
Design Patterns for Explainable Agents (XAg)
Sebastian Rodriguez

RMIT University
Melbourne, Australia

sebastian.rodriguez@rmit.edu.au

John Thangarajah
RMIT University

Melbourne, Australia
john.thangarajah@rmit.edu.au

Andrew Davey
RMIT University

Melbourne, Australia
andrew.davey2@rmit.edu.au

ABSTRACT
The ability to explain the behaviour of the AI systems is a key aspect
of building trust, especially for autonomous agent systems - how
does one trust an agent whose behaviour can not be explained? In
this work, we advocate the use of design patterns for developing
explainable-by-design agents (XAg), to ensure explainability is an
integral feature of agent systems rather than an “add-on” feature.
We present TriQPAN (Trigger, Query, Process, Action and Notify), a
design pattern for XAg. TriQPAN can be used to explain behaviours
of any agent architecture and we show how this can be done to
explain decisions such as why the agent chose to pursue a particular
goal, why or why didn’t the agent choose a particular plan to
achieve a goal, and so on. We term these queries as direct queries.
Our framework also supports temporal correlation queries such as
asking a search and rescue drone, “which locations did you visit
and why? ”. We implemented TriQPAN in the SARL agent language,
built-in to the goal reasoning engine, affording developers XAg
with minimal overhead. The implementation will be made available
for public use. We describe that implementation and apply it to two
case studies illustrating the explanations produced, in practice.

KEYWORDS
AOSE; Design Patterns; Explainable Agents; EMAS

ACM Reference Format:
Sebastian Rodriguez, John Thangarajah, and Andrew Davey. 2024. Design
Patterns for Explainable Agents (XAg). In Proc. of the 23rd International
Conference on Autonomous Agents and Multiagent Systems (AAMAS 2024),
Auckland, New Zealand, May 6 – 10, 2024, IFAAMAS, 9 pages.

1 INTRODUCTION
The likes of ChatGPT has propelled artificial intelligence techniques
into a new era, where more and more industries are seeking to lever-
age the power of AI to automate and optimise business processes
and productivity. This increased interest has also raised the im-
portant question of whether these AI systems can be trusted. The
ability to explain the behaviour of AI systems is a key aspect of
building trust [14]. This is particularly important for multi-agent
systems (MAS) that typically perform tasks on behalf of humans.

In this work, we advocate the use of design patterns for the
purpose of developing eXplainable-by-design Agents (XAg).

In traditional Software Engineering, the concept of Design Pat-
terns [8] have been successfully used for decades to improve a

This work is licensed under a Creative Commons Attribution
International 4.0 License.

Proc. of the 23rd International Conference on Autonomous Agents and Multiagent Systems
(AAMAS 2024), N. Alechina, V. Dignum, M. Dastani, J.S. Sichman (eds.), May 6 – 10, 2024,
Auckland, New Zealand. © 2024 International Foundation for Autonomous Agents and
Multiagent Systems (www.ifaamas.org).

vast number of quality attributes of the software products. These
quality attributes (sometimes referred as "-ity" attributes) include
modularity, usability, interoperability, and so on. We argue that
explainability should be included in this list for AI systems. The
design pattern also ensures that explainability is an integral feature
when developing multi-agent systems, rather than an “add-on”.

Despite the call for the use of design patterns in MAS over a
decade ago [3] to increase the broader acceptance of the technology,
there has been little work on the use of design patterns in practical
MAS. A notable exception is the work of Dastani and Testerink
[5] that provided design patterns for agent-oriented programming
providing templates for realising some agent-oriented concepts
and abstractions in an object-oriented technology. There has also
been recent work by Washizaki et al. [28] exploring design patterns
for machine learning systems, also highlighting the importance of
this approach in gaining wider acceptance by the broader software
engineering community.

In this work, we propose TriQPAN (Trigger, Query, Process,
Action and Notify), a design pattern, which when implemented can
be used to explain the behaviours such as why the agent chose to
pursue a particular goal, why or why didn’t the agent choose a
particular plan to achieve a goal, why a particular state is true and
so on. The underlying system needs to capture and store events
related to a TriQPAN design process and the event store is queried
to explain behaviours and outcomes.

Recently, Winikoff et al. [30–32] presented a formal framework
for constructing explanations of the behaviour of BDI agent systems
[17]. Their work builds on, formalises and extends the work of
Habers et al. [10, 11], and utilise the goal-plan structures typically
found in BDI agents. Whilst our design pattern TriQPAN could be
used for any decision-making AI system, and we show how this can
be done, we incorporate TriQPAN natively into the goal-reasoning
engine of the SARL agent programming language [18]. Underlying
SARL is an event driven architecture. We incorporate a state-of-
the-art event stream database - EventStoreDB 1 to log and query
the event streams, which can be done in real-time.

We facilitate three types of explanation queries: (i) direct queries
related to goals, plans and beliefs. (e.g. why did you decide to get the
coffee from the shop?); (ii) temporal correlation queries that relate a
sequence of decisions (e.g. Which series of locations did you visit
to get the coffee?); and (iii) continuous queries that monitors for
the query result continuously and returns values (e.g. what times
of the day is the kitchen coffee replenished?). To the best of our
knowledge previous work was only able to deal with direct queries.
The key differentiator to previous work is that our approach of
using an event store to manage the stream of events related to the
design pattern. This affords us the luxury of rich queries that goes
beyond reasoning constrained to the goal-plan tree structures.
1https://www.eventstore.com

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1621

https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.eventstore.com

In summary, our contributions are: (i) we present a design pat-
tern - TriQPAN , for developing explainable MAS (Section 3); (ii)
implemented TriQPAN into the SARL agent programming language,
natively, together with EventStoreDB. We describe the implemen-
tation and will make available the tools for public use (Section
4); and (iii) present practical experiments to illustrate the use of
TriQPAN in practice with two case studies - the first, an abstract
example of an agent getting coffee as used in [31], and the second,
a search and rescue drone example as used in [22] (Section 5).

2 BACKGROUND
We first present some preliminaries on design patterns, goal-plan
agents and our implementation platforms SARL and EventStoreDB.
We also briefly describe the related work [31] and [10] on XAg.

2.1 Design Patterns
Design patterns [9] in software engineering are time-tested solu-
tions to recurring design challenges, tracing their roots back to the
early days of computer programming. These patterns provide solu-
tions to recurring design problems, ensuring that developers don’t
have to reinvent the wheel with each new project. Instead, they can
leverage proven strategies for specific design challenges, promot-
ing code reusability and maintainability. A pattern is a common
solution to a common problem in a given context [13].

Benefits of design patterns include reusability, improved commu-
nication, flexibility, and efficiency. However, their application must
be context-aware to avoid unnecessary complexity. We present our
design pattern for XAg in the context of multi-agent systems.

