.

[35] Diederik M Roijers, Luisa M Zintgraf, Pieter Libin, Mathieu Reymond, Eugenio
Bargiacchi, and Ann Nowé. 2021. Interactive multi-objective reinforcement
learning in multi-armed bandits with gaussian process utility models. InMachine
Learning and Knowledge Discovery in Databases: European Conference, ECML
PKDD 2020, Ghent, Belgium, September 14–18, 2020, Proceedings, Part III. Springer,
463–478.

[36] Diederik M Roijers, Luisa M Zintgraf, and Ann Nowé. 2017. Interactive thompson
sampling for multi-objective multi-armed bandits. In Algorithmic Decision Theory:
5th International Conference, ADT 2017, Luxembourg, Luxembourg, October 25–27,
2017, Proceedings 5. Springer, 18–34.

[37] Daniel Russo. 2016. Simple bayesian algorithms for best arm identification. In
Conference on Learning Theory. PMLR, 1417–1418.

[38] Dorsa Sadigh, Anca D. Dragan, S. Shankar Sastry, and Sanjit A. Seshia. 2017.
Active Preference-Based Learning of Reward Functions. In Robotics: Science and
Systems.

[39] Cong Shen, Zhiyang Wang, Sofia Villar, and Mihaela Van Der Schaar. 2020.
Learning for dose allocation in adaptive clinical trials with safety constraints. In
International Conference on Machine Learning. PMLR, 8730–8740.

[40] Siegel Sidney. 1957. Nonparametric statistics for the behavioral sciences. The
Journal of Nervous and Mental Disease 125, 3 (1957), 497.

[41] David Silver and Joel Veness. 2010. Monte-Carlo planning in large POMDPs.
Advances in neural information processing systems 23 (2010).

[42] Ercan Sirakaya, James Petrick, and Hwan-Suk Choi. 2004. The role of mood on
tourism product evaluations. Annals of Tourism Research 31, 3 (2004), 517–539.

[43] Yanan Sui, Alkis Gotovos, Joel Burdick, and Andreas Krause. 2015. Safe explo-
ration for optimization with Gaussian processes. In International conference on
machine learning. PMLR, 997–1005.

[44] Yanan Sui, Vincent Zhuang, Joel Burdick, and Yisong Yue. 2018. Stagewise safe
bayesian optimization with gaussian processes. In International conference on
machine learning. PMLR, 4781–4789.

[45] Gerald Tesauro. 1988. Connectionist learning of expert preferences by comparison
training. Advances in neural information processing systems 1 (1988).

[46] William R Thompson. 1933. On the likelihood that one unknown probability
exceeds another in view of the evidence of two samples. Biometrika 25, 3-4 (1933),
285–294.

[47] Kristof Van Moffaert, Madalina M Drugan, and Ann Nowé. 2013. Scalarized
multi-objective reinforcement learning: Novel design techniques. In 2013 IEEE

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1619

https://proceedings.neurips.cc/paper_files/paper/2019/file/a7b7e4b27722574c611fe91476a50238-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2019/file/a7b7e4b27722574c611fe91476a50238-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/d5e2c0adad503c91f91df240d0cd4e49-Paper.pdf
https://doi.org/10.1007/s10458-023-09604-x

Symposium on Adaptive Dynamic Programming and Reinforcement Learning (AD-
PRL). IEEE, 191–199.

[48] Paolo Viappiani and Craig Boutilier. 2020. On the equivalence of optimal rec-
ommendation sets and myopically optimal query sets. Artificial Intelligence 286
(2020), 103328. https://doi.org/10.1016/j.artint.2020.103328

[49] Nils Wilde, Dana Kulić, and Stephen L. Smith. 2020. Active Preference Learning
using Maximum Regret. In 2020 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS). 10952–10959. https://doi.org/10.1109/IROS45743.2020.
9341530

[50] Christian Wirth, Riad Akrour, Gerhard Neumann, Johannes Fürnkranz, et al.
2017. A survey of preference-based reinforcement learning methods. Journal of
Machine Learning Research 18, 136 (2017), 1–46.

[51] Christian Wirth, Johannes Fürnkranz, and Gerhard Neumann. 2016. Model-free
preference-based reinforcement learning. In Proceedings of the AAAI Conference
on Artificial Intelligence, Vol. 30.

[52] Saba Q Yahyaa, Madalina M Drugan, and Bernard Manderick. 2014. Annealing-
pareto multi-objective multi-armed bandit algorithm. In 2014 IEEE Symposium
on Adaptive Dynamic Programming and Reinforcement Learning (ADPRL). IEEE,
1–8.

[53] Saba Q Yahyaa and Bernard Manderick. 2015. Thompson Sampling for Multi-
Objective Multi-Armed Bandits Problem.. In ESANN.

[54] Richard Zhang and Daniel Golovin. 2020. Random hypervolume scalarizations
for provable multi-objective black box optimization. In International Conference
on Machine Learning. PMLR, 11096–11105.

[55] Daniel M Ziegler, Nisan Stiennon, Jeffrey Wu, Tom B Brown, Alec Radford, Dario
Amodei, Paul Christiano, and Geoffrey Irving. 2019. Fine-tuning language models
from human preferences. arXiv preprint arXiv:1909.08593 (2019).

[56] Masrour Zoghi, ShimonWhiteson, RemiMunos, andMaarten Rijke. 2014. Relative
upper confidence bound for the k-armed dueling bandit problem. In International
conference on machine learning. PMLR, 10–18.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1620

https://doi.org/10.1016/j.artint.2020.103328
https://doi.org/10.1109/IROS45743.2020.9341530
https://doi.org/10.1109/IROS45743.2020.9341530

	Abstract
	1 Introduction
	2 Background
	2.1 Multi-objective multi-armed bandits
	2.2 Top-two Thompson sampling

	3 Belief distribution of the utility function
	3.1 Selecting queries for the decision maker

	4 MCBUL for query optimization
	4.1 Transition model for simulated rollouts
	4.2 Simulating rollouts
	4.3 Aggregating belief-nodes together
	4.4 Evaluating rollouts

	5 Experiments
	5.1 Multi-objective TTTS
	5.2 Experimental setup
	5.3 Baseline results
	5.4 MCBUL results

	6 Related work
	7 Conclusion and future work
	Acknowledgments
	References