2.2 Goal-plan Agents
Although the XAg approach we present applies to any agent ar-
chitecture, our native implementation in SARL is for goal-plan
agents. That is, an agent that has goals to achieve and plans that
achieve these goals. Goal-plan agents are also the context of the
aforementioned previous work [10, 31].

A goal is typically a state of the world the agent wants to achieve,
and plans are recipes for achieving them. A plan has a context
condition that determines the applicability of the plan to achieve
the goal in a particular situation and a body that may have steps
that are a combination of actions (considered atomic) and sub-goals.
These steps may be unordered or ordered sequentially. Each sub-
goal in turn would have its own set of plans that can be utilised
to achieve them and so on. This goal-plan relationship leads to a
natural tree-like structure, commonly referred to as a goal-plan
tree (GPT) [25–27]. These GPTs are a general abstraction of a wide
range of BDI agent [17] platforms (e.g. JACK [29], JadeX [16], Jason
[2]) and we have recently extended SARL [18] to also include this
goal-plan architecture.

Figure 1, illustrates the goal-plan structure for the “get coffee”
example from [31]. We also use their example to also illustrate some
aspects of the use of TriQPAN in the sections ahead. A succinct
version of the scenario is as follows: An academic visitor requires
coffee. There are a number of ways to get coffee. There is a coffee-
pod machine in the host academic’s office which serves good coffee
and can be used freely if she is in her office. There is a staff kitch-
enette that has a machine that serves coffee-like substance, which is

Figure 1: Example of “Get Coffee” as presented in [31]. get-
Coffee is the top-level goal, plans are written as C:N, where C
is the condition andN the plan name, V𝑖 are value effect anno-
tations of the form (quality, cost, distance), where dist(L1,L2)
is the distance between locations L1 and L2; and pre and post
indicates the conditions that must be true for the plan or
action to begin and what is true after execution, respectively.

not as nice but it is also free. The best coffee however is at a nearby
coffee shop which can be purchased at a cost. A key preference is
coffee over coffee-like substances. Less-important preferences are
to save money, and to use the nearest coffee source. These give rise
to the three relevant quality attributes (in order): quality (coffee
preferred to coffee-like), money (free preferred to expensive), and
location (smallest distance from starting location).

Winikoff et al. also introduce the notion of “valuings” to a typical
goal-plan tree which indicates the positive or negative affect of
a plan (or action) and its outcome. For example in Figure 1, the
valuings of the getKitchenCoffee plan are - coffee quality is bad,
cost is none, and the distance between locations. Their experiments
show that using these valuings enable better explanations.

2.3 SARL & EventStoreDB
SARL is a general-purpose agent-oriented programming language
designed for building intelligent multi agent systems [18]. Devel-
oped as an open-source project, SARL aims to simplify the creation
of MAS by providing a high-level language with native constructs
for modelling and implementing agent behaviours.

SARL agents are characterized by their autonomous, event-driven
behavior responding to changes in their environment, and more
recently goal-oriented behaviours [20]. Its interoperability with the
Java ecosystem has further expanded its reach, allowing seamless
integration with established software libraries and frameworks.
Due to its generic and highly extensible architecture, SARL is able
to integrate new concepts and features quickly. This quality cou-
pled with its features, has seen it adopted by a number of academic
and industrial institutions to develop a wide range of applications
[1, 15, 19, 20, 24]. The underlying event-driven architecture of SARL
makes it highly amenable towards XAg as storing and querying the
events enables explainability. We store and query event streams in
SARL by incorporating the state-of-the-art EventStoreDB.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1622

EventStoreDB (https://www.eventstore.com/) is a specialized
database system optimized for event sourcing [7] — a software
architectural pattern where changes to the system state are stored
as a sequence of events, rather than merely storing the current
state itself. By capturing every single change as a distinct event,
EventStoreDB allows systems to reconstruct their state at any point
in time, thereby providing a robust mechanism for versioning, au-
diting, and in our use case, explainability. We utilise some of its
rich features such as temporal queries and projections in order to
derive explanations as we describe in Section 4.2.

2.4 Related Work on XAg
Although there has been a huge emphasis on the need for explain-
able AI there is not much work in MAS research on explainable
agents. Notable exceptions are the aforementioned recent work of
Winikoff et al. [31] and much earlier body of work by Habers et al.
[10, 11]. All of these works utilise GPTs as a base for providing ex-
planations as the GPT allows traceability. For example, explaining
why an action is performed could be done by tracing the tree. In
the simplest form it could be - action ‘a’ was performed by plan ‘p’
as part of achieving goal ‘g’.

Habers et al. [11] requires the agents to store any decisions that
may require explanation via an explicit logging mechanism. For
example, when the agent adopts a goal G at time t, it logs that it
adopted goal G at t. In the 2APL [4] programming language that
they use, it would be written as follows:
Monitor <- true | [adopt(Check(X)); UpdateLog(Check(X),t)].
This explanation log can store beliefs, goals, actions etc. The decision
what to log and what not should depend on the information that is
desired in an explanation. Whilst they provide templates for some
case studies their approach was not a general formalism.

The approach of Winikoff et al. [31] strictly generalises the work
of Habers et al. and is able to do more. In particular, they introduce
“valuings” as mentioned above. Their experiments show that valu-
ings provide for better explanations. An important contribution
of [31] is the mechanisms for generating explanations in a more
human-friendly natural language than say a simple trace of a GPT.
They provide formal definitions and detailed algorithms.

We note that our design pattern TriqPAN is complementary and
generalises all of the previous work. That is, TriqPAN allows all of
the explanations provided in previous work, which we term direct
queries, and go beyond by allowing temporal correlation queries as
we describe in Section 4. We use the event-driven architecture of
SARL combined with EventStoreDB to automatically log all the
events in such a way they can be queried to provide rich explana-
tions, beyond simply tracing the goal-plan tree structures.

We integrate TriQPAN into the SARL goal-reasoning engine to
automatically capture all the relevant events to provide in-built
explainability for goal-oriented behaviours. This allows the use
of SARL with built-in XAg that requires little to no additional
overhead from the developers. We also show how TriqPAN can
be implemented in any agent architecture, to explain any type of
(ad-hoc) behaviours.

To the best of our knowledge, the work of Winikoff et al. was
not implemented in an agent programming language but rather
prototypes in Haskell and Python to evaluate the formalisms and

algorithms presented. In contrast, we fully implement our design
pattern based approach in SARL, and will make this XAg version
of SARL available for use via GitHub. This can then be used to
develop agent systems with built-in explainability and also expand
upon as required. Note however that currently our explanations
do not provide rich natural language expressions, as it is not the
intended purpose of our work. Instead, in future work, we aim to
utilise and implement the algorithms provided by Winikoff et al.
for this purpose.

3 TRIQPAN - A DESIGN PATTERN FOR XAG
The TriQPAN (Trigger, Query, Process, Action and Notify) pattern is
designed to create explainable agent processes that can be recorded
to explain the agent’s reasoning and decision processes. As with
any design pattern, TriQPAN needs to be adapted to the specific
process being implemented. In a typical MAS, every decision that
an agent makes, for example, which goal to pursue, which plan
to execute to achieve a goal, and so on, entails a process that is
composed of a sequence of clearly identifiable steps - trigger, query,
process, action and notify as follows.

Once the decision process has been triggered (e.g. by a percep-
tion), it will query its state or known information (e.g., its belief
sets), compute or process this information to select the actions to
perform, and finally, notify of its actions and completion to other
modules (i.e., building blocks for the agent’s architecture). This
observation and the steps are at the core of the TriQPAN pattern.

A graphical notation of the TriQPAN pattern is shown in Figure 2.
Each icon is annotated with the TriQPAN steps it represents and
the arrows between them indicate control flow.

Figure 2: TriQPAN design pattern

Triggers are instances of events that begin a TriQPAN process. Per-
ceptions are the most typical triggers of behaviours for most
agent types, though they can take different forms depend-
ing on the specific architecture used. If the agent is using
a goal-oriented architecture, events such as Goal Adopted,
Goal Activated or Belief Updated, are candidates triggers.

Query step retrieves information from the agent’s mental state.
This can be as simple as data structures (e.g., variables) or as
complex as querying an ontology knowledge base.

Process step queries the data and the trigger to select the appro-
priate actions to take (if any).

Action step executes one or more actions in response to the trigger.
Actions in this pattern should be interpreted as operations
the agent is able to do in a broader sense. They can be internal
(e.g. update beliefs) or external (e.g., write to a file, move
towards a location).

Notify ends the TriQPAN process and is twofold. First, all actions
must notify of any effective change of state (e.g., belief up-
dates). Second, the TriQPAN should fire an event that in-
forms of all the components used. We term this event the

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1623

https://www.eventstore.com/

Figure 3: Goal Reasoning processing using the TriQPAN patterns

XAgentProcess event . Note that the notifications of one
TriQPAN can be the trigger of another TriQPAN , for chained
decision processes (See Figure 3).

The XAgentProcess event is a central element for explainability
in our approach. It is captured and stored to enable interactive
queries. We describe this in detail in Section 4 ahead.

TriQPAN adoption considerations. Like any design pattern, TriQ-
PAN must be adapted to the specific agent process it is applied to.
We highlight some important considerations when adapting it:

• Each TriQPANmust fire a XAgentProcess event that contains
all relevant information about the TriQPAN components (i.e.,
trigger, queries and outputs, actions applied).

• Every action should fire an event that notifies other modules
of effective state changes. For instance, when updating a
belief a Belief Updated event should be fired. If actions do not
directly affect the agent’s state (e.g. actions that affect the
external environment only), changes will be captured later
by the agent as perceptions as the environment changes.

• A TriQPAN must not contain Action-Query loops. Any pro-
cess required as a response to an action a should be mod-
elled as a separate TriQPAN using the notification of a’s
TriQPAN as the trigger.

• A TriQPAN must be stateless. That is, it can only depend
on the information contained in the trigger and the queries
made. This stateless feature also means that, given the same
trigger and the same query results, the process must ap-
ply the same actions ensuring reproducibility. Furthermore,
if the XAgentProcess event is correctly constructed, every
TriQPAN can be reproduced and verified against its XA-
gentProcess event . This feature is a result of TriQPAN ’s
foundations and inspiration onwell-established event-driven
patterns such as Event Sourcing [7] and CQRS [6].

The TriQPAN pattern can be used in any agent architecture to
model and explain key decision processes. While TriQPAN can be
used in ad-hoc agent decision processes, its main benefits appear
when the framework used for reasoning natively integrates the
TriQPAN pattern. E.g., a goal-oriented reasoning engine built using
TriQPAN would enable explainability without any (or minimal)
developer overhead. As described ahead in section 4.2, we have
implemented such an engine in SARL. This allows developers to
focus on designing a goal oriented solution obtaining XAg for free.

Here we briefly describe the principle underlying the creation
of a goal reasoning engine based on TriQPAN patterns. The funda-
mental idea is to ensure that the goal reasoning engine has a set

of TriQPAN processes such that the process notifications of one
TriQPAN are triggers for the next required TriQPAN process.

Consider the diagram in Figure 3. It represents three processes
of the goal engine. First, the Goal Adoption TriQPAN is triggered by
a request to ConsiderGoal(g) for adoption. This trigger could have
originated from the request of another agent or a reflex following
a perception. First, it queries all the currently Active Goals of the
agent to complete then Goal Adoption Decision process. The ensuing
flow is annotated with an xor constraint to denote that the decision
can be to execute one of the actions - adopt goal or abandon goal g.
Each of these actions, then fires the corresponding notifications of
GoalAdopted(g) or GoalAbandoned(g).

The GoalAdopted(g) event triggers the TriQPAN process of Goal
Activation, hence forming a chain of TriqPANs where the notifica-
tion of one, leads to the trigger of another.

In turn, the Goal Activation TriQPAN may trigger a GoalAc-
tivated(g) notification after the Query-Process-Action (QPA) steps
of the TriQPAN . This GoalActivated(g) notification becomes the
trigger of the Plan Selection TriQPAN . (Note that the notation al-
lows to collapse these steps to focus on the sequence of events.
To avoid cluttering, we choose to show the QPA steps container
with the name of the TriQPAN process, and infer the trigger and
notifications from the control flow arrows.)

4 EXPLAINING AGENT BEHAVIOURS
In this section, we present how TriQPAN pattern based architec-
tures enable XAg. We use our implementation of TriQPAN to illus-
trate how this can be done. We also use this section to highlight
what our implementation in SARL supports in terms of XAg.

4.1 Explanation query types
Notification events observed from an XAg system that implements
TriQPAN contains rich information about the decision processes
and its outcomes. They enable us to query the system behaviour
regarding a large number of situations. In our current approach we
support three types of queries with more planned for the future: (i)
direct queries; (ii) temporally correlated queries; and (iii) continuous
queries. Table 1 presents a summary of the direct and temporally
correlated query types as implemented in this work. Continuous
queries are essentially any explanation query (of the other types)
where the agent is required to continuously provide answers on.

The table shows the questions available for each concept rele-
vant to the query type, an example for each case with the actual
query and the natural language description of it in italics below.
We also note the level of support that our implementation in SARL

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1624

Table 1: Query types overview

Concept Question SARL Example

D
ir e

ct

Goal
(Achievement,
Perform and
Maintenance)

why(Goal, state, time) Provided why(GetCoffee, active, t10)
"Why did you decide to get a coffee at t10?"

why_not(Goal, state, time) Partial why_not(GetCoffee, dropped, t10)
"Why did you stop trying to get a coffee at t10?"

why_pref(Goal_1, Goal_2,time) Planned why(GetCoffee, GetTea, t10)
"Why did you prefer a coffee over a tea at t10?"

Plan
why(Plan, Goal, time) Provided why(GetKitchenCoffee, GetCoffee, t10)

"Why did you get a coffee from the kitchen?"

why_not(Plan, Goal, time) Provided why_not(GetShopCoffee, GetCoffee,t10)
"Why didn’t you get a coffee from the shop?"

why_pref(Plan_1,Plan_2, time) Provided why_pref(GetKitchenCoffee, GetShopCoffee,t10)
"Why did you prefer the kitchen coffee over shop coffee at t10?"

Beliefs why(BeliefSet, Belief, value, time) Provided why(OfficeBeliefs, coffee.quality, BAD, t10)
"Why did you get BAD coffee"? (aka "Why bad coffee?)"

Ad-hoc Process Domain specific Supported

Action Outcome why(ActionOutcome, value, time) Supported why(FileWritten, paper.tex, t10)
"Why was the file "paper.tex" written at t10?"

T e
m
po

ra
lC

or
re
la
tio

n

Generic

how_many((Notification, matcher?)+,
time_window, time_frame?) Supported how_many(GoalActivated(StartWork), GoalActivated(GetCoffee),10 minutes)

"How many times did you get coffee within 10 mins of starting work?
what_sequence(Notification, attribute?,
time_frame?) Provided what_sequence(LocationUpdated, event.location)

"What was the sequence of changes to your location?"

is_it_always(Trigger, Notication, tolerance) Provided is_it_always(GoalActivated(StartWork), GoalActivated(GetCoffee), 10 minutes)
"Is it always the case that you get a coffee within 10 minutes of starting work?"

is_it_never(Trigger, Notification, tolerance) Provided is_it_never(TimeUpdated(3pm), GoalActivated(GetCoffee))
"Is it never the case that you get coffee after 3pm?"

Goals how_many(Goal+,window, time_frame?) Supported how_many(GetCoffee, StartWork, within 10 minutes)
"How many times do you get a coffee after starting work?"

Beliefs how_many(Belief+, window, time_frame?) Supported how_many(location==KITCHEN, coffee==true)
"How many times do you have a coffee when at the kitchen?"

what_sequence(BelSet, Belief) Provided what_sequence(OfficeBeliefs, location)
"What is the sequence of locations you went through?"

provides out-of-the-box for each case. The SARL support is catego-
rized as Provided: the feature is fully implemented; Partial: not all
functionalities are fully implemented at this stage, but implemen-
tation is planned; Planned: the functionality is not implemented
but planned; Supported: the mechanisms are provided for future
development if required.

4.1.1 Direct queries. In a goal-oriented agent system we are inter-
ested in obtaining explanations related to three core agent concepts
- goals, plans and beliefs.

Our goal engine in SARL is inspired by [12] where the life-cyle
of a goal is defined in terms of states and operational semantics are
defined for the transitions. In our approach, we can query the agent
about any decision related the operations of goals, not just the
goal activation. E.g., why was Goal X dropped ? or why suspended?.
While in most of this paper we focus on achievement goals, the
goal-engine also supports maintenance and perform goals.

For both goals and plans, we are able to ask: (i) why questions;
(ii) why_not questions; and (iii) why_pref questions. (see Table 1).
For beliefs, why questions are the only applicable query type.

Finally, Ad-hoc processes and action outcome notifications can
be queried using the information able in the TriQPAN notifications.

4.1.2 Temporal Correlation queries. In many cases, we are not only
interested only in decisions made at a particularly given time (e.g.,
why did you choose Plan A over B at 𝑡𝑥 ?), that is, direct queries, but
also explanations on sequences of decisions. For example, which

locations did you visit to get coffee?). This requires processing the
event stream log to extract the information needed.

We define a number of different types of temporally correlated
queries: (i) how_many which is a count of some occurrence; (ii)
is_it_always and (iii) is_it_never to query whether it is always the
case or not case of an occurrence, respectively; and (iv)what_sequence
to identify the trace of updates to a belief. See Table 1 for examples
and concepts related to each type. Finally, we support questions
targeting the TriQPAN notifications independently of any agent
architecture, labelled as Generic. Using these queries, developers
are not restricted to the set of questions proposed in this work and
are able to create new ones.

4.1.3 Continuous explanations. In its very nature, events in the
agent system are continuously streamed from the system to that
event store. As a result of this live stream, humans are able to query
the agents not only after the execution, but as continuously run-
ning queries that expand as the system executes. EventStoreDB
support this type of Continuous queries using projections. Contin-
uous queries combined with (temporal) correlation queries and
explainability opens the door to new forms of live interactions
between humans and XAgents; not only for explanations but also
monitoring, cooperation, human veto and much more.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1625

Figure 4: SARL TriQPAN architecture overview

4.2 SARL XAg
We selected SARL for implementing our XAg design pattern TriQ-
PAN . While the examples below will use SARL to illustrate how to
adapt the TriQPAN pattern to different agent designs, TriQPAN can
be implemented and adopted to any existing agent framework.

4.2.1 Architecture. To enable explainability queries, we have inte-
grated SARL platform with EventStoreDB, a state-of-the-art event
stream database. A high level overview in show in Figure 4. An
EventObserver stores the information produced by XAgents into
the event database. Then a human operator can use specific queries
using an event query language to answer why questions. Systems
implementing the TriQPAN pattern will fire the events into SARL
a Space. Spaces in SARL are communication support components
able to transport events. These events can be observed by other
agents to trigger their own behaviours2.

4.2.2 Goal engine implementation. The engine is designed using
a sequence of TriQPAN to chain core algorithms, such as goal
selection, plan selection, and so on. Each one of these processes
fires an XAgentProcess event to notify of the TriQPAN components
used (as mentioned in Section 3).

We created a XAgentProcess event implementation in SARL to
broadcast information associated with the TriQPAN pattern (see
Figure 5). This event is populated by the TriQPAN process with all
relevant information, such as process name; the implementation;
trigger; queries; and actions selected. Additionally, it captures the
criteria used to decide the actions taken.

To illustrate how this process is implemented, consider the
Plan Selection process shown in Figure 5. The process is triggered
by the ReviewPlans event. Then it will find all active goals (i.e.,
intentions) that do not have a plan attached (i.e., unattachedGoals).
It will then find all applicable plan for that goal. This information
is stored in the queries map of the XAgentProcess event .

As a selection criteria, it uses the highest applicability in the
set of applicablePlans recorded in the queries. In our engine, the
applicability is calculated for each plan based on the agent’s beliefs.
The winner is recorded as part of the actions taken.

4.2.3 Preference reasoning via valuings. We extended the SARL en-
gine to support Plan valuings inspired by [30]. In addition, the goal
engine also provides the criteria used for determining the applica-
bility rating for each plan. The criteria allows to disambiguate on
how the agent reached these ratings, an often overlooked feature.
See section 5 for an example.
2Please refer to [18] for details on SARL communication mechanisms

behavior ApplicabilityRatingPlanSelection {
2 uses Behaviors , IntentionStackManagement ,

PlanSelectionConstraints
on ReviewPlans [isFromMe] {

4 for (g : intentions) {
val unattachedGoals = g . unattachedGoalIntentionFrames

6 for (ug : unattachedGoals) {
val xag = new XAgentProcess ("PlanSelection" , th i s .
c lass , occurrence)

8 val applicableLst = ug . goal . applicablePlans

10 xag . queries . put ("unattachedGoal" , ug)
xag . queries . put ("applicablePlans" , applicableLst)

12
xag . criteria . put ("winner" , "highest applicability")

14 val winner = applicableLst . maxBy [ap | ap . applicability]
ug . attachPlan (winner . plan)

16 xag . actions . put ("attachPlan" , winner)
wake (xag) / / f i r e i n t e r n a l e v e n t

18 }
}

20 wake (new PlansUpdated)
}

22 }

Figure 5: Rating based Plan Selection using TriQPAN

4.2.4 TriQPAN compliant mental states via beliefs. In goal-oriented
agents, beliefs play a crucial role and changes to the beliefs should
be notified via events. As this can be an overwhelming task for
developers, the framework should provide native support for belief
set management.

Our approach consist of identifying data structures with the
@Belief annotation. The framework can automatically generate
SARL capacities (and related skills) to query and update beliefs.
Capacities and Skills are SARL’s mechanisms to implement ac-
tions that are brought into scope by the useskeyword.3 Update ac-
tions will automatically trigger notification events. For example the
setLocation actionwill fire the OfficeBeliefsLocationUpdated
event.

Belief update events include a list of IntentionStackTrace
-Elements. This trace contains information regarding the agent
process that updated the belief.

4.2.5 Ad-hoc processes support. For explanations outside of the
above, the SARL engine offers full access to the TriQPAN API, al-
lowing developers to replace / extend any of the processes and/or
actions provided. This gives great flexibility to tailor for particular
use cases supporting different agent architectures. For example,
the agent system can integrate domain specific actions to mod-
ify their environment, and notify the outcomes of the following
the TriQPAN process. For instance, "Why was file paper.tex modi-
fied?"(why(FileWritten, paper.tex, t10)).

4.3 Translating questions into event queries
In the EventStoreDB, events are stored in streams that can be
queried using a query framework based on javascript. To answer
why questions, we must first translate them into event queries.
This allows us to harness the power of industry-grade systems to

3Please refer to SARL documentation for details.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1626

Figure 6: Why bad coffee? query and result

explain agent behaviours. It also opens the door to community
collaboration and innovative contributions of shared modules.

In Figure 6, we show how to translate our example question,
“why bad coffee?", into the event query language and the corre-
sponding query result. To do this, we first need to select the stream
of events of the application under consideration. Then, in the when
function, we pass handlers for each type of event that hold infor-
mation to answer the question at hand. The first handler ($init)
allows to initialize the state that following handlers will receive as
parameter 𝑠 . The second handler is applied for every event 𝑒 of type
OfficeBeliefsCoffeeUpdated (i.e., notifications of updates to the Cof-
fee Belief). The event’s 𝑏𝑜𝑑𝑦 format depends on the type of event.
In our case, the OfficeBeliefsCoffeeUpdated event contains the up-
dated value of the coffee belief in the 𝑛𝑒𝑤𝑉𝑎𝑙𝑢𝑒 attribute and the
trace of goals and plans that caused this belief update, in the 𝑡𝑟𝑎𝑐𝑒
attribute. Using this information we can construct the English ex-
planation stored in the state’s 𝑠 .𝑟𝑒𝑎𝑠𝑜𝑛 - “I got BAD coffee because
I selected Plan GetKitchenCoffee to achieve Goal GetCoffee”.

While our current translation is simplistic, we can plug-in an
explanation engine as the one proposed by [30] to automatically
create richer natural language explanations.

4.4 Explaining ad-hoc behaviours
Agent technology expands beyond goal oriented agents. In many
applications, reactive agents (or specific reactive behaviours) are
implemented. For instance, consider a Drone agent exploring an
area to identify objects. When an object is detected it must decide
whether to identify the newly detected object or its previous target.
Additionally when the battery level becomes "LOW", it must return
immediately to base to recharge. Such behaviours, could be simply
implemented as a reactive decision based on the notification of
BatteryLevelUpdated. In SARL, this behaviour could be implemented
as shown in Figure 7. We are now able to answer "Why are you
returning to base?".

5 EXPERIMENTAL EVALUATION
We implemented two systems from published works, using the
TriQPAN pattern presented in this work. First, we developed the
GetCoffee goal-plan tree presented in [30]. Second, we adapted part
of a Search and Rescue application presented in [22], Table 2 presents
a sample of the questions and answers generated by the current
implementation.

behavior Drone {
2 uses DroneStateBeliefs / / B e l i e f s e t

on ObjectDetected { / / T r i g g e r
4 / / TriQPAN p r o c e s s t o d e c i d e on

/ / o b j e c t i d e n t i f i c a t i o n
6 }

on BatteryLevelUpdated [LOW == newValue] {
8 val xag = new XAgentProcess ("BatteryMonitor" , Drone ,

occurrence)
xag . queries . put ("batteryLevel" , batteryLevel)

10 xag . criteria . put ("destinationSelection" , "Recharge on
LOW Battery")

destination = baseLocation
12 xag . actions . put ("destination" , baseLocation)

wake (xag)
14 }

}

Figure 7: Basic XAgentProcess

We use the GetCoffee example to present goal, plan and belief
explanations. First we find the explanation for why bad coffee? by
querying when did the belief of coffee get updated and who made
the change. The next obvious question, why did the agent select
the GetKitchenCoffee plan?, is answered by presenting the ratings
obtained by each plan. This same explanation can be presented for
why did not select GetOfficeCoffee plan?.

We then explain why GetSfaffCard goal was activated?. And fi-
nally we present an example of temporal correlation query to explain
the path followed by the agent.

As explained in previous sections, TriQPAN is not limited to
goal-plan agents. The Search and Rescue application uses ad-hoc de-
cision processes. The Drone agent was implemented using reactive
behaviours that follow the TriQPAN pattern as shown in figure 7.
This allows generating the explanation as show in table 2. This long
running application benefits from continuous queries. The query
runs continuously presenting the user with "live" updates of the
decisions made by the Drone. For instance, we see the decision to
return to base because battery is low and must recharge.

We notice that the system offers an (obscure) answer to why
GetKitchenCoffee plan was selected?(i.e., GetKitchenCoffee had 30%
rating, while the others had 0%). However, the framework is capable
of generating more elaborate answers using the valuings and crite-
ria information of the XAgentProcess event of the Plan Selection
process. Figure 8 shows the details available for plans GetKitchen-
Coffee (left) and GetOfficeCoffee (right). For each plan we find: (i)
the valuings that represent the information used when rating the
plan; and (ii) the criteria used to generate the rating, including the
formula to generate the final rating.

In the case of GetKitchenCoffee the criteria to generate the rating
is 𝑐𝑜 𝑓 𝑓 𝑒𝑒.𝑞𝑢𝑎𝑙𝑖𝑡𝑦 ∗ 𝑐𝑜𝑠𝑡 ∗ 𝑠𝑡𝑎𝑓 𝑓 𝐶𝑎𝑟𝑑𝐴𝑣𝑎𝑖𝑙𝑎𝑏𝑙𝑒 . If we replace com-
ponents using their criteria, we get 0.3 ∗ 1 ∗ 1 = 0.3 In the case of
GetOfficeCoffee, the value of annInOffice is false so this yields a
rating of 0. If both plans were applicable (e.g, annInOffice=true and
staffCardAvailable=true), GetOfficeCoffee would receive a rating of
0.5 since the agent rates GOOD coffee at 0.5 and BAD at 0.3. With
this information, more elaborate answers can be easily generated
enabling users to find answers to their own questions.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1627

Question Output
Coffee System

Direct
Belief why(OfficeBeliefs, coffee.quality, BAD) I got BAD Coffee because I selected Plan GetKitchenCoffee to achieve Goal GetCoffee

Direct
Plan

why(GetKitchenCoffee, GetCoffee)
why_not(GetOfficeCoffee, GetCoffee)

Options for GetCoffee were:
Plan GetKitchenCoffee with rating 30%
Plan GetOfficeCoffee with rating 0%
Plan GetShopCoffee with rating 0%"

Direct
Goal why(GetStaffCard) Goal GetStaffCard was activated by GetKitchenCoffee Plan

Temporal what_sequence(OfficeBeliefs, location) Started in OFFICE then moved to KITCHEN
Drone Search and Rescue

Ad-hoc
Process

(continuous
query allowing
monitoring)

where and why destination

"ObjectDetected(92,73) so Going to (92, 73) because I identify the closest object first",
"ObjectDetected(25,47) so Going to (25, 47) because I identify the closest object first",
"ObjectDetected(52,27) but Going to (25, 47) because I identify the closest object first",
"ObjectDetected(51,13) but Going to (25, 47) because I identify the closest object first",
"BatteryLevelUpdated(LOW) so Going to (0, 0) because Recharge on LOW Battery",
"ObjectDetected(60,56) but Going to (0, 0) because Return to base has priority",

Table 2: Sample of questions and answer of systems implemented using TriQPAN

{
"name": "GetKitchenCoffee",
"rating": 0.3,
"valuings": {
"coffee.quality": "BAD",
"cost": "NONE",
"distanceTo(KITCHEN)": 20,
"staffCardAvailable": true

},
"criteria": {
"coffee.quality": {

"GOOD": 0.5,
"VERY_GOOD": 1,
"BAD": 0.3

},
"cost": {

"LOW": 0.8,
"NONE": 1,
"HIGH": 0.5

},
"staffCardAvailable":
"staffCardAvailable?␣

1.0:0.0",
"rating":"coffee.quality␣

␣cost␣␣
staffCardAvailable"

}
}

{
"name": "GetOfficeCoffee",
"rating": 0,
"valuings": {
"coffee.quality": "GOOD",
"distanceTo(OFFICE)": 0,
"cost": "NONE",
"annInOffice": false

},
"criteria": {
"coffee.quality": {
"GOOD": 0.5,
"VERY_GOOD": 1,
"BAD": 0.3

},
"cost": {
"LOW": 0.8,
"NONE": 1,
"HIGH": 0.5

},
"annInOffice":

"annInOffice?␣
1.0:0.0",

"rating":"coffee.quality␣
␣cost␣␣annInOffice"

}
}

Figure 8: Plan Selection XAgentProcess event

6 CONCLUSION
In this paper we have advocated the use of design patterns to
develop explainable-by-design agents (XAg) as a design feature
instead of an afterthought. The design pattern we present TriQ-
PAN is based on the pattern that every decision making process
an agent undertakes - trigger, query, process, action and notify.
The underlying principle is logging the events related to the TriQ-
PAN process via an event store, and querying the event store to
provide explanations.

We show how TriQPAN can be implemented to explain be-
haviours for any agent architecture by generating and storing the re-
quired events, but more importantly, we extend the SARL agent pro-
gramming platform by integrating TriQPAN into its goal-reasoning
engine. This allows developers to design and implement an agent
system as per usual, with no (or very little) overhead, be able to
query the agent systems for explanations about its behaviours.

We tested our SARL extension with two case studies - the artifi-
cial ’get coffee’ example used in [31] and a ’search and rescue’ case
study used in [21, 22], to illustrate its use in practice.

Our approach was inspired by previous work on explaining
the behaviour of BDI agents [10, 31] by inspecting the goal-plan
structures and event-driven software patterns [6, 7]. Our event
based design pattern is able to provide the same type of explanations
and go beyond as the event store can be queried for richer types
of queries such as temporal correlation queries as described in this
work.

TriQPAN also enables requirements verification in a similar ap-
proach to [23]. Indeed, more advanced verifications can be imple-
mented as we have access to more detailed information (compared
to logs of traces). This verification could also be done “live" using
continuous queries.

Whilst we have presented a few different types of explanation
queries, future work involves investigating other query types. This
includes expanding and further exploring the potential of correlation
queries for explainablity and auditing. Future work also includes
providing full support in our SARL implementation for those cases
wherewe have planned to do so as identified in Table 1. Additionally,
we will explore "introspection" reasoning based on information
made available by XAgentProcess event .

In our approach we provide a basic translation from formal event
queries and responses to intuitive english language representations.
Future work includes adapting more sophisticated formalisms pre-
sented in [31] to present better natural language explanations.

Our XAg extension to SARL will be made freely available via
GitHub. We make a call-to-action for the engineering MAS com-
munity consider extending other agent development platforms to
incorporate the TriQPAN design pattern into their respective rea-
soning engines, providing users with built-in XAg functionality.
This would greatly enhance the acceptance and use of MAS in the
mainstream.

ACKNOWLEDGMENTS
This research is supported by the Commonwealth of Australia as
represented by the Defence Science and Technology Group and the
C2IMPRESS project funded by the EU.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1628

REFERENCES
[1] Elhadi Belghache, Jean-Pierre Georgé, and Marie-Pierre Gleizes. [n.d.]. Towards

an Adaptive Multi-agent System for Dynamic Big Data Analytics. In 2016 Intl IEEE
Conferences on Ubiquitous Intelligence Computing, Advanced and Trusted Comput-
ing, Scalable Computing and Communications, Cloud and Big Data Computing,
Internet of People, and Smart World Congress (UIC/ATC/ScalCom/CBDCom/IoP/S-
martWorld) (2016-07). 753–758. https://doi.org/10.1109/UIC-ATC-ScalCom-
CBDCom-IoP-SmartWorld.2016.0121

[2] Rafael Bordini, Jomi Hübner, and Michael Wooldridge. 2007. Programming
Multi-Agent Systems in AgentSpeak Using Jason. Vol. 8. https://doi.org/10.1002/
9780470061848

[3] Mario Henrique Cruz Torres, Tony Van Beers, and Tom Holvoet. 2011. (No) More
Design Patterns for Multi-Agent Systems. In Proceedings of the Compilation of the
Co-Located Workshops on DSM’11, TMC’11, AGERE! 2011, AOOPES’11, NEAT’11,
& VMIL’11 (Portland, Oregon, USA) (SPLASH ’11 Workshops). Association for
Computing Machinery, New York, NY, USA, 213–220. https://doi.org/10.1145/
2095050.2095083

[4] Mehdi Dastani. 2008. 2APL: A Practical Agent Programming Language. Au-
tonomous Agents and Multi-Agent Systems 16, 3 (jun 2008), 214–248. https:
//doi.org/10.1007/s10458-008-9036-y

[5] Mehdi Dastani and Bas Testerink. 2016. Design Patterns for Multi-Agent
Programming. Int. J. Agent-Oriented Softw. Eng. 5, 2/3 (jan 2016), 167–202.
https://doi.org/10.1504/IJAOSE.2016.080896

[6] Martin Fowler. [n.d.]. CQRS. martinfowler.com. https://martinfowler.com/bliki/
CQRS.html

[7] Martin Fowler. [n.d.]. Event Sourcing. martinfowler.com. https://martinfowler.
com/eaaDev/EventSourcing.html

[8] Erich Gamma. 1995. Design patterns: elements of reusable object-oriented software.
Pearson Education India.

[9] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. 1994. Design
Patterns: Elements of Reusable Object-Oriented Software. Addison-Wesley Profes-
sional.

[10] Maaike Harbers, Karel Bosch, and John-Jules Ch. Meyer. 2009. A Study into Pre-
ferred Explanations of Virtual Agent Behavior. In Proceedings of the 9th Interna-
tional Conference on Intelligent Virtual Agents (Amsterdam, The Netherlands) (IVA
’09). Springer-Verlag, Berlin, Heidelberg, 132–145. https://doi.org/10.1007/978-3-
642-04380-2_17

[11] MaaikeHarbers, Karel van den Bosch, and John-JulesMeyer. 2009. AMethodology
for Developing Self-Explaining Agents for Virtual Training. In Proceedings of the
Second International Conference on Languages, Methodologies, and Development
Tools for Multi-Agent Systems (Torino, Italy) (LADS’09). Springer-Verlag, Berlin,
Heidelberg, 168–182. https://doi.org/10.1007/978-3-642-13338-1_10

[12] James Harland, David N. Morley, John Thangarajah, and Neil Yorke-Smith. [n.d.].
An Operational Semantics for the Goal Life-Cycle in BDI Agents. 28, 4 ([n. d.]),
682–719. https://doi.org/10.1007/s10458-013-9238-9

[13] Ivar Jacobson, Grady Booch, and James Rumbaugh. [n.d.]. The Unified Software
Development Process. Addison Wesley.

[14] Aniek F. Markus, Jan A. Kors, and Peter R. Rijnbeek. 2021. The role of explainabil-
ity in creating trustworthy artificial intelligence for health care: A comprehensive
survey of the terminology, design choices, and evaluation strategies. Journal
of Biomedical Informatics 113 (2021), 103655. https://doi.org/10.1016/j.jbi.2020.
103655

[15] Fatma Outay, Stéphane Galland, Nicolas Gaud, and Abdeljalil Abbas-Turki. [n.d.].
Simulation of Connected Driving in Hazardous Weather Conditions: General
and Extensible Multiagent Architecture and Models. 104 ([n. d.]), 104412. https:
//doi.org/10.1016/j.engappai.2021.104412

[16] Alexander Pokahr, Lars Braubach, and Winfried Lamersdorf. 2005. Jadex: A
BDI Reasoning Engine. In Multi-Agent Programming: Languages, Platforms and
Applications, Rafael H. Bordini, Mehdi Dastani, Jürgen Dix, and Amal El Fal-
lah Seghrouchni (Eds.). Springer US, Boston, MA, 149–174. https://doi.org/10.
1007/0-387-26350-0_6

[17] A. S. Rao and M. P. Georgeff. 1991. Modeling rational agents within a BDI-
architecture. In Principles of Knowledge Representation and Reasoning. Proceedings
of the second International Conference. Morgan Kaufmann, San Mateo, 473–484.

[18] Sebastian Rodriguez, Nicolas Gaud, and Stéphane Galland. [n.d.]. SARL: A
General-Purpose Agent-Oriented Programming Language, Vol. 3. IEEE Computer

Society Press, 103–110. https://doi.org/10.1109/WI-IAT.2014.156
[19] Sebastian Rodriguez, John Thangarajah, and Michael Winikoff. [n.d.]. A

Behaviour-Driven Approach for Testing Requirements via User and System
Stories in Agent Systems. In Proceedings of the 2023 International Conference on
Autonomous Agents and Multiagent Systems (Richland, SC, 2023-05-30) (AAMAS
’23). International Foundation for Autonomous Agents and Multiagent Systems,
1182–1190. https://dl.acm.org/doi/abs/10.5555/3545946.3598761

[20] Sebastian Rodriguez, John Thangarajah, and Michael Winikoff. [n.d.]. User
and System Stories: An Agile Approach for Managing Requirements in AOSE.
In Proceedings of the 20th International Conference on Autonomous Agents and
MultiAgent Systems (Richland, SC, 2021-05-03) (AAMAS ’21). International Foun-
dation for Autonomous Agents and Multiagent Systems, 1064–1072. https:
//doi.org/10.5555/3461017.3461136

[21] Sebastian Rodriguez, John Thangarajah, and Michael Winikoff. 2021. User and
System Stories: An Agile Approach for Managing Requirements in AOSE. In
AAMAS ’21: 20th International Conference on Autonomous Agents and Multiagent
Systems, Virtual Event, United Kingdom, May 3-7, 2021, Frank Dignum, Alessio
Lomuscio, Ulle Endriss, and Ann Nowé (Eds.). ACM, 1064–1072. https://doi.org/
10.5555/3463952.3464076

[22] Sebastian Rodriguez, John Thangarajah, andMichaelWinikoff. 2023. A Behaviour-
Driven Approach for Testing Requirements via User and System Stories in Agent
Systems. In Proceedings of the 2023 International Conference on Autonomous
Agents and Multiagent Systems (London, United Kingdom) (AAMAS ’23). Interna-
tional Foundation for Autonomous Agents and Multiagent Systems, Richland,
SC, 1182–1190.

[23] Sebastian Rodriguez, John Thangarajah, Michael Winikoff, and Dhirendra Singh.
[n.d.]. Testing Requirements via User and System Stories in Agent Systems.
In Proceedings of the 21st International Conference on Autonomous Agents and
Multiagent Systems (Richland, SC, 2022-05-09) (AAMAS ’22). International Foun-
dation for Autonomous Agents and Multiagent Systems, 1119–1127. https:
//ifaamas.org/Proceedings/aamas2022/pdfs/p1119.pdf

[24] Igor Tchappi, Yazan Mualla, Stéphane Galland, André Bottaro, Vivient Corneille
Kamla, and Jean Claude Kamgang. [n.d.]. Multilevel and Holonic Model for
Dynamic Holarchy Management: Application to Large-Scale Road Traffic. 109
([n. d.]), 104622. https://doi.org/10.1016/j.engappai.2021.104622

[25] John Thangarajah and Lin Padgham. 2011. Computationally Effective Reasoning
About Goal Interactions. J. Autom. Reasoning 47 (06 2011), 17–56. https://doi.
org/10.1007/s10817-010-9175-0

[26] John Thangarajah, Lin Padgham, and Michael Winikoff. 2003. Detecting &
Avoiding Interference Between Goals in Intelligent Agents. Proceedings of the
Eighteenth International Joint Conference on Artificial Intelligence (11 2003), 721–
726.

[27] John Thangarajah, Lin Padgham, and Michael Winikoff. 2003. Detecting &
Exploiting Positive Goal Interaction in Intelligent Agents. Proceedings of the
Interantional Conference on Autonomous Agents 2, 401–408. https://doi.org/10.
1145/860575.860640

[28] Hironori Washizaki, Hiromu Uchida, Foutse Khomh, and Yann-Gaël Guéhéneuc.
2019. Studying Software Engineering Patterns for Designing Machine Learning
Systems. CoRR abs/1910.04736 (2019). arXiv:1910.04736 http://arxiv.org/abs/
1910.04736

[29] Michael Winikoff. 2005. Jack™ Intelligent Agents: An Industrial Strength Platform.
175–193. https://doi.org/10.1007/0-387-26350-0_7

[30] Michael Winikoff, Virginia Dignum, and Frank Dignum. 2018. Why Bad Cof-
fee? Explaining Agent Plans with Valuings. In Computer Safety, Reliability, and
Security, Barbara Gallina, Amund Skavhaug, Erwin Schoitsch, and Friedemann
Bitsch (Eds.). Springer International Publishing, Cham, 521–534.

[31] Michael Winikoff, Galina Sidorenko, Virginia Dignum, and Frank Dignum. 2021.
Why bad coffee? Explaining BDI agent behaviour with valuings. Artificial Intelli-
gence 300 (2021), 103554. https://doi.org/10.1016/j.artint.2021.103554

[32] Michael Winikoff, Galina Sidorenko, Virginia Dignum, and Frank Dignum. 2022.
Why Bad Coffee? Explaining BDI Agent Behaviour with Valuings (Extended
Abstract). In Proceedings of the Thirty-First International Joint Conference on Arti-
ficial Intelligence, IJCAI-22, Lud De Raedt (Ed.). International Joint Conferences
on Artificial Intelligence Organization, 5782–5786. https://doi.org/10.24963/ijcai.
2022/810 Journal Track.

Full Research Paper AAMAS 2024, May 6–10, 2024, Auckland, New Zealand

1629

https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0121
https://doi.org/10.1109/UIC-ATC-ScalCom-CBDCom-IoP-SmartWorld.2016.0121
https://doi.org/10.1002/9780470061848
https://doi.org/10.1002/9780470061848
https://doi.org/10.1145/2095050.2095083
https://doi.org/10.1145/2095050.2095083
https://doi.org/10.1007/s10458-008-9036-y
https://doi.org/10.1007/s10458-008-9036-y
https://doi.org/10.1504/IJAOSE.2016.080896
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/bliki/CQRS.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://martinfowler.com/eaaDev/EventSourcing.html
https://doi.org/10.1007/978-3-642-04380-2_17
https://doi.org/10.1007/978-3-642-04380-2_17
https://doi.org/10.1007/978-3-642-13338-1_10
https://doi.org/10.1007/s10458-013-9238-9
https://doi.org/10.1016/j.jbi.2020.103655
https://doi.org/10.1016/j.jbi.2020.103655
https://doi.org/10.1016/j.engappai.2021.104412
https://doi.org/10.1016/j.engappai.2021.104412
https://doi.org/10.1007/0-387-26350-0_6
https://doi.org/10.1007/0-387-26350-0_6
https://doi.org/10.1109/WI-IAT.2014.156
https://dl.acm.org/doi/abs/10.5555/3545946.3598761
https://doi.org/10.5555/3461017.3461136
https://doi.org/10.5555/3461017.3461136
https://doi.org/10.5555/3463952.3464076
https://doi.org/10.5555/3463952.3464076
https://ifaamas.org/Proceedings/aamas2022/pdfs/p1119.pdf
https://ifaamas.org/Proceedings/aamas2022/pdfs/p1119.pdf
https://doi.org/10.1016/j.engappai.2021.104622
https://doi.org/10.1007/s10817-010-9175-0
https://doi.org/10.1007/s10817-010-9175-0
https://doi.org/10.1145/860575.860640
https://doi.org/10.1145/860575.860640
https://arxiv.org/abs/1910.04736
http://arxiv.org/abs/1910.04736
http://arxiv.org/abs/1910.04736
https://doi.org/10.1007/0-387-26350-0_7
https://doi.org/10.1016/j.artint.2021.103554
https://doi.org/10.24963/ijcai.2022/810
https://doi.org/10.24963/ijcai.2022/810

	Abstract
	1 Introduction
	2 background
	2.1 Design Patterns
	2.2 Goal-plan Agents
	2.3 SARL & EventStoreDB
	2.4 Related Work on XAg

	3 TriQPAN - A Design Pattern for XAg
	4 Explaining Agent behaviours
	4.1 Explanation query types
	4.2 SARL XAg
	4.3 Translating questions into event queries
	4.4 Explaining ad-hoc behaviours

	5 Experimental evaluation
	6 Conclusion
	Acknowledgments
	References

